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ABSTRACT

Compressive sensing of multi-dimensional signals (tensors)
only receives limited attention. Separable sensing and proper
sparsity pattern play two key roles for compressive sensing of
tensors to be feasible and efficient. In view of inherent char-
acteristic of 2D images and 3D videos, we propose the use of
tree-structure sparsity pattern in tensor compressive sensing
and develop a multiway tree-structure sparsity pattern OMP
algorithm in this paper. Experimental results demonstrate the
effectiveness of our method in terms of recovery quality and
speed.

Index Terms— Compressed sensing, Kronecker struc-
ture, Matching pursuit, Sparsity, Tensor, Tucker model

1. INTRODUCTION

1.1. Background

Compressive sensing (CS) [1, 2, 3] of sparse signals in achiev-
ing simultaneous data acquisition and compression has been
extensively studied in the past few years. In the context of
CS, we usually let x denote a K-sparse signal of length M
to be sensed, let φ of dimensionality I ×M represent a sam-
pling matrix, and let y be the measurement of length I , where
K < I < M . At the encoder, random projection, defined as:

y = φx, (1)

is conducted on x via φ to obtain the measurement vector y.
The measurement rate in CS is defined as 0 < I

M < 1 At the
decoder, the original signal x to be sensed can be recovered
to a certain extent by means of convex optimization or greedy
algorithms.

Compressive sensing has been widely studied for 1D sig-
nals via random projection in Eq. (1). However, compressive
sensing of higher dimensional signals beyond 2D has only re-
ceived little attention.

1.2. Motivation and Our Contributions

In this paper, we study a new compressive sensing scheme for
high-dimensional signals (or tensors and multiway arrays) by

exploiting the inherent tree-structure sparsity pattern based on
Tucker model and the equivalent Kronecker structure. Sens-
ing and sparse recovery affect the performance (reconstruc-
tion quality and speed) of a compressive sensing algorithm.
The ways of sensing include joint sensing [4], independent
sensing, and independent but separable sensing (with differ-
ent signal decompositions). Both joint sensing and indepen-
dent sensing incur tremendous storage and computation over-
head. In this paper, separable sensing, as presented in [5, 6]
and adopted in [7], is employed.

For sparse recovery of multiway arrays, sparsity pattern
plays an important role. With an eye on the natural character-
istic of tree-structure relationship among wavelet coefficients
that are popularly used to represent 2D images and 3D videos,
we propose to explore tree-structure sparsity pattern (TSSP)
in tensor compressive sensing. Support detection via TSSP
possesses the advantage of reducing the overhead of calcu-
lating the correlation between the current residual and each
possible candidate support that is a necessary step in match-
ing pursuit. Nevertheless, tree-structure sparsity pattern and
Kronecker structure (block-based) are not consistent. If Kro-
necker dictionary cannot be adopted during the sparse recov-
ery process, recovery speed will be an obstacle. To address
this issue, we propose to modify the fast least-square solution
in [7] to fit TSSP for our use. Extensive results demonstrate
that our method is able to capture more significant supports
while achieving faster recovery than [7].

2. RELATED WORK

In [4], Durate and Baraniuk introduce Kronecker product
to model multidimensional compressive sensing of signals.
The authors prove mutual incoherence and restricted isomet-
ric property for the resultant Kronecker sensing matrix and
Kronecker dictionary. Although the presented Kronecker
compressive sensing (KCS) method seems to be reasonable,
its practical use is greatly prohibited. This is due to the vec-
torization of multidimensional signals and the use of joint
sensing involving a (very) large Kronecker product-based
sensing matrix, leading to unacceptable overhead of storage
and computation.

In [8], a multiway compressive sensing (MWCS) method
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for sparse and low-rank tensors is proposed. Although
MWCS achieves more efficient reconstruction, its perfor-
mance relies heavily on tensor rank estimation, which is
NP-hard. Another compressive sensing method for higher-
order tensors, called generalized tensor compressive sensing
(GTCS), has been recently proposed in [9]. GTCS is demon-
strated to be comparable to KCS in recovery accuracy and be
greatly faster than KCS in recovery speed.

