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Abstract—Watermarking with both oblivious detection and
high robustness capabilities is still a challenging problem. In this
paper, we tackle the aforementioned problem. One easy way to
achieve blind detection is to use denoising for filtering out the
hidden watermark, which can be utilized to create either false
positive (copy attack) or false negative (denoising and remodu-
lation attack). Our basic design methodology is to exploit prior
knowledge available at the detector side and then use it to design
a “nonblind” embedder. We prove that the proposed scheme can
resist two famous watermark estimation-based attacks, which
have successfully cracked many existing watermarking schemes.
False negative and false positive analyses are conducted to verify
the performance of our scheme. The experimental results show
that the new method is indeed powerful.

Index Terms—Attacks, denoising, oblivious detection, robust-
ness, watermark prediction, watermarking.

I. INTRODUCTION

WATERMARKING [8], [22], [25] is a technique which
conceals one or more watermarks in a medium. Em-

bedded watermarks can be used to declare rightful ownership
(robust watermarking), to authenticate credibility (fragile
watermarking) or to carry useful information (captioning
watermarking). Current watermarking applications have led
to either single purpose watermarking [4] or multipurpose
watermarking [20]. Usually, a watermark itself can be a
random signal, a meaningful message, or a company’s logo. An
effective watermarking scheme should satisfy a set of typical
requirements, including transparency, robustness, oblivious
(blind) detection, and so on. The main purpose of robust
watermarking is to prevent hidden watermark(s) from being
removed or destroyed so that ownership can be guaranteed.
Watermarks can be detected with the help of the host media
(called nonoblivious detection) or without access to the original
media (called oblivious detection). Oblivious detection is
practical but is still a challenge if high robustness is the major
concern. Since the original source cannot be used in oblivious
detection, the embedded watermark should be predicted from
an attacked media. Under these circumstances, the predicted
watermark values more or less deviate from their original
ones. In other words, the degree of robustness will be affected.
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Fig. 1. Block diagram of the proposed watermarking scheme by using prior
knowledge from detector.

Therefore, robustness and oblivious detection are, in effect, in
conflict with each other. However, if one can find a good wa-
termark prediction scheme and then use it as part of the design
methodology, then the degree of robustness degradation can be
minimized. In this paper, we aim to tackle the aforementioned
problem by using image watermarking as our domain.

Watermarking with oblivious (blind) detection [1], [11], [12],
[26] has been extensively explored in recent years. Most of the
existing methods detect watermarks by means of prediction, and
this kind of strategy usually is not directly related to its hiding
strategy. Therefore, robustness cannot be guaranteed. In [27],
Voloshynovskiyet al.proposed a stochastic model to seriously
address the watermark prediction problem. Since an oblivious
approach usually detects watermarks by means of prediction, it
is also possible that a pirate may successfully remove an em-
bedded watermark by means of prediction. Voloshynovskiy et
al. [28] called this kind of attack a “denoising and remodu-
lation attack.” In some situations, a predicted watermark may
be maliciously added to another cover image that belongs to
other people. This kind of attack aims to create the false positive
problem. Kutteret al. [14] called this kind of attack a “copy at-
tack.” Since the aforementioned two attacks are very difficult to
resist, any watermarking approach that claims to berobustmay
be cracked when either of the two attacks is encountered. Since a
predicted watermark (for oblivious detection) may sacrifice ro-
bustness to some extent, we propose to design a watermarking
system by taking both the embedding strategy and the detection
strategy together into consideration. In other words, the charac-
teristics of a predetermined detection model can be used as part
of the criteria for designing a better watermarking system. In [4],
Cox et al. proposed a new concept which views watermarking
as communications with side information. This concept makes
it possible to design a new watermarking method with better ef-
ficiency. In [21], Miller et al. adopted a similar concept [4] to
design four different informed embedding strategies.

In this paper, we present a novel watermarking scheme which
exploits the available information at the watermark detection
(prediction) side. Fig. 1 depicts the concept of the proposed
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methodology. Based on the information obtained from the de-
tector side, we are able to use these prior information as part
of the criteria for designing a robust embedder. We shall take
the shrinkage-based denoising model as our watermark predic-
tion module because it naturally leads to blind detection. Since
the shrinkage-based denoising approach [5], [9], [10] adopts a
soft-thresholding strategy to “gradually” decrease the magni-
tude of selected coefficients, it is easy to control the behaviors
of denoising. Since the knowledge at the detector side is used to
design an embedder, we call it a “nonblind” embedder. In sum,
the proposed system is composed of a nonblind embedder and a
blind detector. We shall analyze the performance of our scheme
when watermark estimation-based attacks [14], [28] are encoun-
tered.

