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ABSTRACT

We study a fast compressive image sensing (CIS) paradigm, with
computational complexity O(m2), as an alternative to compressive
sensing, where m denotes the length of a measurement vector y =
φx that is sampled from the signal x of length n via the sampling
matrix φ with dimensionality m × n. In order to balance between
reconstruction quality and speed, a new sampling matrix φ is de-
signed. The characteristics of our method are: (i) recovery speed is
extremely fast due to a closed-form solution being derived; (ii) cer-
tain reconstruction accuracy is preserved because significant com-
ponents of x can be reconstructed with higher priority via an elab-
orately designed φ. Comparisons with state-of-the-art compressive
sensing methodologies are provided to demonstrate the feasibility
of our method in terms of reconstruction quality and computational
complexity.
Index Terms— Compressive sensing, Measurement, Recovery,

Sparsity, Transform

1. INTRODUCTION

Compressive sensing (CS) has received considerable attention re-
cently due to its revolutionary development in simultaneously sens-
ing and compressing (sparse) signals. Inspired by the development
of compressive sensing and single-pixel cameras, it is possible to
sense and recover an image with as few measurements as possible
if the image to be sensed is sufficiently sparse. Sparsity pattern
and sensing strategy, discussed below, are the hinges on which com-
pressed image sensing turns.

1.1. Sparsity Pattern

Researchers have explored the structure or correlation inherent in
the transformed coefficients to better reconstruct the signal from
its corresponding measurement vector. Inspired by the concept of
JPEG2000 compression, the tree-structure of wavelet transform has
been popularly exploited.

In [4], instead of capturing non-adaptive or universal measure-
ments, the authors propose attaining adaptive transform coefficients
by exploiting the tree-structure of the Haar wavelet. The so-called
adaptive CS framework demonstrates its superiority over the non-
adaptive counterparts. In [6], a tree-structured Bayesian compressive
sensing framework is proposed, wherein the hierarchical statistical
models of wavelet and DCT are adopted, and Markov chain Monte
Carlo (MCMC) inference is employed. The computationally ineffi-
cient MCMC mechanism is later replaced with variational analysis
in [7] to speed up recovery.

In addition, the concept of clustered sparsity is also popular in
compressive sensing. As summarized in [2], many existing CS algo-
rithms exploiting clustered sparsity need to know some pre-defined
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information, such as numbers, sizes, and positions of clusters, along
with the degree of sparsity.

1.2. Sensing Strategy

As an illustrative example, consider the size of a sampling matrix
required to sense an image of size 128× 128 is as huge as 16384 ×
16384 (assuming the use of 1D sensing), which occupies more than
12Gb for 32-bit single precision floating point. Most current desk-
top machines cannot afford the storage overhead of storing such a
sensing matrix. In addition, large sensing matrix will incur compu-
tational overhead during the process of sampling.

There are two solutions to this problem, despite almost all CS
algorithms being developed for 1D sensing. For purpose of com-
pressive image sensing (CIS), one common strategy adopted is to
divide an image into several patches/blocks with reasonable sizes
and to arrange each patch in terms of 1D form so as to adapt to the
existing CS algorithms. This is called block sensing.

Although block-based image sensing seems to be feasible, it still
incurs the sensor calibration problem. The other solution is to em-
ploy 2D separable sensing [10]. That is, separable sensing is con-
ducted along the row and column directions such that the storage
overhead for storing a sampling matrix in a resource-limited sensor
can be efficiently solved. As can be seen later, the storage overhead
for 2D sensing of an image of size 1024 × 1024 is the same as that
for 1D sensing of an image patch of size 32 × 32. Thus, it is appar-
ent that, due to the constraint of storage overhead, 1D block-based
sensing is unfavorable in sensing images/patches of large sizes.

1.3. (Non-)Sparsity of Images

The under-deterministic problem raised by compressed sensing in
solving x from y via either convex optimization or greedy algo-
rithms can become deterministic if the relationship between m and
the sparsity k of a signal x satisfies m = O(k · log(n

k
)). In prac-

tice, a considerable portion of natural images, however, is not sparse
enough (with large k). In order to achieve the minimum information
loss, |y− φx|, which is the common objective function of CS-based
optimization mechanisms, m must be chosen to be large enough;
thereby leading to a larger measurement rate.

On the contrary, ifm is still chosen to keep reasonably moderate-
to-small measurement rates for large k, then the reconstruction qual-
ity would be not good due to the constraint of the objective function
for minimizing information loss being difficult to satisfy. This
observation is consistent with our findings that the current state-of-
the-art CS algorithms do not work well for compressed sensing and
recovery of images.
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2. PROPOSED METHOD: FAST COMPRESSED IMAGE
SENSING

Although it is promising to take the concept of clustered sparsity
or tree-structure of transform coefficients into consideration within
the compressive sensing framework, we find two weaknesses for this
paradigm of compressive sensing.