While the previous studies consider some tensor opera-
tions like Kronecker product, CP decomposition, and Tucker
model within the framework of compressive sensing, the spar-
sity pattern inherent in the tensor (like 2D image and 3D
video) has not been fully explored. This may explain their
limited recovery performance. Recently, Caiafa and Cichocki
[7] exploit Kronecker product and block sparsity to develop
a so-called N-BOMP (N-way block OMP) algorithm in re-
alizing tensor recovery from few sensing measurements by
block sparsity-based OMP [10]. The authors also prove the
equivalence between Tucker model and Kronecker represen-
tation for multiway arrays; thus, Kronecker structure can be
used to solve the Tucker model-based underdetermined lin-
ear systems within compressive sensing. However, we find,
as also indicated in subsection 7.2.1 of [7], that for an 2D
image it is pre-processed in advance to possess perfect block
sparsity pattern. Here perfect sparsity pattern means that the
important/significant coefficients in some transform domain
fall within the specified block sparsity pattern while other in-
significant coefficients are entirely removed. Under the sit-
uation, N-BOMP is able to obtain reconstruction quality far
better than the existing tensor CS algorithms. The key weak-
ness of [7] will be further discussed in Sec. 3.3.

3. COMPRESSIVE SENSING FOR TENSORS

In this section, we describe the proposed method for tensors
via OMP. We investigate a tree-structure sparsity pattern in
tensors to capture the inherent characteristics in tensors (e.g.,
images and videos) for support detection. We also investigate
how to incorporate the tree-structure sparsity pattern with the
fast least-square solution in N-BOMP, which is originally de-
signed to specially accommodate block-sparsity pattern.

3.1. System Model

We consider how to generalize 1D compressive sensing in Eq.
(1) to multiway arrays. Let the 3-dimensional tensor (video
sequence) be denoted as X ∈ �M1×M2×M3 . Let the Kro-
necker sensing matrix be denoted as Φ = Φ3 ⊗ Φ2 ⊗ Φ1,
which can be rewritten as Φ = Id ⊗ Φ2 ⊗ Φ1 if we sepa-
rably sensing each video frame using Φ2 ⊗ Φ1 via separable
sensing, where Id denotes an identity matrix, Φ1 ∈ �I1×M1 ,
Φ2 ∈ �I2×M2 , and I1 < M1 and I2 < M2. Then, compres-
sive sensing of a tensor X via Φ can be expressed via Tucker

representation as:

Y = X ×1 Φ1 ×2 Φ2 ×3 Id, (2)

where Y ∈ �I1×I2×I3 denotes the measurement. Please note
that X in Eq. (2) is called core tensor in the context of Tucker
model and its size is smaller than Y. This is, however, not the
case in compressive sensing.

The tensor X has to satisfy a certain sparsity such that it is
possible to recover X from (far) few measurements Y in the
underdetermined system, indicated in Eq. (2), where |Y| <
|X| and | · | denotes the cardinality of a set. Furthermore, let
the 3-dimensional tensor X be sparse with respect to Ψ1, Ψ2,
and Ψ3. The sparse representation of X can be represented
via Kronecker dictionary as:

vec(X) = (Ψ3 ⊗Ψ2 ⊗Ψ1)θ, (3)

where Ψ3⊗Ψ2⊗Ψ1 denotes a Kronecker dictionary, and the
sparsity is K . A 1D vector, vec(X), denoting the vectorization
of X, will be expressed as x hereafter, and θ is the sparse
representation of x with respect to the Kronecker dictionary.

