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ABSTRACT

Sparse Fast Fourier Transform (sFFT) [1][2], has been re-
cently proposed to outperform FFT in reducing computational
complexity. Assume that an input signal of length N in the
frequency domain is K-sparse, where K ≤ N . sFFT costs
O(K logN) instead of O(N logN) in FFT.

In this paper, a new fast sFFT algorithm is proposed and
costs O(K logK) averagely without any operations being re-
lated to N . The idea is to downsample the original input sig-
nal at the beginning. Subsequent processing operates under
downsampled signals, which length is proportional to O(K).
However, downsampling possibly leads to “aliasing.” By shift
theorem of DFT, the aliasing problem can be formulated as
the “Moment-preserving problem.” In addition, a top-down
iterative strategy combined with different downsampling fac-
tors further saves computational costs. Complexity analysis
and experimental results show that our method outperforms
FFT and sFFT.
Index Terms— Sparsity, FFT, Sparse FFT, Downsampling

1. INTRODUCTION

Fast Fourier transform (FFT) is a well-known approach for
computing DFT with O(N logN), where N is the length of
a signal. How to outperform FFT is a significant challenge in
the signal processing community.

Recently, the researchers in MIT propose, as a break-
through, a new technique, called Sparse Fast Fourier Trans-
form (sFFT) [1][2], that is proved to outperform FFT. Let
x ∈ CN be the input signal in the time domain and let
X ∈ CN be the Fourier transform of x. Assume that x
is K-sparse in that there are K non-zero entries in X , i.e.,
supp(X) = K and K ≤ N . sFFT costs O(K logN).

The idea behind sFFT is to sample fewer (proportional
to K) instead of keeping all frequency grids since most
frequency grids are zero and do not need to be calculated.
FFT based on such subsampling strategy will only cost
O(K logK) calculations. However, because the locations
and values of the K non-zero entries are unknown, sub-
sampled frequency grids often lead to data loss and cannot
achieve perfect reconstruction.

In order to cope with this difficulty, sFFT is proposed
to include the strategies of filtering and permutation that
can increase the probability of capturing useful information
from subsampled frequency grids. These operations cost
O(K logN). According to [1][2], sFFT is faster than FFTW
[3] (a very fast C subroutine library for computing FFT)
when X is an exact K-sparse signal with K ≤ N

26 . sFFT also
outperforms previous works such as [4][5].

Even though sFFT is outstanding, there are some limita-
tions summarized as follows. 1) Filtering and permutation
are operated on x. Since x ∈ CN , these operations are re-
lated to N . Thus, sFFT is still influenced by N and cannot
achieve the most ideal complexity O(K logK). 2) sFFT only
succeeds with a constant probability; i.e., it possibly fails.

In this paper, a new fast sFFT algorithm with complexity
of O(K logK) by downsampling in the time domain is pro-
posed and dubbed as sFFT-DT. The idea behind sFFT-DT is to
downsample the original input signal first and then all subse-
quent operations are conducted on the downsampled signals.
When the length of a downsampled signal is O(K), no op-
erations related to N are required in our method. However,
downsampling possibly leads to “aliasing,” where different
signals become indistinguishable in terms of their locations
and values. To overcome this problem, we consider the loca-
tions and values of K non-zero entries as variables and the
“aliasing problem” is found to be equivalent to “Moment-
preserving problem,” which can be solved via orthogonal
polynomials [6]. Moreover, our method, conducted in a
manner of top-down iterative strategy under different down-
sampling factors, can further reduce computational complex-
ity. Our method sFFT-DT is analytically and experimentally
verified to outperform FFT and sFFT.

