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Abstract—Cooperative spectrum sensing (CSS) in cognitive
radio networks conducts cooperation among sensing users to
jointly sense the sparse spectrum and utilize available spectrums.
Greedy multiple measurement vectors (MMVs) algorithm in the
context of compressed sensing can ideally model the wideband
CSS scenario to efficiently solve the support detection problem
for identification of occupied channels. Actually, the number of
sparsity is unknown, and most of greedy algorithms for MMVs
lack for a (robust) stopping criterion of determining when the
greedy algorithm should terminate. In this paper, we analyze and
derive oracle stopping bounds for greedy MMVs algorithms with-
out depending on prior information such as sparsity. Moreover,
we introduce a practical subspace MMVs greedy algorithm that
extends from a subspace-based sparse recovery method to a more
practical setting, in which no prior information are required.
Extensive simulations confirm the feasibility of the proposed
stopping criteria and our sparse recovery algorithm.

Keywords—Compressed Sensing, (Cooperative) Spectrum Sens-
ing, Matching pursuit, Multiple Measurement Vectors, Sparsity

I. INTRODUCTION

A. Background

Cognitive Radio [1] is one of solutions to efficiently
solve sparse spectrum usage [2] in wireless communications.
Secondary Users (SUs) are allowed to sufficiently exploit
available spectrum, which are not currently used by Primary
Users (PUs), via spectrum sensing (SS) techniques. Most
existing methods are based on Nyquist sampling theorem for
the purpose of exact recovery of the original signal. Therefore,
they require large sampling rates under wideband spectrum
sensing scenarios [3].

With an eye on the fact [2] that only few spectra will
be used, i.e., only few PUs are active, such characteristic of
sparsity meets the assumption of compressed sensing (CS) [4],
[5], [6], which is an evolutionary sampling theory that has
received considerable attention recently.

Moreover, in wireless communications, the transmitted
signals easily suffer from fading and noise interference. Fortu-
nately, cooperative spectrum sensing (CSS) can be applied to
all cooperative SUs that jointly sense the spectrums to better
detect the status of spectrum usage [7], [8], [9]. Since the SUs
in CSS share the same sparsity pattern for spectrum detection,
joint sparsity model (JSM) proposed in [10] is suitable to
model CSS. There exist some solutions to JSM. In this paper,
we particularly focus on the solver, called Multiple Measure-
ment Vectors (MMVs) [11], [12], which are composed of more
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than one measurement vector in the context of compressed
sensing. However, CSS mainly cares about whether a channel
is used or not, leading to the support detection problem. In
other words, the number of active PUs in CSS corresponds to
that of supports in CS.

B. Related Work

Sparse signal recovery or support detection from (far)
fewer measurements can be achieved in two ways: matching
pursuit (MP) and convex optimization (e.g., `1 optimization).
In the CSS literature, `1 optimization is employed in [7], [8],
incurring high complexity to delay and void the detection
results. In this paper, we adopt orthogonal MP (OMP) as
the solver due to its efficiency and computation simplicity.
Although OMP is efficient, its recovery performance will be
degraded due to the effect of fading and noise interference.

A crucial step in OMP is the stopping criterion that will
affect its recovery performance. One popular stopping criterion
for OMP is set to be the sparsity K of a signal in that if K
supports are detected, then OMP stops its greedy iterations.
Nevertheless, sparsity of a signal is usually unknown in
advance. This is also the case in CSS. In order to deal with this
problem, we study new stopping criteria, which are relatively
unexplored in the literature, for OMP under the scenario of
MMVs.

As for MMV solvers, SOMP (Simultaneous Orthogonal
Matching Pursuit) [13] is considered to be a basic algorithm
extended from OMP to MMVs. In [14], an advanced greedy
algorithm, called Rank-Awareness Order Recursive Matching
Pursuit (RA-ORMP), is proposed to deal with sparse signal
recovery from MMVs, but without taking noisy measurements
into account. In [9], Distributed OMP (DOMP) is presented
to process measurement vectors in a distributed manner.
Moreover, [15] proposes five thresholding-based algorithms;
however, most of thresholds are designed to be related to
sparsity K, which is, however, unknown in advance.