According to [7], Eq. (2) can be derived as:

y = (Id ⊗ Φ2 ⊗ Φ1)x. (4)

Plugging Eq. (3) into Eq. (4), we have

y = (Id ⊗ Φ2 ⊗ Φ1)(Ψ3 ⊗Ψ2 ⊗Ψ1)θ

= (Ψ3 ⊗ Φ2Ψ2 ⊗ Φ1Ψ1)θ. (5)

Let D1 = Φ1Ψ1, D2 = Φ2Ψ2 and D3 = Ψ3, then Eq. (5)
can be rewritten via Tucker model as:

Y = Θ×1 D1 ×2 D2 ×3 D3, (6)

where θ is the vectorization of Θ.

3.2. Sparse Signal Recovery for Tensors

Orthogonal matching pursuit (OMP) has received much atten-
tion for sparse signal recovery due to its efficiency. We also
consider OMP for tensors here. OMP is basically composed
of two steps: support detection and least-square (LS) solution.
For support detection, the maximum correlation, defined as:

arg max
[i1,i2,i3]

|Y ×1 D1(:, i1)
T ×2 D2(:, i2)

T ×3 D3(:, i3)
T |,
(7)

is exploited to collect the supports to form the support set In,
which is a set of indices for mode n (n = 1, 2, 3). Then, the
values of supports are obtained by solving the LS problem:

θ̂ = argmin
θ

‖(B3 ⊗B2 ⊗B1)θ − y‖, (8)

where Bn denote the submatrices obtained by restricting the
mode-n dictionaries Dn to columns, indicated by In (i.e.,
Bn = Dn(:, In)). The solution of Eq. (8) is then given by
(BTB)−1BTy, where B = B3 ⊗B2 ⊗ B1.

739



3.3. Tree-Structure Sparsity Pattern in Tensors

The sparsity pattern in Θ will determine recovery perfor-
mance and speed. It may not be so important if X is 1D,
though block sparsity is verified to be better [10]. Neverthe-
less, sparsity patterns for 2D images and 3D video sequences
have to capture the inherent characteristics in order to attain
better reconstruction quality. In [7], the authors argue that
non-zero entries tend to gather together for tensors and sug-
gest adopting block sparsity [10]. In fact, we find from [7]
that we would rather say that block sparsity is adopted in or-
der to entirely utilize Kronecker dictionary for fast recovery.
Block sparsity, however, is not the best choice to describe
the inherent structure of images and videos. On the contrary,
tree-structure sparsity pattern is more suitable to describe
images or videos, as evidenced in conventional image/video
compression standards. We show that the tree-structure spar-
sity pattern is better than the pure block sparsity pattern in
reconstructing images/videos within the framework of tensor
compressive sensing. The advantage is confirmed by captur-
ing more significant supports (i.e., larger non-zero entries in
the wavelet domain).

We adopt the wavelet, as provided in the source code
of [7], as the dictionary. In our method, the tree-structure
sparsity pattern (TSSP) is defined to link the significant
wavelet coefficients across scales. Therefore, the linked sig-
nificant wavelet coefficients at the neighboring scales define
the parent-child relationship.

Let’s take 2D image as an example to describe how to
build a TSSP. Suppose S-scale wavelet decompositions are
conducted on the image to obtain a series of subbands as:

{LLS, LHS , HLS, HHS , LHS−1, HLS−1, HHS−1, ...HH1}.
First, since LLS contains the most important information for
signal recovery, the entries in LLS are included in the set of
supports unconditionally.

Second, the siblings of LLS , including LHS , HLS , and
HHS , will be considered as usual support detection in com-
pressive sensing to create the roots of multiple trees. More
specifically, for each entry in the siblings of LLS , we cal-
culate the correlation defined in Eq. (7) without needing to
consider the maximum operation in our case. If the result is
larger than a threshold TS , then it is said that this entry is a
support and its children are put in the set Q for support de-
tection later. We repeat the above procedure until all entries
belonging to the sibling of LLS are checked.