2. PROPOSED METHOD: SFFT-DT

We describe the proposed method and analyze its computa-
tional complexity. The proposed method contains three steps:
1) Downsample the original signal. 2) Calculate Fourier
transform of the downsampled signal by FFT. 3 ) The Fourier
transform of the downsampled signal is used to locate and
estimate K non-zero entries of X . Steps 1 and 2 are simple
and straightforward. Thus, we focus on Step 3 here.
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2.1. Problem Formulation

Let xd be the downsampled signal, where xd[k] = x[dk],
k ∈ [0, Nd − 1], and d is the downsampling factor. Let Xd be
discrete Fourier transform (DFT) of xd, where

Xd[k] =(X[k] +X[k +
N

d
] +X[k + 2

N

d
]

...+X[k + (d− 1)
N

d
])/d.

(1)

Note that each frequency grid of Xd is a summation of d
terms of X . When more than two terms of X are non-zero,
“aliasing” occurs, as illustrated in Fig. 1. Fig. 1(a) shows
an original signal in the frequency domain, where only 3 fre-
quency grids are non-zero. Fig. 1(b) shows the downsampled
signal in the frequency domain when d = 2. Aliasing appears
at 0.8π because two terms are summed together. Fig. 1 will
be further explained in detail in Sec. 2.3.

Fig. 1. Aliasing and its iterative solver. (a) Original signal
in frequency domain. (b) Downsampled signal in frequency
domain with d = 2. If we want to solve all frequency grids
once, it requires 4 FFTs. (c) Similar to (b), however, fre-
quency grids at d = 2 are solved first and require 2 FFTs. (d)
Remaining frequency grids require 2 extra FFTs at d = 4.

Another useful property of DFT is the shift theorem. Let
xd,l[k] = x[dk + l], where l denotes the shift factor. Each
element of Xd,l is denoted as:

Xd,l[k] = (X[k]ei2πkl/N +X[k +
N

d
]ei2π(k+N

d
)l/N+

...+X[k + (d− 1)
N

d
]ei2π(k+(d−1)N

d
)l/N)/d.

(2)

Thus, Eq. (2) degenerates to Eq. (1) when l = 0.
In practice, all we can obtain are Xd,l[k]’s for different

l’s. For each downsampling factor d, there will be no more
than d terms on the right side of Eq. (2), where each term
contains two unknown variables. For example, X [k]ei2πkl/N

is composed of two variables, X [k] and ei2πkl/N . Let a, 1 ≤
a ≤ d, denote the number of terms on the right side of Eq. (2).
Therefore, we need 2a equations to solve these 2a variables,
and l is within the range of [0, 2a − 1]. By taking the above

into consideration, the problem can be formulated as:

p0z
0
0 + p1z

0
1 + ...+ pa−1z

0
a−1 = m0,

p0z
1
0 + p1z

1
1 + ...+ pa−1z

1
a−1 = m1,

...

p0z
2a−1
0 + p1z

2a−1
1 + ...+ pa−1z

2a−1
a−1 = m2a−1,

(3)

where Xd,l[k] is known and is denoted as ml while pj and
zlj , respectively, represent unknown X [sj] and ei2πsj l/N for
sj ∈ {k, k + N

d , ... , k + (d− 1)Nd } and j ∈ [0, a− 1].
It is trivial that no aliasing occurs if a = 1, irrespective

of whatever the downsampling factor is. Under this circum-
stance, we have m0 = Xd,0[k], m1 = Xd,1[k], m0 = p0z

0
0 =

X [s0]/d, and m1 = p0z
1
0 = X [s0]e

i2πs0/N/d, according to
Eq. (3). It is easy to obtain that |m0| = |X [s0]|/d = |m1|
and m1/m0 = ei2πs0/N . After some derivations, we can
solve s0 and obtain X [s0] = dXd,0[k] at the position s0. The
above solution is based on the shift theorem of DFT and can
only work under a non-aliasing environment. However, when
aliasing appears (i.e., a > 1), Eq. (3) is unsolvable because
m1

m0
=

p0z
1
0+p1z

1
1

p0z0
0+p1z0

1
for a = 2.