C. Contributions

Since noise interference will unavoidably make some sup-
ports un-detected, we mainly aim to detect those significant
ones without necessarily recovering all. Specifically, we derive
theoretical bounds as the stopping rules in a noisy MMVs
environment to deal with noisy measurements. The derived
bounds are simply constrained by the noise variance and
measurement matrix’s dimensionality, and are verified to be
effective via simulations and comparisons.
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In addition to stopping criteria, we also introduce a novel
subspace-based MMVs algorithm to improve support detec-
tion. In the literature, subspace-based algorithms [16], [17]
have been applied to MMVs. Especially, [16] improves [17]
to maintain detection quality with less measurement vectors
when noise interference exists. In this paper, we modify [16] to
adapt to our stopping criteria without needing to use the prior
knowledge regarding sparsity. The derived stopping criteria
are able to overcome the problem of unknown sparsity, and
it can maintain good support detection rate. It also deserves to
note that our stopping criteria can be combined to the existing
greedy algorithms in CS in order to achieve robust sparse
signal recovery or support detection.

We apply the proposed subspace-based MMVs algorithm
to cooperative spectrum sensing in cognitive radio networks.
Performance comparisons with the state-of-the-art MMVs
methods are also provided.

II. MULTIPLE MEASUREMENT VECTORS (MMVS)

We consider an MMVs model to cope with the cooperative
sparse spectrum sensing problem in cognitive radio networks.

A. MMVs in Compressed Sensing

MMV is one of the solutions to joint sparse model. Here,
we consider the scenario that the multiple measurement vectors
may be contaminated by noises.

Let the signal matrix S ∈ RN×L be composed of L signals
and be denoted as S = [S1, . . . , SL], where Si ∈ RN for
1 ≤ i ≤ L. Given a specific dictionary Ψ ∈ RN×N , we
say that S has a sparse representation in Ψ and is denoted as
S = ΨX if the corresponding transformed coefficient matrix
is X ∈ RN×L. Let Θ be the common support set of X , where
Θ = {i|Xi,: 6= 0, i ∈ 1, . . . , N} and Xi,: 6= 0 means that
ith row are all with nonzero entries. The cardinality of Θ is
defined as the sparsity K.

Let Φ ∈ RM×N be the sensing matrix for MMVs,
where M < N and Φ is normalized columnwisely. Random
projection of X via Φ in a noisy environment can be expressed
as:

Y = ΦS + ε = ΦΨX + ε = AX + ε, (1)

where Y ∈ RM×L denotes the measurement matrix, ε ∈
RM×L, consisting of ε = [ε1, . . . , εL], denotes the noise, and
A=ΦΨ with each column vector being normalized. We say that
Y is composed of L measurement vectors.

B. MMVs in Cooperative Spectrum Sensing (CSS)

In spectrum sensing, the target spectrum band is divided
into N individual sub-channels and K active PUs on wideband
spectrum are detected by L SUs simultaneously. Moreover,
PUs and SUs constitute a small-scale network, like femto-
cell network. Therefore, all SUs face the identical spectrum
pattern, but observe signals of different power from PUs to
generate a kind of MMVs from sensing the observed signals.
Under the condition of MMVs, all SUs’ measurement vectors
are transmitted to a fusion center, where the original sparse
information (status of spectrum usage) can be solved from a
batch of measurements.

Formally, in a noisy spectrum sensing environment, K
PUs’ transmission signals are aggregated to be a mixed analog
signal pj and accompanied with additive white Gaussian noise
ej in time domain with respect to the jth SU (1 ≤ j ≤ L).
Thus, the signal observed by SU j is defined as Sj = pj + ej .
Let the sensing matrix Φ be equipped in each SU. The
measurement vector generated in SU j is defined as δj =
ΦSj = Φpj + Φej , where δj is then transmitted to the fusion
center. Let Yj be the data actually received at the fusion center
and be defined as:

Yj = δj + vj = Φpj + Φej + vj = Φpj + εj , (2)

where vj is noise incurred during the transmission path to the
fusion center and εj is defined to be the final noise term.