Third, we take an entry from the set Q and calculate the
correlation. Again, if the correlation is larger than a threshold
TS/2

S−s, where 1 ≤ s < S, then it is said that an element of
a tree is found and its children are put in the set Q for support
detection later. We repeat the above procedure until the Q is
empty to finally generate the tree-structure sparsity pattern.

In our method, the thresholds TS/2
S−s’s are defined to

depend on the scaling factor and parent-child relationship is
conventionally defined for dyadic wavelet decomposition.

Fig. 1 shows an example of detected block-sparsity pat-
tern in N-BOMP and TSSP in our method.
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Fig. 1. (a) Man. (b) Block-sparsity pattern. (c) TSSP.

3.3.1. Remark

In N-BOMP, Eq. (7) should be calculated at each iteration
for one support detection because there is no hint based on
block-sparsity pattern to find the next support. However, for
the tree-structure sparsity pattern presented here, the locations
of supports possibly follow the path of a growing tree; thus,
our method does not need to spend time to calculate the max-
imum correlation to find a support individually. As a result,
our method is faster than N-BOMP in support detection. This
is particularly obvious for images of large sizes.

3.4. Incorporate TSSP and LLT

The solution of Eq. (8) is given by θ̂ = [BTB]−1BT y,
which implies that [BTB]θ̂ = BT y, where B = B2 ⊗ B1.
This is a large scale matrix and needs high computation cost
to calculate pseudo-inverse matrix since the size of BTB
is |I1||I2| × |I1||I2| for 2D cases. Hence, we utilize the
Cholesky factorization from N-BOMP [7] to deal with this
problem. The main idea is based on unfolding to divide
the whole problem into smaller problems. More specifi-
cally, we unfold [BTB]θ̂ = BT y to be BT

1 B1Θ̂(1)B
T
2 B2 =

BT
1 Y(1)B2, where Θ̂(1) and Y(1) are mode-1 of Θ̂ and Y,

respectively. Let Z(1) = Θ̂(1)B
T
2 B2 and P(1) = BT

1 Y(1)B2

be mode-1 matrix of Z and P, respectively. We have:

BT
1 B1Z(1) = P(1). (9)

Note that the size (|I1|×|I1|) of BT
1 B1 becomes smaller than

that of the original one BT
1 B1. Now, we can utilize Cholesky

factorization of BT
1 B1 to more easily solve Eq. (9) to ob-

tain the solution Z = Θ̂ ×1 Id ×2 BT
2 B2. Based on the

similar unfolding strategy, we unfold mode-2 matrix of Z as
BT

2 B2Θ̂(2) = Z(2), where the size of BT
2 B2 is |I2| × |I2|.

For simplicity, we call the above process, LLT.
It is, however, not intuitive to incorporate TSSP and LLT.

As indicated in Eq. (9), the rank of BT
1 B1 is |I1|, where

B1 ∈ �I1×|I1|. Hence, the condition |I1| < I1 must be
satisfied so as to make BT

1 B1 invertible. Similarly, to ensure
that BT

2 B2 is invertible, |I2| < I2 is also a must.
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Table 1. Comparison between our method and N-BOMP under target sparsity K and measurement rates of 20% ∼ 40%.

K = I/2
Ours N-BOMP

20% 30% 40% 20% 30% 40%
No. of detected supports 104881 157360 209951 105093 157652 210385

Hit Ratio 0.4772 0.4831 0.4855 0.4529 0.4735 0.4901
PSNR (dB) 23.0119 23.9915 25.0218 22.2796 23.8300 25.1260

SSIM 0.4939 0.5411 0.5854 0.4526 0.5214 0.5798
Execution Time (seconds) 14.0187 21.9679 22.5372 22.1308 34.9959 49.1732

K = I/5
Ours N-BOMP

20% 30% 40% 20% 30% 40%
No. of detected supports 41953 62944 83981 42106 63181 84216

Hit Ratio 0.4709 0.4783 0.4822 0.4526 0.4687 0.4819
PSNR (dB) 23.6949 24.2718 25.0359 23.6225 24.3654 25.2298

SSIM 0.5369 0.5664 0.5891 0.5211 0.5652 0.6008
Execution Time (seconds) 8.8047 9.9713 14.6362 14.4252 22.1966 30.1810

However, when we collect the indices of supports from
TSSP, |I1| (or |I2|) may exceed I1 (or I2). To avoid such sit-
uation, we divide the whole problem into a few smaller prob-
lems. More specifically, the indices of supports are collected
and controlled to satisfy the above constraint, and are solved
to obtain partial solutions. Finally, these partial solutions are
combined to form the final complete solution.