The first thing we notice is that the inference for exploiting some
specific sparsity patterns is time-consuming. In order not to spend
time in tracing larger transform coefficients, we propose to sample
only those transform coefficients that are situated at lower frequen-
cies. That is, we do not seek “perfect reconstruction,” which is diffi-
cult to achieve, due to natural images usually not being sparse.

The second concern is that CS conventionally relies on the as-
sumption of sparsity to reconstruct the original signal from (far)
fewer measurements. However, many natural signals inherently con-
taining textured components are a kind of non-sparse signals.

In sum, the assumption of sparsity and the exploitation of struc-
tured sparsity do not conform to the property of less-sparse signals.
In this paper, we study a new compressive image sensing algorithm
via an elaborate design of sampling matrices. We start from the ran-
dom projection, y = φx, to describe the proposed 1D sensing of
an image patch/block and 2D separate sensing of a whole image,
respectively.

2.1. 1D Block Sensing

For 1D sensing of an image patch, we introduce a 1D linear operator
T and impose it to random projection to obtain:

Ty = T (φx), (1)

where x is regarded as a small image or an image patch of reason-
able size. Eq. (1) is further derived based on the principle of linear
operations [3] as:

Ty = T (φx) = (T 2φ)(Tx), (2)

where T 2 denotes 2D linear operator (see Sec. 5 for details).
Eq. (2) reveals that the positions at lower frequencies of trans-

formed vector Tx indicate important transformed coefficients and
Ty indicates important measurements since they are linear combi-
nations of significant transformed coefficients.

In order to sample “important” transformed coefficients from
Tx and speed up recovery, we design a new sampling matrix,
(T 2φ)z , by setting the last n − m columns of T2φ to be zeros.
This implies that the non-zero columns of (T2φ)z form a full-rank
matrix with rank m. Once (T 2φ)z is built in the transform domain,
it is inversely transformed back to the time/space domain and an
elaborately designed sampling matrix can be expressed as:

Φ = (T 2)−1(T 2φ)z, (3)

where our designed sampling matrix Φ involves a random matrix φ
and 2D linear operator T 2.

Now, Φ is stored in the sensors for the purpose of compressive
sensing. According to Eq. (2) and Eq. (3), we have the following
derivations:

y = Φx ⇒ Ty = (T 2Φ)(Tx) = (T 2φ)z(Tx). (4)

Recall that the last n−m columns of (T 2φ)z are set to zeros. This
means that we only sample the lower-frequency components in Tx
by truncating the remaining higher-frequency components.

In order to speed up sparse signal recovery, let Φs denote the
submatrix of dimensionality m×m by discarding the zero columns
of (T 2φ)z, and let (Tx)s denote the m× 1 vector by discarding the
last n−m transformed coefficients. Therefore, we can derive from
Eq. (4) to obtain:

Ty = Φs(Tx)s ⇒
(Φs)−1Ty = (Φs)−1Φs(Tx)s = (Tx)s. (5)

It is now evident that the signal x can be approximately and
quickly recovered. For the purpose of sensing, the measurement y
is available at the encoder via random projection in Eq. (4). For the
purpose of recovery, y is first processed at the decoder via Eq. (5),
and then (Φs)−1Ty in Eq. (5) is padded with n−m zero values (to
obtain Tx) and inversely transformed via T−1.

We have to clarify that (Φs)−1T can be calculated in advance
and is fixed for use at the decoder. Hence, the computational com-
plexity of our CS recovery algorithm merely comes from processing
y via (Φs)−1Ty.

2.2. 2D Separate Sensing

Here, we investigate how to directly sense a whole 2D image via
separate sensing in order to alleviate storage overhead of storing a
sampling matrix. According to Eq. (10) of Sec. 5, 2D transform is
conducted on the 2D image, which is no longer divided into patches
and is no longer arranged in terms of 1D form. Therefore, we can
get 2D sensing of an image xn×n via the sampling matrix φm×n as:

ym×m = φm×nxn×nφ
t
n×m, (6)

where φt
n×m denotes the transpose of φm×n. Eq. (6) also reveals

the measurement rate of m2

n2 in 2D sensing.
Similar to Eq. (10), let Sm×m and Sn×n stand for two 1D linear

operators with respective transpose represented as St
m×m and St

n×n.
We have Sn×nS

t
n×n = In×n = St

n×nSn×n, where In×n denotes
an identity matrix of dimensionality n × n. Then, we can further
derive by imposing 2D transform on the measurement matrix ym×m

of Eq. (6) to attain:

T 2(y) = Sm×mym×mSt
m×m

= Sm×mφm×nxn×nφ
t
n×mSt

m×m

= Sm×mφm×n(S
t
n×nSn×n)xn×n

(St
n×nSn×n)φ

t
n×mSt

m×m

= (Sm×mφm×nS
t
n×n)(Sn×nxn×nS

t
n×n)

(Sn×nφ
t
n×mSt

m×m)

= T 2(φ)T 2(x)T 2(φt). (7)

Then, the sampling matrix can be derived in a way similar to Eq.
(3) for 2D separate sensing. Another merit of 2D sensing is that
it enables compressive sensing of large images without resorting to
block-based sensing.