Following [7], let the dictionary Ψ be an N ×N diagonal
matrix, representing the status of PUs. If the diagonal entry is
non-zero, it implies a sub-spectrum is occupied; otherwise, it
is un-occupied. Therefore, we have:

pj = Ψxj . (3)

Combining Eqs. (2) and (3), we have Eq. (1).

III. ORACLE BOUND FOR STOPPING CRITERIA IN
GREEDY MMVS ALGORITHMS

We first introduce exact recovery condition and then de-
scribe the proposed stopping criteria for MMVs greedy algo-
rithms.

A. Exact Recovery Condition (ERC)

We review exact recovery condition (ERC) [12][18] here
because it is an important requirement to guarantee exact
recovery to design oracle stopping criteria for MMVs greedy
algorithms. Let A(Θ) be the set of columns, collected from
A, that correspond to the elements in Θ. Assume the first
w steps in a greedy algorithm achieve correct recovery with
W ⊆ Θ being the set of detected supports. Similarly, let
A(W ) denote the set of columns collected from A with
respect to W . A(W ) spans a projection operator to be Pw =
A(W )(A(W )TA(W ))−1A(W )T = A(W )A(W )†, where †
means a pseudoinverse operator. Hence, in wth step, the
residual Rw can be derived as:

Rw = (I − Pw)Y = (I − Pw)AX + (I − Pw)ε = Qw +Hw, (4)

where Qw is the clear part and Hw is the noisy part.

Furthermore, ERC derived as:

Π = max
a∈A\A(Θ)

||A(Θ)†a||1 < 1, (5)

where a denotes a column in A, is a sufficient condition to
exactly recover sparse signals in both Single Measurement
Vector (SMV) [18] and MMVs [12].

According to [18], ERC can be further derived for SMV to
satisfy Π ≤ KµS

1−(K−1)µS
< 1, where K is sparsity and mutual

incoherence regarding A, µS < 1
2K−1 is a sufficient condition

to have exact recovery in the case of noiseless SMV. Moreover,
under the condition of MMVs [14], we can have:

Π ≤ KµM
1− (K − 1)µM

< 1, (6)
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where µM is the maximum incoherence regarding A in
MMVs. WLOG, mutual incoherence of A is defined as
µ = max

i6=j
|aTi aj |. In the next subsection, we will describe the

proposed stopping criteria in greedy MMVs algorithms.

B. Stopping Criteria in Greedy MMVs Algorithms

We let G denote the set of remaining unsolved supports
when a greedy algorithm proceeds to the wth (< K) step.
Then, we have G = Θ \W .

Based on Eq. (4), we first define three variables as
follows that will be useful later. In wth step, let Bw =
max
a∈A(G)

{||aTQw||2} be the maximum correlation between Qw

and columns from Θ, where || · ||2 denotes l2-norm. Let
Ew = max

a∈A
{||aTHw||2} be the maximum correlation between

columns of A and Hw.

As in Eq. (1), let the corresponding coefficient matrix of
A(G) be denoted as X(G). In order to realize the lower bound
of ||X(G)||F , where ||·||F denotes Frobenius norm, that allows
a greedy algorithm to have unique recovery, we first derive the
bound of Bw as:

Bw ≥
1− uµM√
K − w

||X(G)||F . (7)

Please see Appendix A for details.

Next, the sufficient condition for choosing a correct support
is derived as:

||X(G)||F ≥
2Ew
√
K − w[1− (K − 1)µM ]

(1− uµM)[1− (2K − 1)µM ]
, (8)

which is obtained from Eq. (7) and Eq. (19) in Appendix B,
which derives the relationship between Ew and Bw.

Now, we consider how to derive reasonable stopping crite-
ria for MMV greedy algorithms. Such stopping criteria will
be related to the residual Rw, which is iteratively updated
according to Eq. (4), and ||Rw||F becomes smaller as w
becomes larger. When ||Rw||F is smaller than a threshold, the
greedy algorithm stops. According to the results of (C.1) and
(C.2) in Appendix C, we have:

||Rw||F = ||(I − Pw)AX + (I − Pw)ε||F
≥ ||(I − Pw)AX||F − ||(I − Pw)ε||F
≥ ||(I − Pw)A(G)X(G)||F − bF ,

(9)

where bF is an upper bound of ||ε||F . More details will be
described in Sec. III-C.