4. SIMULATION RESULTS

Since our method is an improvement over N-BOMP [7] and
the source code of N-BOMP is available (http://web.fi.uba.ar/
∼ccaiafa/Cesar/N-BOMPdemop.html), comparison between
both is the focus here. All simulations were conducted on PC
equipped with Windows 7 with 3.4 GHz Intel Core i7 CPU
and 8GB RAM. In the following, we shall take 2D image as
an example, i.e., compressive imaging (CI) in [7], for our sim-
ulations due to space limit.

4.1. Parameter Setting

Parameter setting is similar to [7] in that the sensing matrix
was random Gaussian, the Daubechies separable wavelet was
used as the sparsifying basis, and OMP was adopted for CS
recovery. However, unlike [7] in dealing with CI, the image
to be sensed is not pre-processed in advance1.

4.2. Performance Evaluation and Comparison

Performance evaluation and comparison were conducted in
terms of recovery quality (in PSNR and SSIM [11]), execu-
tion time, and hit ratio (defined as the number of true supports
per number of detected supports). Some standard images, in-
cluding, Lena, Baboon, F16, Peppers, Goldenhill, sailboat,
and Man were used as the targets to be sensed and recovered.

1For example, in subsection 7.2.1 of [7], the authors propose to keep the
largest 25, 000 wavelet coefficients for a 2D image of size 1024 × 1024 by
thresholding. Such way can perfectly guarantee to sample/capture significant
coefficients in a block manner, as done in N-BOMP, but this is impractical.

Except the Man image of size 1024× 1024, the other images
are with size of 512× 512. Thus, M1 = M2 = 1024 or 512.
The measurement rates were set to 20%, 30% and 40%, re-
spectively. The target sparsity is defined to be K = I

r , where
I = I1 × I2 and 2 ≤ r ≤ 5. Table 1 shows the results for Fig.
1(a). Each entry was obtained from averaging 60 results. We
observe similar results for other images.

We can find that the execution time of our method is less
than that of N-BOMP. The time saving is particularly obvious
for large images. This is because our method only needs to
calculate the maximum correlation at each layer but N-BOMP
requires such calculation for each support detection.

As for reconstruction quality, we find that our method is
comparable to N-BOMP. The reasons may be (1) our method
extracts the number of supports smaller than that of N-BOMP,
and (2) as mentioned previously, we only do maximum corre-
lation at each layer such that the resultant residual may affect
support detection and recovery.

The hit ration is presented as the criterion to verify the
correctness of support detection. We can observe from Table
1 that our tree-structure sparsity pattern is able to detect more
significant supports (with large wavelet coefficients) than N-
BOMP does. This is particularly obvious for complex images.

Finally, it is worth noting that the recovery quality of our
method is improved faster than that of N-BOMP with the in-
crease of detected supports under the same measurement rate.
But the overall recovery performance will be indistinguish-
able for both methods when the number of detected supports
are large enough, as indicated in Table 1.

5. CONCLUSIONS

In view of inherent characteristic of 2D images and 3D
videos, we propose to use tree-structure sparsity pattern
in compressive sensing of tensors and develop a multiway
OMP algorithm based on TSSP. Our future work would be
to develop our own sparse signal recovery algorithm for tree-
structure sparsity pattern since the incorporation of TSSP and
LLT still does not exhibit sufficiently good recovery.
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