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ABSTRACT

Energy-efficient data collection and privacy-preserving data
recovery have received much attention recently. We propose
the first encryption framework for the computation-intensive
basis pursuit problem to be securely solved in the cloud with
the data being efficiently collected using compressive sensing.
We provide security and efficiency analyses to show the ef-
fectiveness of our method. Simulations and comparison with
state-of-the-art are also conducted.

Index Terms— Basis pursuit, compressive sensing, con-
vex optimization, encryption, security

1. INTRODUCTION

Wireless sensors have been popularly used to monitor critical
environments for data collection and retrieval. Nevertheless,
due to the limited energy and storage of sensors, the collected
data usually should be transmitted to the cloud side for storage
and further processing. After data collection, users have two
choices for utilizing the data stored in the cloud. First, users
can explore all non-processed data directly downloaded from
the cloud. This, however, will create computational overhead
due to data have exploded in the last few years. The second
framework [1, 2, 3, 4] needs the cloud to process the data and
what the users need to do is to receive the outcomes from the
cloud side. Though this framework can save computational
power for sensors and users, it cannot guarantee the users’
privacy and security when the cloud is untrusted.

To further reduce the energy consumption of sensors, [1]
formulates the first healthcare monitoring system architec-
ture with compressed sensing [5, 6], a ground-breaking sub-
Nyquist sampling for sensor side and reconstruction for cloud
side. In [1], the reconstruction process in compressed sensing,
which needs to be protected, is solved in the cloud such that
it can reduce the users’ computational cost. Moreover, the
skill for protecting the recovery process is to transform the ba-
sis pursuit (BP) problem to linear programming (LP) problem
such that off-the-shelf encryption systems [7, 8] can be em-
ployed to solve the secure LP problem while achieving data
privacy in the cloud. Nevertheless, transforming BP to LP and
encrypting the resulting LP problem will increase the com-
munication cost and computational complexity. Also, [9, 10]
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discuss the security issue for solving optimization problems
in the cloud.

In this paper, we follow the same architecture of [1] but
propose an encryption system for directly solving BP instead
of LP in the cloud. Below, we summarize the contributions of
this paper as follows.

1. To our knowledge, we first propose an encryption
framework based on the BP problem, which has not
been found up to now, such that it can be securely
solved in the untrusted cloud.

2. Due to saving the step of transforming BP into LP, our
scheme can reduce communication cost and computa-
tional complexity.

3. As for security analysis, we prove the proposed en-
cryption system can resist the ciphertext-only attack
(COA), which is also the focus in [1].

2. PROPOSED SCHEME

We first briefly introduce compressive sensing in Sec. 2.1 as
it is the foundation of our method. Second, we illustrate the
main idea and security definition in Sec. 2.2. Finally, we
describe the whole structure and design ideas in Sec. 2.3.

2.1. Preliminary on Compressive Sensing

In the context of compressive sensing (CS) [5, 6], let v €
RY*1 denote an original signal, let ® € R™*" represent a
sampling matrix, and let y € R™*! be the measurement vec-
tor with m < N and m/N being the measurement rate. At
the encoder, the measurement vector y in CS is obtained from
sensing the original signal v via random projection defined
as:

y = dv. D
v can be expressed in terms of sparse representation as:
v =V, 2)

where U € RV*¥ is an orthonormal basis and z € RV *!
is a sparse vector. Specifically, we say that  is S-sparse if
there are S nonzero entries in x. Substututing Eq. (2) in Eq.
(1), we have y=Ax, where A = ®U.
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Fig. 1. Block diagrams of proposed method, including the encryption task on both the sensor and query side, and the recovery

task on the server side.

At the decoder of CS, [11] shows that if A satisfies
Restricted Isometry Property (RIP), then we can re-
cover x (S-sparse) given y and A by solving a Basis Pursuit
(BP) problem as follow:

mgn l|lz||1, subjectto Az =y, 3)
where || - ||1 is l;-norm. In addition to BP that is a kind of
convex optimization algorithms, greedy algorithms like OMP
have also been popularly used in CS. However, the reason for
choosing BP here is that it exhibits higher reconstruction ca-
pability, which implies the need of smaller measurement rates
than greedy algorithms [12]. Smaller measurement rates also
imply less sampling and communication cost in the sensor
side of our scheme.