Furthermore, by means of the result, Ew ≤ bF , derived in
Appendix C, ||X(G)||F in Eq. (8) has a much tighter bound
derived as:

||X(G)||F ≥
2bF
√
K − w[1− (K − 1)µM ]

(1− uµM)[1− (2K − 1)µM ]

≥ 2bF [1− (K − 1)µM ]

(1− uµM)[1− (2K − 1)µM ]
.

(10)

By taking the facts that ||(I − Pw)A(G)X(G)||F ≥
||A(G)T (I − Pw)A(G)X(G)||F due to dimension reduction
and Eq. (17) in Appendix A, we can derive:

||(I − Pw)A(G)X(G)||F ≥ λmin||X(G)||F . (11)

As a result, according to Eqs. (9), (10), and (11), we finally
derive that the Frobenius norm of residual at wth step ||Rw||F
has a more strict lower bound as:
||Rw||F ≥ λmin||X(G)||F − bF

≥ (1− uµM)
2bF [1− (K − 1)µM ]

(1− uµM)[1− (2K − 1)µM ]
− bF

= 2bF
1− (K − 1)µM
1− (2K − 1)µM

− bF .

(12)

By considering µM < 1
2K−1 < 1 derived from Eq. (6) and the

fact 1−(K−1)µM
1−(2K−1)µM

> 1, Eq. (12) can be further simplified as:

||Rw||F ≥ 2bF − bF = bF . (13)

Therefore, a greedy algorithm stops once Eq. (13) is not
satisfied.

C. Upper Bound of Frobenius Norm of Gaussian Noise

Based on Eq. (13), we now derive how bF is related to
noise, i.e., ||ε||F . This means that our stopping criteris can deal
with noisy measurements in CSS. As shown in Appendix C,
bF is related to ||ε||F . Based on the assumption that the noise
ε, described in Eq. (1), is Gaussian distribution with N(0, σ2),
we extend the derivation regarding the bound of l2-norm of
a Gaussian noise vector in SMV [19] to MMVs and obtain
(details are omitted here):

P{||ε||F ≤ [Lσ2(M + 2
√
M lnM)]

1
2 }

≤ 1−M−LL−
1
2 ,

(14)

where the probability of norm constraint approaches one due
to M >> 1 and L > 1. We denote the first type of bF as
bF,1 = [Lσ2(M + 2

√
M lnM)]

1
2 . We can check that when

L = 1, Eq. (14) is degenerated to the result of SMV in [19].

On the other hand, by considering the fact that Gaussian
random noise cannot be precisely predicted, we alternatively
seek to calculate the expectation of ||ε||F , denoted as E [||ε||F ].
Since square-root is concave, we can further derive via Jensen’s
inequality as:

E [||ε||F ] ≤ σ
√
ML. (15)

We denote the second type of bF as bF,2 = σ
√
ML.

The two bounds derived in Eq. (14) and Eq. (15) are
only related to the noise variance σ2 and dimensionality of
measurement matrix Y . We will evaluate their performance in
Sec. V.

D. Recovery Guarantee due to Distance between SU & PU in
CSS

In CSS, each nonzero entry of X is an SU’s received power
Ps modified from a PU’s power Pp, both of which can be
modeled as [20]: Ps = Pp|h|d−

α
2 , where d denotes the dis-

tance between a pair of SU and PU, α denotes propagation loss
factor, and |h| is channel fading gain. We study the relationship
between d and recovery guarantee in the following.

As mentioned in Sec. III-C, when L = 1 in a SMV
case, a Gaussian noise vector has an upper bound like
σ
√
M + 2

√
M lnM . Hence, under the case of MMVs, jth

SU suffers from individual noise effect with an upper bound,
bj = σj

√
M + 2

√
M lnM , 1 ≤ j ≤ L. To simplify notations
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below, we assume all measurement vectors suffer from the
same noise effect, i.e., σj = σ, so we have b = bj and
bF = (

∑L
j=1 b

2
j )

1
2 according to Eq. (14).

