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Abstract— Robustness is a critical requirement for a water-
marking scheme to be practical. Especially, in order to resist
geometric distortions a common way is to locally insert multiple-
redundant watermarks in the hope that partial watermarks
could still be detected. However, there exist watermark-estimation
attack (WEA), such as the collusion attack, that can remove
watermarks while making the attacked data further transparent
to its original. Another kind of attack is the copy attack, which
can cause protocol ambiguity within a watermarking system. The
aim of this paper is to propose an efficient cover data recovery
attack, which is more powerful than the conventional collusion
attack. To this end, we begin by gaining insight into the WEA,
leading to formal definitions of optimal watermark estimation
and near-perfect cover data recovery. Subject to these definitions,
an exquisite collusion attack is derived. Experimental results
verify the effectiveness of the proposed watermark estimation
and recovery algorithm.

I. INTRODUCTION

Robustness is known to be a critical issue affecting the
practicability of a watermarking system. In the literature,
robustness is usually examined with respect to removal at-
tacks or geometrical attacks or both. However, there indeed
exist attacks that can defeat a watermarking system without
sacrificing media quality. In particular, the collusion attack
[10], [11], which is a removal attack, and the copy attack [4],
which is a protocol attack, are typical examples of attacks that
can achieve the aforementioned goal. The common step used
to realize a collusion or copy attack is watermark estimation,
which is easily accomplished by means of denoising. Con-
sequently, we call both the collusion attack and copy attack
watermark-estimation attacks (WEAs) [5]. In this study, we
particularly focus on the collusion attack.

The aim of the collusion attack is to collect and analyze
a set of watermarked media data so that an unwatermarked
copy can be constructed to create the false negative problem.
In digital watermarking, a collusion attack naturally occurs
in video watermarking because a video is composed of many
frames, and one way of watermarking a video is to embed the
same watermark into all the frames. This scenario was first
addressed in [11]. However, we argue that [5] the collusion
attack is not exclusively applied to video watermarking. In
the past few years, image watermarking with resistance to
geometrical attacks has received much attention because even

a slight geometrical distortion may disorder the hidden water-
mark bits and disable watermark detection. In view of this fact,
some researches [2], [12], [9], [14] inserted multiple redundant
watermarks into an image in the hope that robustness could be
maintained as long as partial watermarks existed. Commonly,
various kinds of image units, such as blocks [14], meshes
[2], or disks [12], are extracted as carriers for embedding.
Taking advantage of this unique characteristic, we propose
to treat each image unit in an image like a frame in a
video; in this way, collusion attacks can be equally applied
to those image watermarking methods that employ a multiple
redundant watermark embedding strategy. Therefore, once the
hidden watermarks are successfully removed by means of
a collusion attack, the false negative problem occurs even
though no geometrical attack is imposed on stego images.
Of particular interest are possible fidelity improvements of
attacked images as a result of a collusion attack.

When the hidden watermark is estimated and removed by
means of collusion, it is necessary to check the presence
or absence of a watermark. A simple way is to calculate
a correlation (e.g., cross-correlation) and compare it against
a threshold to make the final decision about the existence
of a watermark. However, one may argue that this does
not imply that the hidden watermark has been “optimally
estimated and removed” by means of such a simple cross-
correlation. This is because an “optimal” watermark detector
[1], [8], which is usually based on exploiting the statistic
characteristic of a host content, may be able to discover the
hidden watermark. In order to address this issue, we don’t
evaluate the optimal estimation/removal of a watermark from
the viewpoint of a watermark detector. On the contrary, we
investigate how an embedded watermark could be “suffi-
ciently” estimated/removed. In this paper, we propose a new
watermark estimation and cover data recovery method. The
comparison of our method with perceptual remodulation [13]
is also evaluated.

II. HOW WATERMARK COULD BE COMPLETELY

REMOVED?