3. EXPERIMENTAL RESULTS

Several experiments were conducted to verify the performance of the
proposed turbo fast CIS method along with different sensing strate-
gies in terms of reconstruction quality and speed. State-of-the-art
CS algorithms, including orthogonal matching pursuit (OMP), TS-
BCS-MCMC [6], TS-BCS-VB [7], model-based CS (MCS) [1], and
structurally random matrix (SRM) [5], were chosen for comparisons
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under different measurement rates (MRs). The default settings of
all source codes were employed in our experiments to better guar-
antee the good performances of the aforementioned methods for fair
comparisons.

All experiments were conducted in Matlab 7.11 (R2010b) with
Intel CPU Core i7 930 (2.80 GHz) and 6 GB RAM under OS Win-
dows 7 Enterprise edition 64-bit. For simulations of image sensing,
several images with different sizes and sparsities, including Baboon,
Barbara, Cameraman, Flintstones, Lena, and Peppers, were adopted.

3.1. Reconstruction Quality

The recovery quality is measured in terms of PSNR (in dB) and
structural similarity (SSIM, 0 ≤ SSIM ≤ 1) indexing, respectively,
where bigger is better. It is surprising to find (Table 1 is merely an
example) that our method significantly outperforms or is comparable
to all of the algorithms used for comparisons no matter whether ei-
ther structured sparsity or tree structure is taken into consideration or
not. DCT- and Haar wavelet-based 1D sensing in our method exhibit
comparable reconstruction results. Please refer to [8] for illustrations
of image reconstruction results.

3.2. Reconstruction Speed

The reconstruction speed is measured in terms of execution time
(abbreviated as Exe.) and CPU time. We only provide in Table
2 the comparison of reconstruction speed under different measure-
ment rates (MRs) for the Barbara image. Nevertheless, similar re-
sults can also be observed for other images with different sparsity
levels. As the results indicate, our CIS method finds its usefulness
in real-time image sensing and recovery due to its extremely fast re-
covery. For the CS algorithms used for comparison, only the model-
based CS (with CoSaMP+block sparsity) [1] is as fast as ours. It can
be, however, found from Table 1 that our method obtains far better
reconstruction quality than [1], in particular, for measurement rates
smaller than 12.5%.

3.3. Fast CS and Recovery of Large Images

Fast compressive sensing and recovery of large-scale images is still
challenging for the existing CS algorithms. The feasibility of our 2D
separable sensing algorithm was demonstrated using a Shepp-Logan
image of size 2048×2048. Again, our method can obtain acceptable
reconstruction results [8]. The execution time for all strategies is be-
tween 2 and 3 seconds for measurement rate ranging from 1.5625%
to 50%.

4. CONCLUSIONS

Fast and accurate compressive sensing recovery is still a challenging
issue. Instead of following the tradition of imposing certain sparsity
patterns on a CS recovery algorithm, we propose to design a new
and novel sampling matrix for the purpose of preserving important
measurements. Under this circumstance, extremely fast CIS recov-
ery with a closed-form solution of computational complexity O(m2)
can be achieved. We have also studied 1D sensing and 2D separable
sensing strategies, and shown that 2D separable sensing is particu-
larly feasible in compressive sensing of large-scale images in terms
of storage and computation overhead reduction and reconstruction
quality improvement.

5. APPENDIX: LINEAR TRANSFORM OF RANDOM
PROJECTION

The linear operator introduced in [9] is employed to derive the rela-
tionship among x, y, and φ. Let S be a linear orthogonal transform
operator and let x denote a 1D signal with dimensionality m × 1.
The vector X of transform coefficients corresponding to x is repre-
sented as: X=Sx, where S is a matrix with dimensionality m×m.
The original signal x can be reconstructed as:

x̂ = StX = StSx, (8)

where St is the transpose of S, and StS = SSt = I . Similarly, if
the 2D case, i.e., x of size m×m, is considered, then we have:

X = SxSt,

x̂ = StXS = StSxStS. (9)

Accordingly, the linear transform relationship among x, y, and
φ can be, respectively, derived under the cases of DCT and discrete
Haar wavelet transform (DHWT). For the DCT case, let Sm and Sn,
respectively, denote m ×m and n× n DCT matrices. Also let T [·]
and T 2[·], respectively, denote the 1D-DCT and 2D-DCT operations.
Starting from y = φx, we can derive:

Smy = Smφx = (SmφSt
n)(Snx) ⇒

T [y] = T [φx] = T 2[φ]T [x]. (10)

Thus, Eq. (10) explains the rationality of Eq. (2).
For the wavelet case, the simple structure inherent in the Haar

wavelet is adopted. Let H denote a 2D Haar wavelet transform.
Then, the Haar transform of x can be derived, similar to Eq. (9), as:

X = HxHt. (11)

However, it is not straightforward to use the conventional Haar
wavelet to achieve Eq. (11) because only one wavelet decomposi-
tion is allowed [8].