Based on the above, the lower bound of l2-norm of each
column of X(G) in Eq. (10) can be derived to be equal to or
larger than 2b[1−(K−1)µM ]

(1−uµM )[1−(2K−1)µM ] . Thus, in order to ensure to
correctly obtain one of K − w unsolved supports at step w,
each absolute nonzero entry of X(G) is equal to or larger than

1√
K−w{

2b[1−(K−1)µM ]
(1−uµM )[1−(2K−1)µM ]}, as opposed to Eq. (10).

Given the above derived results and stable chan-
nel with fixed α and |h|, we have Pp|h|d−

α
2 >

1√
K−w{

2b[1−(K−1)µM ]
(1−uµM )[1−(2K−1)µM ]

}, which indicates that distance
upper bound between PU and SU, derived as:

d < {
√
K − wPp|h|(1− uµM)[1− (2K − 1)µM ]

2b[1− (K − 1)µM ]
}

2
α , (16)

is a sufficient condition to guarantee correct recovery of PUs’
spectrum pattern at step w.

IV. PRACTICAL SUBSPACE MMVS GREEDY
(PS-MMVS-G) ALGORITHM

The existing MMVs greedy algorithms rely on some prior
knowledge in that [9], [14], [16] have to know sparsity K and
[14] and [16] need the relationship between K and L: [14]
and [16] require L ≥ K and L < K, respectively. Here, we
introduce a practical subspace MMVs greedy (PS-MMVs-G)
algorithm without depending on the above prior knowledge.
The oracle stopping criteria described in Sec. III-B are adopted
in our algorithm to provide feasible termination for greedy
methods under noisy environment.

Meanwhile, greedy support detection for either SMV or
MMVs relies on the correlation between measurement Y and
column subset of A. For the purpose of precise recovery,
augmented subspace is proposed in [16] to extend from Y to
merge both column subset of A and Y as a new basis, which
is also the subspace of Range(A(Θ)) in noiseless cases, to
enhance support detection. The detail will be described in Sec.
IV-B.

Algorithm 1 depicts the proposed method PS-MMVs-G.

A. Initial Support Detection

Since subspace-based algorithms initially need to be given
reliable supports as space basis, we utilize SOMP [13] to
obtain the first support. Even if low SNR exists, the first
recovered support from SOMP is correct with very high
probability.

B. Detection of Remaining Supports: Advanced Subspace
Method

In [16], SVD of Y is performed to have U1Σ1V
T
1 and Y is

transferred to have the canonical form, YC = Y V1, for support
detection later. For support detection, the minimum correlation
between aj (∈ A) and the projection matrix P⊥A(Θ), where
P⊥A(Θ) = I −A(Θ)A(Θ)†, is conducted.

Nevertheless, A(Θ) is never known in advance. An alter-
native is to do SVD of the new basis [Aw YC ] at step w to

get UΣV T , where Aw denotes the column set collected from
A at the first w − 1 steps, Range([Aw YC ]) = Range(U ),
and Range([Aw YC ]) ⊂ Range(A(Θ)). It should be noted
that, for the purpose of finding a subspace of A(Θ) in [16],
Range([Aw YC ]) is replaced with the first K columns of
U , say UK , to become a new basis, i.e., Range(UK ) ⊂
Range(A(Θ)) due to the fact that K column vectors of UK
are orthonormal basis and Rank(UK ) = Rank(A(Θ)) = K .
Thus, the projection matrix is now based on UK instead of
A(Θ). The question, however, is how can K be known in
advance? We deal with this problem in the following.

In our method, at wth step (w ≥ 2), the first w − 1
(independent of K) columns from U is collected as the set Uw.
Additionally, let B = Range(Uw ). Accordingly, the projection
matrix P⊥B based on B becomes I − BB†. The support at
position j is then determined from the minimum correlation
between aj (j /∈ W ) and P⊥B . This implies that our stopping
criteria can provide robust support detection to perform greedy
CS algorithm without depending on any prior knowledge.

The simulation results also confirm that our method
achieves remarkably lower probability of false alarm than [16].