2.2. Main idea and security definition

Our goal is to propose a scheme so that the server can
solve the BP problem in Eq. (3) and keep the original signal
v secret. We denote BP program as a task Q = (y, A) and
our scheme consists of four probabilistic polynomial time al-
gorithms, I' = (Gen, Tra, Sol, Rec):

e Gen(1") is a key generation algorithm, which takes se-
curity parameter 1% as input to yield the secret key K.

e Tra(K,(Q) is a transformation algorithm, which takes
secret key K and task ) as input and generates the
transformed task Q¥ = (y/, A’), where ¢ and A’ are
the ciphertexts of y and A, respectively.

e Sol(Q2k) is a solver algorithm, which takes the trans-
formed task Q¥ as input to obtain 2’ that is a ciphertext
of 2 by solving the optimization problem Q.

e Rec(x’, K) is a recovery algorithm, which takes the ci-
phertext 2’ and secret key K as input to yield z for
subsequent recovery of the original signal v.

Since the algorithm Sol is fixed to solve BP problems, it
is the key and challenging for us to design a secure transfor-
mation T'ra such that Q% is still a BP problem. As mentioned
previously, Sol works in the cloud, so the security strength of
such scheme I" relies on ', 3/, and A’ of Q¥ . Moreover, if 2,
y', and A’ can be designed to be secret, then I" will be a secure
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scheme. In the following, we define the security definitions
for these considerations.

Definition 1. If I' = (Gen, Tra, Sol, Rec) satisfies the fol-
lowing conditions:

1. There is no polynomial time algorithm to decrypt x’
without K < Gen(1%).

2. Given any two distinct tasks €y and €2;, and a ran-
dom choice K < Gen(1"), the distributions of
yo from Tra(Qo, K) and yj from Tra(Q, K) are
indistinguishable, and the distributions of A{J from
Tra(Qo, K) and A} from Tra(Qy, K) are indistin-
guishable.

then I is k-secure.

Remark. The most important thing here is to keep z secret,
so our method has to satisfy condition 1. In addition, the
transformed task must protect y and A, so we need the dis-
tributions regarding pairs of y{, and y{, and Af, and A} of the
two transformed tasks to be indistinguishable, respectively.

2.3. The scheme process and design ideas

In this section, we will describe in a step by step manner about
the scheme details to be instantiated in I'. The key generation
Gen is divided into two parts, Gen®(1%,4) and Gen” (1%, 1),
where Gen® is the key generation of sensor side, Gen” is
the key generation of query side, and ¢ is the index for i-th
sampling. The scheme process is illustrated in Fig. 1 and is
described as follows.

e In the sensor side (@ is fixed):

1. For the i-th sampling, the sensor gets y; = Pv;, where
® is the sampling matrix and v; is the original signal to
be sampled.

2. Use Gen®(1%;1) to generate akey K = {P;} for i-th
sampling, where P, € R™*™ is a random matrix and
is different in every sampling.

3. Calculate and upload y, = P;y; with index 7 to the
cloud.

e In the query side:



4. Use Gen®(1%;1) to generate a key Kf = {P, M;}
for 4-th sampling, where M; € RY*¥ is a random
permutation matrix and is different in every sampling.

5. Set A = ®W, where ¥ is an orthonormal basis, and
upload A} = P;AM;! with index i to the cloud.

e In the cloud side:

6. Combine 3} and A/, to obtain the task QX = (y/, A}).
Then, use Sol and QlKl to yield z.

Back to the query side:

7. Download z from the cloud, use Rec and z} to obtain
T, = Mi_lxg , and recover v; = Yz, to find the original
signal for ¢-th sampling.