The remainder of this paper is organized as follows. In Sec-
tion II, oblivious watermark detection formulated as a denoising
problem is described. In Section III, the proposed scheme is de-
scribed, and some performance analyses are discussed. Finally,
experimental results are given in Section IV and concluding re-
marks are made in Section V.

II. FORMULATING OBLIVIOUS DETECTION ASWATERMARK

PREDICTION BY MEANS OFSHRINKAGE-BASED DENOISING

In this paper, oblivious watermark detection is formulated as a
watermark prediction problem. Under the assumption that a wa-
termark hiding/attacking process is modeled as a noise adding
process, we can separate an embedded watermark from an at-
tacked image by using the shrinkage-based denoising technique.
Under the circumstances, the separated noise can be regarded
as an extracted watermark, which more or less deviates from
its original shape due to the execution of denoising and the ef-
fects of attacks. Based on the fact that the shrinkage operation
tends tograduallydecrease the magnitude of transformed coef-
ficients, we propose to use shrinkage-based denoising to predict
this noise (watermark). In the following, we will use the sparse
code shrinkage (SCS) [9], [10] strategy to model the watermark
prediction process since it is a generalization of shrinkage-based
image denoising methods. In particular, some denoising algo-
rithms (such as shrinkage-based denoising) are conducted in the
transformed (wavelet or DCT) domain as most watermarking
methods have done. In this section, we will investigate the re-
lationship between watermarking and denoising in the wavelet
domain. In Sections II-A and B, we shall describe in detail how
to model the aforementioned processes by means of Gaussian
modeling. Next, we will discuss how to use the SCS strategy to
solve the denoising problem in Section II-C.

A. Gaussian Modeling of Coefficient Magnitude Update in
the Hiding Process

In this paper, we only consider watermarking in the wavelet
domain. Let be an image in the spatial domain and letbe a
wavelet function. Hence, the wavelet transformed image would
be in the space-frequency domain, whereis
a convolution operation. For watermarking, let be either a
multiplicative or an additive watermark (generated by a secret
key) to be hidden in the wavelet domain. To facilitate analysis,

could be rewritten as , which implies that em-

bedded in the wavelet domain corresponds toembedded in
the spatial domain. In the watermark embedding process, the
watermark is added with the wavelet transformed image
to form a watermarked image in the wavelet domain, which
is expressed as

(1)

where “ ” is the addition operation commonly used for wa-
termarking embedding (quantization operation is an exception).
From (1), it can be derived as follows:

(2)

where indicates a watermarked image in the spatial domain.
The above derived result indicates that the wavelet transform
(using ) of the watermarked image is equivalent to the mod-
ulation of the wavelet transformed image by adding with

.
Now, suppose a watermark has been embedded into a host

image in the wavelet domain. This means that the original image
is first wavelet transformed usingand then modulated using
. Under these circumstances, the modulated wavelet coeffi-

cients can be modeled as the original wavelet coefficients plus
Gaussian noise added in the wavelet domain. That is

(3)

where is the original wavelet coefficient,
is the modulated wavelet coefficient (and denote scale and
orientation, respectively, in the wavelet domain) and is the
th element of the hidden Gaussian noise-like watermark.

The relationship between and will be defined in Sec-
tion III. By means of (2), we know that the Gaussian modeling
is also similarly defined for in the spatial domain. Let be
the pixel intensity of an original image at a position ( de-
notes an index of a pixel in ), and, let be the noise value
(which results from the hidden Gaussian noise-like watermark,

). The intensity of a noisy pixel, , can be calculated by
. Therefore, the watermarked image in

the spatial domain can be modeled as

(4)

where is the noise sequence and is the same as in (2).
In Section II-C, we will see how shrinkage-based denoising is
conducted on .

B. Gaussian Modeling of Coefficient Magnitude Update in
the Attacking Process

After watermark hiding, the watermarked image can be trans-
mitted over the Internet and may be attacked by any process. At
this time, the model of an attack is assumed to be the same as
that of a modulation operation except that

1) original image in (2) and (4) is replaced by the water-
marked image ;

2) in (4) is resultant noise which is contributed by a
hidden watermark and attacks;
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3) in (2) and in (4) are attacked images instead of
watermarked images.