Algorithm 1 PS-MMVs-G.
Input: Y,Φ; Output: Recovery Support Set W ;
Initialization: SVD(Y ) = U1Σ1V

T
1 , YC = Y V1, W = ∅;

01. //Run SOMP
02. w = 1
03. initialization: R0 = Y ;
04. j = arg maxj ||aTj R0||2; aj ∈ A
05. W = {j};
06. do
07 w + +;
08 Aw: a column set collected at the first w−1 steps
09 SVD([Aw YC ]) = UΣV T ;
10. Uw: choose the first w − 1 columns of U ;
11. B = Range(Uw);
12. P⊥B = I-BB†;
13. j = arg min

j /∈W
||P⊥B aj ||2;

14. W = W ∪ {j};
15. Xw = A(W )†Y ;
16. Rw = Y −A(W )Xw;
17. while (||Rw||F ≥ bF )
18. return W

V. SIMULATION RESULTS

A. Simulation Setting

Our simulations were conducted in terms of probability
of detection (POD), probability of false alarm (PFA), and
probability of miss detection (PMD) [7] to evaluate the per-
formance of cooperative spectrum sensing in cognitive radio
under noisy MMVs scenarios. The additive white Gaussian
noise (AWGN) was distributed with N(0, σ2). As described
in Sec. III-D, we set the channel fading gains with |h| = 1
and propagation loss factor α = 4. PUs and SUs were assumed
to be uniformly distributed in a small-scale network. A feasible
CSS algorithm should be able to achieve high POD, and
low PFA and PMD. Moreover, four state-of-the-art MMVs
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algorithms, i.e., DOMP [9], RA-ORMP [14], SOMP [13], and
sequential CS-MUSIC [16], were adopted to compare with our
algorithm in dealing with CSS.

Our proposed stopping rules, described in Sec. III-B, were
used because, as we have mentioned before, the existing
MMVs methods need some prior knowledge to stop that
is impractical. Three stopping criteria were considered in
our simulations and comparisons. The first criterion R(1) is
||Rw||F < bF,1 = [Lσ2(M + 2

√
M lnM)]

1
2 , as defined

in Eq. (14). The second criterion R(2) is defined to be
||Rw||F < bF,2 = σ

√
LM based on Eq. (15). The third

stopping rule R(3) is conventional in that the ideal number
of supports K is known to exactly recover K supports. Since
DOMP assumes to know K and may detect more than K
supports, and sequential CS-MUSIC does not have the concept
of measurement residual, both did not adopt the above three
criteria.

B. Simulation under A fixed Set of Parameters

We first observed simulation results under a fixed set of
parameters, where the number N of channels is 250, number
M of measurements in a measurement vector is 50, number
K of active PUs is 25, number L of cooperative SUs is 20,
and σ2 = 1. L < K was set because CS-MUSIC [16] needs
to satisfy this constraint.

Fig. 1 shows the results for PFA. We can find that,
compared to Fig. 1(c) with stopping criterion R(3) that needs
to know K in advance, both Fig. 1(a) with R(1) and Fig.
1(b) with R(2) are able to stop greedy support detection
with significantly smaller PFA under various noise variances.
Therefore, knowing the sparsity K in advance not only is
impractical but also exhibits higher PFA. We can find that
DOMP attains the worst results.
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Fig. 1. PFA vs. noise variance under N = 250, M = 50, K = 25, and
L = 20.

Based on the PFA results, we further observe results on
POD and PMD, as shown in Fig. 2, without considering
R(3). In addition, DOMP and sequential CS-MUSIC were
not considered for POD and PMD because they have incurred
rather high PFA. With the fact that bF,1 > bF,2, the criterion
R(1) may stop early to reach lower PFA and sacrifice fewer
possible supports to be solved, leading to lower POD. In CSS
applications, PFA means losing opportunity to access channels
and PMD indicates the possibility of interference to PUs. A
better strategy for SUs would rather take lower PMD instead

of PFA, because protocol design in cognitive radio networks
prohibits SUs from interfering active PUs. Under this situation,
SUs aim to get lower PMD, which usually accompanies with
higher POD.