Note that Step 3 and Step 5 belong to the T'ra algorithm.
Since T'ra is the key related to security of our whole scheme,
we focus on designing it as follows.
Design ideas: In the T'ra algorithm, we need to ensure
2 and € are secret. We start with keeping z secret; an in-
tuitive idea for encrypting x is to multiply a random matrix
M € RY*N with 2. Under the circumstance, Eq. (3) can be
transformed to
min |M~12 ||y, subject to AM ™ 2’ =y, 4)
x
where 2’ = Muz. This new task (Eq. (4)), however, can-
not fit our considerations in Sec. 2.2 since it cannot keep
x secret when solving the problem in the cloud and it does
not maintain the framework of BP. To conquer this problem,
we let M be a random permutation matrix such that the term
|M~tz'||; is equivalent to ||2’||; according to the nature of
l1-norm. Thus, Eq. (4) can be rewritten as:
min ll2'||1, subject to AM ‘2’ =y. ®)
x
As we can see from Eq. (5), we can solve it without sending
M~ to the cloud and the formulation is still a BP problem.
However, Eq. (5) will reveal y and A to the cloud. So, we
adopt another random matrix P € R™*" and multiply it with
both sides of the constraint in Eq. (5) to yield:
min lz'||1, subject to A’z =14/, (6)
x
where A’ = PAM~! and ¢/ = Py. In sum, the Tra al-
gorithm in our scheme I' is a transformation and needs two
matrices M and P to protect x, y, and A.
In the sensor side, it only conducts sampling on v to obtain
y, uses P to encrypt y, and sends 3’ to the cloud. On the other
hand, in the query side, it needs to use P and M to encrypt
A, sends A’ to the cloud side, downloads the solution 2’ from
the cloud, and recovers the original signal v. Obviously, the
characteristic of our method is that both the query and cloud
sides bear most computational and communication cost of the
whole framework while the sensor side operates in an energy
conservative way.
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3. ANALYSIS

This section provides the analysis of security and efficiency
of our scheme. In the part of security, we assume the adver-
sary to be COA and derive the security guaranteed under this
situation. As for efficiency analysis, we show that our scheme
is more efficient than [1].

3.1. Security analysis

In our framework, the adversary is honest-but-curious and is
only allowed to corrupt the server passively. In addition, our
scheme achieves k-secure under the assumption that the ad-
versary model is COA. The security of our scheme depends
on the security parameter 1% since the key K = (P, M)
is generated by Gen(1%) and is different in every sampling.
Moreover, we assume the key is secure for the appropriate
parameter 1” and pseudorandom generation. The following
theorem proves the security strength of our scheme described
in Sec. 2.3.

Theorem 2. The scheme I" = {Gen, Tra, Sol, Rec} we pro-
posed is k-secure under the situation of COA, which runs in
polynomial time.

Proof. Since the adversary is assumed to be COA, what we
can leak to it are Q% = {3/, A’} and 2’. Under the circum-
stance, there are two conditions need to be satisfied for I' to
be k-secure.

1) Since the ciphertext ' = Mz in our scheme is per-
muted from the original x and z’ has been exposed, the
adversary knows the number of non-zero entries and
their actual values in z, but does not know the correct
positions. The adversary, however, does not own any
prior knowledge for x, so it can only use z’ to guess
the positions of entries with the hope of getting correct
x. The issue of guessing the positions is a subclass se-
lection problem, which is NP-hard. Here, we will give
some arguments for it, though [13] mentioned it is a
NP-hard problem. Now, if the adversary wants to ar-
range z’ to get x, the computation may cost

N!

e N(N = 1).(N —k+1),

N
where N is the length of 2’ and & is the number of non-
zero entries in z’. Clearly, the lower bound of Eq. (7)
is:

(N—k+1)*<NWN-1)..(N—k+1). ()

Specifically, Eq. (8) shows the computational cost to
be O(N¥) for arranging z’ to become x that is not a
polynomial time mission.

2) We want the distributions of y; and A from T'ra (2, K)
to be indistinguishable for b € {0, 1}, where y; = Pyys



and A) = P,AM, *. Trivially, y, and Aj are gener-
ated by the random components P, and M, for each
sampling, so the distributions for a pair of y} and v}
and the distributions for a pair of Af, and A/ are both
indistinguishable. Therefore, Condition 2 holds.

We conclude that our method satisfies these two conditions
and is k-secure under COA, which runs in polynomial time.