To cope with the aliasing problem, we consider Eq. (3)
from another point of view. It is observed that the i’th row
in Eq. (3) is the i’th moment with mi =

∑a−1
j=0 pjz

i
j . The

issue of solving pj’s and zj’s given different moments (mi’s)
is the “Moment-preserving problem (MPP).” We find that the
solution to MPP [6][7] based on orthogonal polynomials is
useful and will be discussed in the next subsection.

2.2. The Solution to Moment-Preserving Problem

Note that the moment-preserving problem (Eq. (3)) is non-
linear and cannot be solved by simple matrix operations. On
the contrary, we have to solve zj’s first such that Eq. (3)
becomes linear. Then, pi’s can be solved by matrix inver-
sion. Thus, the main difficulty is how to solve zj’s given
known moments. According to [6], given the unique mo-
ments with m0, m1, ..., m2a−1, there must exist the corre-
sponding orthogonal polynomial equation, P (z), with roots
zj’s for 0 ≤ j ≤ a − 1. Then, zj’s can be obtained as the
roots of P (z). The steps of solving MPP are as follows.
(i) Let the orthogonal polynomial equation P (z) be:

P (z) = za + ca−1z
a−1 + ...+ c1z + c0. (4)

The relationship between P (z) and the moments is:

c0m0 + c1m1 + ...+ ca−1ma−1 = −ma,

c0m1 + c1m2 + ... + ca−1ma = −ma+1,

...

c0ma−1 + c1ma + ...+ ca−1m2a−2 = −m2a−1.

(5)

Eq. (5) is solved by matrix inversion to obtain cj’s.
(ii). Find the roots of P (z) in Eq. (4). These roots are the
solutions of z0, z1,...za−1, respectively.
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(iii). Substitute all zj’s into Eq. (3) and solve the resulting
equations to obtain pj’s.

Tsai [7] proposed a complete analytic solution composed
of the above three steps for a ≤ 4 based on the constraint that
p0+p1+...+pa−1 = 1. Nevertheless, for the aliasing problem
considered here, the constraint is p0 + p1 + ... + pa−1 =
Xd,0[k], as indicated in Eq. (2). Thus, the complete analytic
solution is derived for a = 2 as:

cd = |
m0 m1

m1 m2
|,

c0 = (
1

cd
)|

−m2 m1

−m3 m2
|, c1 = (

1

cd
)|

m0 −m2

m1 m3
|,

z0 =
1

2
[−c1 − (c21 − 4c0)

1
2 ], z1 =

1

2
[−c1 + (c21 − 4c0)

1
2 ],

pd = z1 − z0,

p0 = (
1

pd
)|

m0 1
m1 z1

|, p2 = m0 − p0.

(6)

Eq. (6) costs O(a3) operations. In other words, even
though aliasing occurs for all K non-zero entries of X ,
O(Ka3) is required under the worst case, which is unrelated
to N . However, there is no close-form solution to step (ii) for
a > 4. Under the situation, (ii) can be solved by numerical
analysis like Newton’s method.

In general, aliasing seldom occurs if the locations of non-
zero entries of X are random. Let N+ = N

dK be the ratio of
the length (Nd ) of a downsampled signal to K . Fig. 2 shows
the probability of aliasing (a ≥ 2) at different N+’s. For
a > 4, the probability is very low. In other words, 6 ∼ 8 FFTs
in downsampled signals are enough to recover most frequency
grids of X . However, when the signal is not so sparse with
K approaching N (e.g., K = N

8 and N+ = 20), the cost of 8
FFTs in downsampled signals is almost equivalent to that of
one FFT in the original signal. To further reduce the cost, a
top-down iterative strategy is proposed in the next subsection.
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Fig. 2. Probability of aliasing at different N+’s. a denotes
the number of terms on the right side of Eq. (2). The results
show that aliasing (a ≥ 2), in fact, seldom occurs.