Let W represent the original watermark with its energy
extended by means of either a constant factor or a human
visual system to enhance robustness. From an attacker’s
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perspective, the energy of each watermark value must be
accurately predicted so that the previously added watermark
energy can be completely subtracted to create an ideally
unwatermarked image. If this goal could be achieved, it is said
that watermark removal is effective without leaving sufficient
residual watermark. Consequently, an estimated watermark’s
energy is closely related to the accuracy of the watermark
removal attack. To better explain our point, several moti-
vating scenarios are shown in Fig. 1, which illustrates the
energy variations of (a) an original watermark; (b)/(d) an
estimated watermark (illustrated in gray-scale); and (c)/(e)
a residual watermark generated by subtracting the estimated
watermark from the original watermark. We can observe from
Fig. 1(a)∼(c) that even though the watermark’s sign bits
are fully obtained (Fig. 1(b)), the residual watermark signal
(Fig. 1(c)) still suffices to reveal the encoded message due
to the original watermark’s energies cannot be completely
discarded. Furthermore, if the sign of an estimated watermark
value is different from its original one, then any additional
energy subtraction will not be helpful in improving removal
efficiency. On the contrary, watermark removal in terms of
energy subtraction operated in the opposite (wrong) polarity
will undesirably damage the media data’s fidelity. Actually,
this corresponds to adding a watermark with higher energy
into cover data without satisfying the masking constraint, as
shown in Fig. 1(d). After Fig. 1(d) is subtracted from Fig. 1(a),
the resultant residual watermark is illustrated in Fig. 1(e). By
comparing Figs. 1(a) and (e), it is highly possible to reveal
the existence of a watermark.

Fig. 1. Watermark estimation/removal illustrated with energy variation:
(a) original embedded watermark with each white bar indicating the energy
(determined using perceptual masking) of each watermark value; (b) gray bars
show the energies of an estimated watermark with all the signs being the same
as the originals (a); (c) the residual watermark obtained after removing the
estimated watermark (b); (d) the energies of an estimated watermark with most
the signs being opposite to those in (a); (e) the residual watermark derived
from (d). In the above examples, sufficiently large correlations between (a)
and (c), and between (a) and (e) exist, indicating the presence of a watermark.

The observations from Fig. 1 motivate us to formulate
the definitions of “optimal watermark estimation” and “near-
perfect cover data recovery.” This implies that we try to
recover a cover data from its stego version. If this goal can be
achieved, even optimal watermark detector will fail to detect
the hidden watermark; otherwise false positive will appear.
Definition 1 (Optimal Watermark Estimation): Given an
original embedded watermark signal W and its approximate
version We estimated from the stego image Xs, the necessary

condition for the optimal estimation of W as We is defined
as

BER(sgn(W), sgn(We)) ≤ τ, (1)

where τ is watermarking algorithm- and application-
dependent, and the sign function, sgn(·), is defined as

sgn(t) =
{

+1, if t ≥ 0,
−1, if t < 0.

Basically, Definition 1 is naturally derived from Fig. 1 in that
the “polarity of each watermark value is particularly crucial.
To assist our later analysis, we use Θ to denote the set of
indices satisfying sgn(W e(i)) = sgn(W (i)) in Eq. (1). This
is the first step, where the existence of a watermark may
be efficiently eliminated if most sign bits of the watermark
can be obtained by an attacker. Beyond this step, however, to
avoid leaving a residual watermark (as illustrated in Fig. 1(c))
that can reveal the hidden watermark, accurate estimation of
the energy of We is absolutely indispensable. In addition to
Eq. (1), watermark removal can be completely achieved if the
watermark energy to be subtracted is also larger than or equal
to the added energy, i.e., mag(W e(i)) ≥ mag(W (i)), where
mag(t) denotes the magnitude |t| of t. Therefore, it is said
that We is an optimal estimation of W if and only if

BER(sgn(W), sgn(We)) ≤ τ and

mag(W e(i)) ≥ mag(W (i)) ∀i ∈ Θ. (2)

Definition 2 (Near-Perfect Cover Data Recovery): Under
the prerequisite that Definition 1 (Eq. (2)) is satisfied, it can
be said that Xr is a near-perfect recovery of the cover image
X if

PSNR(X,Xr) ≈ ∞, (3)

where Xr = Xs − sgn(We)mag(We), Xs = X +
sgn(W)mag(W), and sgn(v) and mag(v) are two vectors
representing the sign and magnitude of the elements in a vector
v, respectively.
It is noted that ideally Eq. (3) is satisfied only if mag(We) ≈
mag(W); otherwise, even if the watermark values have been
completely removed based on mag(We) >> mag(W), the
quality of the attacked/recovered image would be undesirably
degraded. Typically, evaluation of mag(We) can be achieved
by means of either averaging or remodulation. It should be
noted that if the residual watermark (Fig. 1(c)) becomes empty
or negatively correlated with the hidden watermark (Fig. 1(a)),
then even optimal watermark detector is unable to detect the
hidden watermark. Definition 2 has specified how a cover data
could be recovered in a near-perfect manner. In Sec. III, a
near-perfect cover data recovery algorithm will be described.