O
3.2. Efficiency analysis

The argument of efficiency is divided into communication
cost and computational complexity. We compare our scheme
with [1] with respect to the sensor side (SS) and query side
(QS) in Table 1.

Table 1. Efficiency comparison between our scheme and [1].

Our scheme [1]
SS’s communication cost O(m) O(m)
SS’s computational cost O(mN) O(mN)
QS’s communication cost |  O(mN) O(N?)
QS’s computational cost O(m?*N) | O(mN?)

We can observe from Table 1 that, in the sensor side,
the communication cost and computational complexity of our
scheme are the same with those of [1] due to the use of com-
pressive sensing. Nevertheless, we do not have to change the
sensing matrix ® in every sampling, which is more practical
in sensor side. On the other hand, for communication cost in
the query side, our scheme just sends an m x N matrix to the
cloud but [1] needs to send two matrices with different sizes
of m X 2N and 2N x 2N. Moreover, the computational cost
of our scheme is O(m2N), which is less than O(mN?) of
[1], since we just permute the columns of matrix in Step 5
(query side) for multiplying M ~1 with A.

It should be noted that the base for our method to be rea-
sonable is that the cost of needing the cloud to solve a hard
problem must be definitely larger than that of our encryption
tasks. According to [14], the cost of solving BP problem is
O(m2N?2), which is larger than the computational cost of
our encryption task that is O(m?) + O(m?2N). This gives an
evidence that our scheme is actually efficient.

4. SIMULATIONS

Our framework can be adopted in many application scenar-
ios that require fast encoding (data acquisition) with slow but
secure decoding/recovery, where slow recovery can be con-
quered by means of strong capability of the cloud server. In
this section, we take image sensing and encryption as an ex-
ample to illustrate the effectiveness of our method.

4.1. Experimental Setup

All simulations were conducted on PC equipped with Win-
dows 7 with 3.40GHz Intel Core i7 CPU and 4 GB RAM.
We programmed the proposed method using MATLAB and
popularly used CVX toolbox for CS recovery.
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Here we divided an image into 256 blocks of size 32 x 32,
which can be regarded as many information collected from
different sensors. Thus, the original signal v corresponds to
a 1024-dimensional vector, and the sampling and recovery
for each image block are independent. The sensing matrix
® was selected from the normal distribution N(0, 1) and the
orthonormal basis ¥ was the Karhunen-Loeve(KL) basis in
order to satisfy RIP. For encryption matrices, P was an m xm
matrix generated by N(0, 1) and M was an N X N random
permutation matrix. Note that we currently focus on security
aspect of this work and do not consider measurement noises.

4.2. Results

In our simulations, the goal is to examine if the signal re-
covered from the original task in Eq. (3) is the same with
the signal decrypted from the ciphertext 2’ that is obtained by
solving the task in Eq. (6). Although we only show the results
under m/N = 0.25 for the Lena image below but we actually
observe similar results under different measurement rates.

According to our simulation results, we see that =’ will
not make any leakage to the cloud, and the same recovery
performance (see PSNR values in Table 2) can be obtained
from the image recovered from the original task and that from
our method. Table 2 further shows that the original task is
more costly than the whole encryption system for each block;
i.e., 7.146s > 0.377s + 10~ %s.

Table 2. Comparison between the original task (Eq. (3)) and
our encryption task for each block, where s means seconds.

Block size Original task Our encryptions
toriginal tsensor tquery
32 x 32 7.146(s) | 6 x 107%(s) | 0.377(s)
Speedup PSNR (dB)
torigina P
7tsemo{+tq:ery Original Ours
18.92 32.41 32.41

5. CONCLUSION

In this paper, we propose the first encryption framework for
the computation-intensive BP problem to be securely solved
in the cloud with the data being efficiently collected using
compressive sensing. The computational and communication
costs in both the sensor side and query side of our scheme
are analyzed to be lower than that of [1]. Moreover, we have
proved the security of our scheme to resist COA. In the future,
we will consider sensing noises in the context of compressive
sensing and consider adversaries with more powerful capabil-
ity beyond COA.
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