To simplify the analysis, we assume thatis still a Gaussian
distribution with variance . The value of will be small/large
when the imposed attack is weak/strong.

C. SCS Technique

After conducting Gaussian modeling of coefficient magni-
tude change with respect to an attacked image, the next step is
to separate the host imagefrom the attacked image by de-
noising . Using the denoising operation, the estimated host
image can approximate the original image, i.e., .
In order to achieve the aforementioned goal, the independent
component analysis (ICA)-based sparse code shrinkage (SCS)
technique [9] is employed to model the denoising problem. An
SCS-based denoising algorithm includes the following steps:

1) model the noisy image as a set of independent compo-
nents;

2) perform sparse code shrinkage on these components;
3) invert the ICA representation.

The step-by-step procedure for an ICA-based SCS denoising
algorithm is given in the following. First, one has to model
the host image using the independent component analysis
process [3]. This process decides on the major components of
the host image. On the other hand, we need to consider the noise
part ( ) consisting of minor components, which can be shrunk
(soft-thresholded) using an adaptive soft threshold during the
ICA process. In an explicit format, the host image can be mod-
eled as , where is a basis matrix andis the vector of
independent components (ICs). Analogous to traditional trans-
formations, such as discrete Fourier transform or wavelet trans-
form, is composed of a set of selected transformed coefficients,
and is a synthesis filter. Therefore, ICA has the property that
different ICs are unlikely to be activated at the same time due
to its sparse distributed nature (i.e., energy compaction). More
specifically, an independent component will be activated if it
is sufficiently large (In watermarking, watermark will be con-
cealed into those activated ICs to maintain transparency and
achieve robustness). Therefore, the noisy imagecan be de-
noted as

(5)

Suppose only the observed datais given; the basis matrix
and the ICs can be obtained by first finding a separating ma-
trix (with ) via sparse coding [9]. Then,can be
determined by , where each component .
After sparse coding, the noisy imagecan be transformed by
means of , and a noisy independent component, (in the
ICA transformed domain), can finally be derived as follows:

(6)

In the second step, each noisy component, , is shrunk
by the denoising operation. When we use sparse code shrinkage
to denoise , we need to model the distribution of each

component, , to see whether it satisfies the non-Gaussian re-
quirement. One antecedent condition that image denoising by
means of shrinkage can achieve is that each componentmust
be non-Gaussian so that it can be distinguished from normal
Gaussian noise. Due to the energy compact representation of
an ICA model, every independent componentis expected to
exhibit sparse density. The second condition required for image
denoising by shrinkage to function is that the variance ofmust
be assumed in advance [5]. After the sparse density of each
is modeled, their corresponding parameters can be generated to
determine a suitable shrinkage function,[9]. Then, one can
shrink by means of and then get the cleaned version
of , which is represented as, where

(7)

In general, the shrinkage function,, is explicitly defined [10]
based on the sparse density distribution of noisy independent
components to have the effects that small arguments are set to
zero and the absolute value of large arguments are reduced by
an amount depending on the noise level. In the third step, the
approximated host image can be derived by an inverse ICA
transformation: . After the estimated host image is
determined, it can be used for blind detection.

Wavelet shrinkage [5] is a good alternative to SCS-based de-
noising [9] due to its capability of fast computation. In wavelet
shrinkage, and form a pair of wavelet analysis and syn-
thesis filters. In addition, the shrinkage function used in wavelet
shrinkage is fixed and is independent of the distribution of inde-
pendent components. Although the denoising results obtained
by applying wavelet shrinkage-based denoising are worse than
those obtained by applying SCS-based denoising, their func-
tion in watermark prediction is almost the same (here, the per-
formance of denoising is objectively derived by measuring the
PSNR between the denoised image and its original version).

III. PROPOSEDDENOISING-BASED OBLIVIOUS

WATERMARKING METHOD

In this section, we will describe the proposed method and an-
alyze its performance. In Section III-A, we shall describe in de-
tail how a robust embedder can be designed by exploiting the
knowledge of shrinkage-based watermark prediction. The pro-
cesses of watermark embedding and watermark detection will
be described as well. In Section III-B, performance analysis of
the proposed scheme will be presented. In Section III-C, the
relationship between our scheme and Coxet al.’s new water-
marking concept [4] will be examined.