III. A NEAR-PERFECT COVER DATA RECOVERY

ALGORITHM

“Near-perfect” here means that the hidden watermarks can
be mostly removed with a high probability (say 90%) so that
the recovered data is more similar to the cover data than
the stego data. Under this circumstance, it is not necessary
to worry about the detection ability of optimal watermark
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detector; otherwise, they will run the risk of raising the false
positive problem. Here, we shall take the block-based multiple
self-reference watermarking method [14] as an example to
explain the performance of our algorithm in removing the
hidden watermarks. However, it should be noted that our
algorithm can be extended to other methods [2], [9], [12] that
adopt the similar concept of multiple redundant watermark
embedding.

In the following, the method [14] where the watermark
embedded in each image block is a bipolar sequence is briefly
described. This watermark W is flipped and copied in each
direction to produce a symmetric signal, which is repeated
over the entire image. In the embedding process, both the
expanded watermark signal and the cover image are first
decomposed using wavelet transform. Then, the watermark
signals are embedded into the cover image in the wavelet
domain through linear additive modulation together with a
perceptual masking model called “noise visibility function
(NVF)” [14]. The NVF is basically a wavelet-based content-
adaptive visual model so that the degree for each wavelet
coefficient that can be modified without raising perceptual
difference can be defined. Let NV Fk,l(m, n) denote the
masking threshold for the wavelet coefficient at the position
(m, n) of subband k, l (where k denotes scale and l denotes
orientation), and let xk,l(m, n) and yk,l(m, n) denote the cover
and stego image wavelet coefficients, respectively. They are
related as

yk,l(m, n) = xk,l(m, n)
+ (1 − NV Fk,l(m, n)) · wk,l(m, n) · Se

k,l

+ NV Fk,l(m, n) · wk,l(m, n) · Sf
k,l, (4)

where wk,l(m, n)’s denote the watermark wavelet coefficient,
Se

k,l and Sf
k,l denote the embedding strength for non-flat and

flat regions, respectively.
Now, the proposed near-perfect cover data recovery al-

gorithm based on the collusion estimation of watermark’s
signs and NVF-based estimation of watermark’s magnitudes is
described as follows. Let We be the watermark estimated by
means of collusion. As pointed out in Fig. 1 and Definition
2, accurate estimation of watermark’s magnitudes is crucial
to completely remove the hidden watermarks. In fact, we
would rather remove more watermark energy than it should
be so that the watermark energy can be more guaranteed to be
eliminated. Let NV F s

k,l(m, n) denote the masking threshold
for a stego image. The wavelet coefficient for the recovered
image Xr based on Definition 2 can be derived as

zk,l(m, n) = yk,l(m, n)
− [(1 − NV F s

k,l(m, n)) · we
k,l(m, n) · Se

k,l (5)

+ NV F s
k,l(m, n) · we

k,l(m, n) · Sf
k,l](1 + εk,l(m, n)),

where we
k,l(m, n)’s denote the estimated watermark wavelet

coefficient and εk,l(m, n)’s are used to more guarantee that the
hidden watermark can be completely removed. By substituting
Eq. (4) into Eq. (6) and assuming that the recovered image

is equal to the cover image; i.e., zk,l(m, n) = xk,l(m, n)
for all k, l, i, and j, the desired parameters, εk,l(m, n)’s,
can be derived. To simplify analysis, we further assume that
W = We; i.e., their watermark wavelet coefficients satisfy
wk,l(m, n) = we

k,l(m, n) for all k, l, i,, and j. In this case,
εk,j(m, n) can be ideally derived as

εk,l(m, n) =
NV Fk,l(m, n) − NV F s

k,l(m, n)

NV F s
k,l(m, n) − Se

k,l

Se
k,l

−Sf
k,l

. (6)

In Eq. (6), NV Fk,l(m, n)’s are unknown since no cover
data is available in a blind detection scenario to obtain its
NVF. However, they can be approximately estimated if Xs −
sgn(We)mag(We), as described in Definition 2, is used to
obtain an approximate cover image. It should be noted that
when εk,l(m, n)’s are equal to zero, this algorithm degenerates
to watermark remodulation [13]. If watermark’s energy is
estimated by means of averaging, this algorithm degenerates
to conventional collusion attack.

In this section, we have derived how the watermark magni-
tude can be estimated to achieve complete watermark removal.
In order to evaluate the performance of “near-perfect cover
data recovery,” it is best to compare the recovered image
with the cover image to check how many watermark bits still
survive in the recovered image.

IV. EXPERIMENTAL RESULTS

In our experiments, ten varieties of standard cover images
of size 512 × 512 were used for watermarking. In this study,
Voloshynovskiy et al.’s block-based image watermarking ap-
proach [14] was chosen as the benchmark due to its strong
robustness and computational simplicity. However, we would
like to particularly emphasize that the proposed scheme is
readily applied to other watermarking algorithms that imple-
ment the similar principle of embedding multiple redundant
watermarks [2], [9], [12]. Wiener filter was used to perform
denoising-based blind watermark extraction.