2.3. Top-Down Iterative Strategy

An iterative strategy is proposed to solve the aliasing problem
with iterative increase of the downsampling factor d. Fig 1

illustrates an example. In Fig. 1(b), if we try to solve all
aliasing problems at one iteration, 4 FFTs are required since
the maximum value of a is 2. If we first solve the problem
with a = 1, it costs 2 FFTs, as shown in Fig. 1(c). Since 2
FFTs are not enough for solving the aliasing problem under
a = 2, 2 extra FFTs are required.

The key is how to calculate 2 extra FFTs with less cost in
the above example. The idea motivated by sFFT is to discard
the solved frequency grids in the frequency domain. Thus, if
K

′

frequency grids are subtracted from the original X , the
sparsity of the remaining signal is K − K

′

. Since a more
sparse signal is generated in an iterative manner, d can be set
to be larger under fixed N+. As shown in Fig. 1(d), 2 extra
required FFTs can be fast done with a larger d (=4). From
Fig. 2, the probability at a = i is at least 2 times larger than
that at a = i + 1 for N+ = 21 and i ≥ 1. Consequently, d is
doubled iteratively and the cost of total FFTs is bound by that
required at the first iteration.

2.4. Algorithm

Algorithm 1 depicts the proposed algorithm, sFFT-DT, which
is composed of three functions, main, SubFreq and MPP. At
the initialization stage, the sets S and T record the positions
of solved and unsolved frequency grids, respectively.

The function main is executed in a top-down manner by
doubling the downsampling factor iteratively. It should be
noted that in the function main, Xd,j[k] = 0, initially defined
in Eq. (2), may imply: 1) X [k + jN

d ]’s for all j ∈ [0, d− 1]

are zero and 2) X [k + jN
d ]’s are non-zero but their sum is

zero. To distinguish both, |Xd,j[k]| > 0, j ∈ [0, 2l + 1], is a
sufficient condition. If the number of aliasing frequency grids
(unknowns) is less than or equal to 2l + 2, it is enough to
distinguish both by checking whether any one of the 2l + 2
equations is not equal to 0. If yes, it implies that at least a
frequency gird is non-zero; otherwise, all X [k + jN

d ]’s are
definitely zero. More specifically, the condition (Line 9) is
equivalent to checking 2l + 2 equations at l’th iteration. At
l = 0, two equations (Xd,0[k] and Xd,1[k]) are checked to
ensure that all frequency grids with a ≤ 2 are distinguished.
At l = 1, if k ∈ T , it is confirmed that X [k + jN

d ]’s are non-
zero at the previous iteration. On the contrary, if k /∈ T , extra
2 equations (Xd,2[k] and Xd,3[k]) are added to ensure that all
frequency grids with a ≤ 4 are distinguished. Thus, at l’th
iteration, total 2l + 2 equations are checked.

In addition, due to the iterative framework, we solve the
aliasing problem via the function MPP by assuming the num-
ber of unknown s (locations) and p (estimations) in advance.
If the assumption is true, the condition, sj mod d = k for
all j ∈ [0, l] (Line 30), must be true. For each iteration, the
solved frequency grids are subtracted from the original fre-
quency grids via the function SubFreq such that the resul-
tant signal is more sparser and can be recovered using larger
downsampling factors.
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Algorithm 1 The Proposed Algorithm: sFFT-DT

Input: x, t, K; Output: X;
Initialization: X = 0, d = O(NK ), S = {}, T = {};

01. function main()
02. for l = 0 to t− 1
03. xd,2l[k] = x[dk + 2l] for k ∈ [0, Nd − 1];
04. xd,2l+1[k] = x[dk + 2l+ 1] for k ∈ [0, Nd − 1];
05. Xd,2l = FFT(xd,2l)× d;
06. Xd,2l+1 = FFT(xd,2l+1)× d;
07. SubFreq(Xd,2l,Xd,2l+1,X, d, l, S);
08. for k = 0 to N

d − 1
09. if (k ∈ T or |Xd,2l[k]| > 0 or |Xd,2l+1[k]| > 0)
10. mj = Xd,j[k] for j ∈ [0, 2l+ 1];
11. MPP(m, l, d, k,X, S, T );
12. end if
13. end for
14. d = 2d;
15. All elements in T modulo N

d .
16. end for
17. function SubFreq (Xd,2l,Xd,2l+1,X, d, l, S)
18. for k ∈ S
19. kd = k mod N

d ;