We can observe from Fig. 2 that R(2) achieves higher POD
and lower PMD than R(1) does. As for SOMP and DOMP, we
can observe worse POD and PMD for both R(1) and R(2).
As for RA-ORMP, its performance is inferior to PS-MMVs-G
in R(2). Especially, we can observe from Fig. 2(b) and Fig.
2(d) that our proposed algorithm PS-MMVs-G performs the
best among the four algorithms.
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Fig. 2. POD and PMD vs. noise variance under N = 250, M = 50,
K = 25, and L = 25.

C. Simulations with Phase Transition

Phase transitions of our method PS-MMVs-G with respect
to PFA, POD, and PMD based on stopping criterion R(2) are
shown in Fig. 3. Both K/M and M/N range from 0.1 to 0.35.
Signal length N is fixed and set to 250.

Under fixed noise variance, the SNR of a sparse signal X
with K nonzero entries is proportion to K. Therefore, a sparse
signal with larger number K of non-zero entries leads to higher
POD and lower PFA. As for PMD [7], its denominator is
equal to number N of channels minus the number of detected
supports, and dominates PMD. Thus, larger K will lead to
higher PMD.

The phase transition results indicate that, for a broad set of
parameters, our method can obtain reasonable high POD and
low PFA.

VI. CONCLUSIONS

Joint sparsity model (JSM) is a good candidate to model
the problem of CSS, as all SUs share the same sparsity pattern.
Although MMVs is an efficient solver to JSM, it lacks robust
stopping criterion to deal with noisy measurements. In this
paper, we have presented theoretical bounds as the stopping
criteria for MMVs and have combined them with an advanced
subspace-based algorithm to practically conduct cooperative
sensing for spectrum detection. Simulations have been pro-
vided to demonstrate the effectiveness of our algorithm to resist
noise interference.
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Fig. 3. Phase transition of PS-MMVs-G in R(2) with N = 250 and σ2 = 1.
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VIII. APPENDIX

APPENDIX A
LOWER BOUND OF ||X(G)||F

As shown in [21], λmin ≥ 0 is a sufficient condition for
ERC, where λmin is the minimum eigenvalue of A(Θ)TA(Θ).
In [21], the authors show that λmin ≤ λg , where λg is the
minimum eigenvalue of A(G)T (I − Pw)A(G)xg and xg is
one of columns from X(G). Thus, the eigenfunction can be
derived as:

||A(G)T qw||2 = ||A(G)T (I − Pw)A(G)xg||2
= λg||xg||2 ≥ λmin||xg||2,

(17)

where the column qw ∈ Qw.

Based on Eq.(17), we can derive the lower bound of Bw
in MMVs as:

Bw = max
a∈A(G)

{||aTQw||2} = max
qw∈Qw

||A(G)T qw||2

≥ 1√
K − w

||A(G)T qw||F

≥ λmin√
K − w

||X(G)||F ≥
1− uµM√
K − w

||X(G)||F ,

(18)

where 0 ≤ 1−uµM ≤ λmin holds, as in the SMV case in [21]
and u is a constant used to maintain uµM ≤ 1.

APPENDIX B
RELATIONSHIP BETWEEN Ew AND Bw

Combining the results, 2Ew
1−Π < Bw from [21] and Π ≤

KµM
1−(K−1)µM

< 1 from Eq. (6), we can derive:

2Ew
1− (K − 1)µM
1− (2K − 1)µM

< Bw. (19)

APPENDIX C
RELATIONSHIP BETWEEN Ew AND bF

Referring to the derivations for SMV in [21], we make
extensions to MMVs and obtain the following conclu-
sions: (C.1) ||Hw||F = ||(I − Pw)ε||F ≤ ||ε||F ≤ bF ,
where bF will be derived in Sec. III-B, and (C.2) Ew =
||aTHw||2 = (

∑L
i=1(aTH

(i)
w )2)

1
2 , where H

(i)
w is a column

of Hw (1 ≤ i ≤ L). Based on Cauchy-Schwarz inequality

and ||a||2 = 1, we can further derive from (2) to attain
Ew ≤ (

∑L
i=1 ||a||22||H

(i)
w ||22)

1
2 ≤ bF .
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