To handle this problem, another type of Haar transform suitable
for Eq. (11) is designed with c =

√
2

2
as:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c3 c3 c3 c3 c3 c3 c3 c3

c3 c3 c3 c3 −c3 −c3 −c3 −c3

c2 c2 −c2 −c2 0 0 0 0
0 0 0 0 c2 c2 −c2 −c2

c −c 0 0 0 0 0 0
0 0 c −c 0 0 0 0
0 0 0 0 c −c 0 0
0 0 0 0 0 0 c −c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Different from conventional wavelet transforms, it is worth not-
ing that the use of the Haar matrix, shown in Eq. (12), allows multi-
scale wavelet decomposition finished within one matrix operation.
Please refer to [8] for the illustrations of Haar wavelet decomposi-
tion using the designed Haar matrix (via Eq. (11) and Eq. (12)) and
the conventional Haar filter. In fact, the Haar matrix is used in our
method to decompose the sampling matrix, as indicated in Eq. (2).

Acknowledgment
This work was supported by National Science Council, Taiwan,
under grants NSC 97-2628-E-001-011-MY3 and NSC 100-2628-E-
001-005-MY2.

371



Table 1. Recovery Quality Comparison of CS Algorithms under Different Measurement Rates (MRs) for Barbara image.
Methods Metrics MR (1.56%) MR (3.13%) MR (6.25%) MR (12.5%) MR (25.0%)

OMP PSNR(dB) 15.84 16.55 18.00 20.26 23.12
(Sparsify toolbox) SSIM 0.19 0.22 0.31 0.47 0.64
Model-based CS PSNR(dB) 7.13 7.82 9.81 16.32 23.82

(CoSaMP+block sparsity) [1] SSIM 0.04 0.05 0.06 0.31 0.69
TS-BCS-VB PSNR(dB) 18.46 19.30 20.31 21.37 22.35

[7] SSIM 0.37 0.41 0.46 0.54 0.62
TS-BCS-MCMC PSNR(dB) 8.81 11.41 18.07 22.49 24.57
(DCT tree) [6] SSIM 0.06 0.20 0.43 0.59 0.73

Structurally Random Matrix PSNR(dB) 15.52 16.68 18.50 20.51 23.38
(SRM) [5] SSIM 0.25 0.25 0.30 0.38 0.54

Our Method (1D sensing: PSNR(dB) 19.25 19.32 21.18 22.98 25.49
Haar wavelet-based) SSIM 0.48 0.50 0.56 0.65 0.79

Our Method (1D sensing: PSNR(dB) 19.31 19.38 20.27 22.60 25.41
DCT-based) SSIM 0.48 0.49 0.52 0.61 0.77

Our Method (2D sensing: PSNR(dB) 22.47 23.24 23.92 24.54 25.70
DCT-based) SSIM 0.56 0.61 0.67 0.73 0.82

Table 2. Recovery Speed (in seconds) Comparison of CS Algorithms under Different MRs for Barbara image.
Methods time MR (1.56%) MR (3.13%) MR (6.25%) MR (12.5%) MR (25.0%)

OMP Exe. 0.32 0.42 0.70 1.36 3.56
(Sparsify toolbox) CPU 1.25 1.68 2.81 5.43 14.20

Model-based CS [1] Exe. 1.13 1.25 1.49 2.60 5.75
(CoSaMP+block sparsity) CPU 4.49 4.99 5.91 10.42 22.84

TS-BCS-VB [7] Exe. 219.94 236.28 244.47 247.23 267.77
CPU 220.66 907.33 937.05 949.77 1022.48

TS-BCS-MCMC [6] Exe. 2585.22 2748.26 2842.79 2848.40 2978.40
(DCT tree) CPU 2579.59 10305.24 10650.77 10670.41 11109.13

Our Method Exe. 0.02 0.02 0.02 0.02 0.03
(1D sensing: Haar wavelet-based) CPU 0.06 0.06 0.06 0.06 0.12

Our Method Exe. 0.02 0.02 0.02 0.02 0.02
(1D sensing: DCT-based) CPU 0.06 0.06 0.05 0.06 0.06

Our Method Exe. 0.06 0.06 0.06 0.06 0.07
(2D sensing: DCT-based) CPU 0.25 0.16 0.27 0.25 0.31
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