20. Xd,2l[kd] = Xd,2l[kd]−X [k]e
i2πk(2l)

N ;

21. Xd,2l+1[kd] = Xd,2l+1[kd]−X [k]e
i2πk(2l+1)

N ;
22. end for
23. function MPP (m, l, d, k,X, S, T )
24. if l = 0
25. z0 = (

ml+1

ml
); p0 = m0;

26. else
27. Solve the aliasing problem with a = l + 1 by

the solution described in Sec. 2.2.
28. end if
29. sj = (ln zj)N/i2π for all j ∈ [0, l];
30. if (sj mod d) = k for all j ∈ [0, l]
31. S = S ∪ s;
32. X [sj] = pj for all j ∈ [0, l];
33. else
34. T = T ∪ s;
35. end if

2.5. Computational Complexity of sFFT-DT

The outer loop of main runs t times. If non-zero frequency
grids are distributed uniformly, given d = O(NK ) and N+ ∈
[21 22], t is set to be 4 because most frequency grids are non-
aliasing for a = 1 or suffer aliasing for 2 ≤ a ≤ 4 according
to Fig. 2. The cost of outer loop is bounded by two FFTs.
Since d = O(NK ) is set, the dimension of xd,2l and xd,2l+1 is
O(K) and FFT costs O(K logK) at the first iteration. Since
d is doubled iteratively, the total cost of t iterations is still
bounded by O(K logK). In addition, SubFreq costs O(K)
operations due to |S| ≤ K .

The inner loop of main totally runs O(K) times, which
is not related to the outer loop, since at most K frequency
grids are necessary to be solved. The cost at each iteration
is bounded by MPP. For 0 ≤ l ≤ 3, the analytic solu-
tion, described in Sec. 2.2, costs O(a3) (without optimiza-
tion). For l > 3, steps (i) and (iii) in Sec. 2.2 cost O(a3).
Though step (ii) has no close-form solution, it can be solved
in O(da) because we know the roots must belong to the set,
{ei2π(k+

N
k
l)/N | l ∈ [0, d − 1]}. Since a is a constant, MPP

costs O(d). Thus, the inner loop costs O(dK = N), given
d = O(NK ). In sum, the proposed algorithm, sFFT-DT, is
dominated by FFT and costs O(K logK) operations.

3. EXPERIMENTAL RESULTS

Our method, sFFT-DT, was numerically verified and com-
pared with FFTW (http://www.fftw.org/). The simulations
were conducted under Visual Studio 2008 with an Intel CPU
Q6600 and 2.99 GB RAM under Win 7. The signal x in time
domain is produced as follows: 1) Generate a K-sparse sig-
nal Xori and 2) Produce x as inverse FFT of Xori. The
approximation error is defined as ‖X−Xori‖1

‖Xori‖1
.

Fig. 3(a) shows the computational time versus spar-
sity, where N = 224 and t = 4. The initial d is set
according to N+ = 22. For K ≤ N

24 , our algorithm
outperforms FFTW. The approximation error is less than
0.07%. Moreover, sFFT [1] is only faster than FFTW
when K ≤ N

26 (results of sFFT can be found in http://
groups.csail.mit.edu/netmit/sFFT/results.html). Compared
to sFFT, our method, sFFT-DT, is able to deal with non-
sparser signals (with large K). Fair and direct comparisons
with sFFT [1][2] will be conducted in the future.

Fig. 3(b) shows the computational time versus signal di-
mension under fixed K . d is initially set based on N+ = 22.
The computational time of our method is invariant to N .
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Fig. 3. (a) Computational time vs. Sparsity under N = 224

and a = 4. (b) Computational time vs. Signal dimension
under K = 216 and a = 4.
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