In order to verify how the hidden (content-independent)
watermark could be removed by means of the proposed opti-
mal watermark estimation algorithm (Sec. III), the survived
watermark of the obtained recovered image was extracted
using the cover image so that we can accurately check how
many correct watermark bits still remain. Table I shows
the BER values, which were obtained from comparing the
original watermark and the extracted watermarks, and the
PSNR values, which were calculated between the cover image
and the recovered/stego image. As we can see from Table I
that if εk,l(m, n) = 0 is used, this corresponds to perceptual
remodulation [13]. It is observed that PSNRs have been
increased and most BERs fall into the interval between 50% ∼
60%, which means that a significant part of watermark values
is not completely removed.

However, if εk,l(m, n) �= 0 is adopted, BERs can be
increased averagely as high as 0.9 except for some very
smoothing images, which implies that our estimation and re-
covery algorithms are able to remove almost all the watermark
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TABLE I

Validation of our estimation and recovery scheme. BER is computed between the original and the extracted watermarks. PSNR is computed

between the cover and the recovered/stego images.

Stego image Xs
1 Xs

2 Xs
3 Xs

4 Xs
5 Xs

6 Xs
7 Xs

8 Xs
9 Xs

10
PSNR (dB) 38.15 37.92 37.96 37.51 37.61 37.94 38.13 38.98 37.74 37.94

Recovered image Xr
1 Xr

2 Xr
3 Xr

4 Xr
5 Xr

6 Xr
7 Xr

8 Xr
9 Xr

10
using εk,l(m, n) = 0 [13]
PSNR (dB) 45.46 53.25 53.16 43.10 56.20 48.18 52.79 45.05 54.83 53.25
BER (%) 68.8 48.4 48.4 43.8 57.8 78.1 78.1 89.1 60.9 57.8

Recovered image Xr
1 Xr

2 Xr
3 Xr

4 Xr
5 Xr

6 Xr
7 Xr

8 Xr
9 Xr

10
using εk,l(m, n) �= 0
PSNR (dB) 53.15 55.30 54.38 59.65 58.28 53.44 53.31 49.06 56.08 54.23
BER (%) 82.1 85.7 85.1 89.6 89.4 90.5 86.3 80.5 87.8 84.0

Recovered image Xr
1 Xr

2 Xr
3 Xr

4 Xr
5 Xr

6 Xr
7 Xr

8 Xr
9 Xr

10
using 2 × εk,l(m, n)
PSNR (dB) 51.69 53.53 52.90 57.12 56.06 51.52 52.16 47.65 54.45 52.34
BER (%) 88.5 92.8 93.0 93.8 94.1 93.7 92.8 81.8 92.8 90.9

bits in a stego image. In addition, the obtained PSNRs are
further improved than those obtained using [13] such that the
recovered image can be more similar to its cover version.
Since εk,l(m, n)’s are approximated derived in Eq. (6), if
2 × εk,l(m, n) is heuristically adopted, we show that (by
comparing those results obtained using εk,l(m, n) = 0 and
εk,l(m, n) �= 0) the BERs can be further increased and the
PSNRs are moderate.

Under the circumstance that the proposed near-perfect cover
data recovery algorithm is used, we are confident based on
Table I that even the so-called “optimal watermark detector”
[1], [8] is difficult to detect the survived (but few) watermark
bits to sufficiently claim the existence of a watermark; other-
wise, false positive probability is easy to occur. This validates
our claim that efficient elimination of previously added wa-
termark energy is indispensable to really remove the hidden
watermark. In addition to the effective watermark removal, the
recovered images were found to be more transparent to their
cover ones than the stego images in terms of PSNR values.
These experimental results demonstrate the performance of
the proposed cover data recovery algorithm in defeating the
multiple redundant watermark embedding methods that were
originally addressed to tolerate geometric distortions.

V. CONCLUSION

Although multiple watermarks can be embedded into an
image to withstand geometrical distortions, they are unfortu-
nately vulnerable to collusion and copy attacks, and the desired
geometric invariance is lost. In this study, we have proposed an
efficient watermark estimation and recovery algorithm (which
is regarded as an exquisite collusion attack) that can eliminate
almost all watermark values. To cope with the watermark
estimation attack (WEA), an anti-disclosure content-dependent
watermark (CDW) with resistance to WEA has been investi-
gated in [5]. In our recent paper [7], the proposed CDW has
been combined with geometric-invariant image hash [3], [6] to
obtain a mesh-based content-dependent watermarking scheme
that can resist both the geometric and estimation attacks.
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