A. Proposed Approach: A Nonblind Embedder

In this section, we shall describe in detail the proposed wa-
termarking system. For watermark embedding, let be an
element of a watermark and let be used to modulate a
wavelet coefficient as follows:

(8)

After simple reorganization, we have

(9)
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where sign is an operator defined as

(10)

In order to maintain transparency, the sign of has to
be the same as that of . That is,

.
For watermark extraction, the extracted watermark value

is obtained as by
shrinkage-based denoising, where is the estimated
original wavelet coefficient. Hence, we have

. In addition, based on the
characteristic of the shrinkage function [10] (or wavelet
shrinkage function, (18)), we come out with the result that

. By incor-
porating these results, the sign of an extracted watermark
can be derived by

(11)

which is, in essence, a denoising-based watermark detection
process. As we have mentioned previously [17], the basic re-
quirement for obtaining a higher correlation value between
and is to get them to have the same sign, i.e.,

. By incorporating (9) and (11),
holds. However, both

and can be either positive or negative,
which makes the correlation between and hard to pre-
dict. This situation indicates that a watermarking scheme which
adopts a typical spread-spectrum hiding strategy together with
a shrinkage-based prediction rule cannot guarantee robustness.

From (11), we realize that the sign of an extracted water-
mark is dependent on the attacked wavelet coefficient due to
the nature of shrinkage-based denoising. Therefore, if we can
use the knowledge derived from the denoising-based prediction
side, then we can design a suitable hiding strategy. In what fol-
lows, we shall discuss how to design a good hiding strategy. It
is known that a pirate will not perceptually damage an image.
Therefore, it is reasonable to assume that the signs of
and are the same, i.e.,

(12)

By combining (9), (11), and (12), we can design the water-
mark embedding strategy so as to satisfy

. That is, the watermark should
be embedded in order to increase the magnitudes of the chosen
coefficients such that

(13)

holds. This derived result is exactly the same as the effect of
positive modulation of cocktail watermarking [17]. Therefore,
in this paper, only one watermark will be embedded in an image
using positive modulation. The proposed watermarking method
is described as follows.

In the watermark hiding process, suppose thatis a cover
image and that an-scale wavelet transform is performed on.
Let the wavelet coefficient to be modulated be , where

Fig. 2. Example of hiding places: A three-level wavelet decomposition with
gray area indicating highest-frequency components, black area indicating
lowest-frequency component, and white areas indicating the hiding places.

. In order to satisfy the compromise between trans-
parency and robustness, the highest-frequency subbands will not
be watermarked so thatmust be larger than(the finest scale).
Besides, the lowest-frequency subband located at the-scale is
usually very small in size and is also nonwatermarked to pre-
serve transparency. Fig. 2 illustrates the places (white areas) in
which watermark values are embedded, where the gray areas in-
dicate the high-frequency subbands and the black area indicates
the lowest-frequency subband of a three-level wavelet decom-
position. Therefore, it is not difficult to figure out that the length
of a hidden watermark is about one-quarter of the original
image size.

After wavelet coefficients have been selected to embed water-
mark values, an embedding rule should be designed to achieve
the desired goal, i.e., (13). We have to carefully consider the re-
lationship between the sign of a selected wavelet coefficient and
that of its corresponding watermark value. Therefore, the hidden
watermark sequence is first sorted in an increasing order as

. Let be used to denote that the watermark
value is retrieved from the first/last
position of the sorted watermark sequence. The above sorted
results will be recorded as

(14)

where , denoting or , is the index of the sorted
watermark sequence and is the location of a selected
wavelet coefficient. The information of will be required
for watermark extraction. By this careful design, a watermark

could be hidden with each selected wavelet coefficient mod-
ulated as

if

if
(15)

where represents the JND values obtained from
the visual model [31] and is an image-dependent
weight used to control the maximum possible modification that
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Fig. 3. Proposed watermark embedding process.

will lead to the least image quality degradation. Basically,may
be selected to satisfy perceptual transparency subjectively or to
make the PNSR of a watermarked image larger than a certain
value objectively. We shall see later in this section that(no
matter what value it is) will not affect the detection of water-
marks. Basically, (15) implies that if a selected wavelet coef-
ficient is positive/negative, then a positive/negative watermark
value should be embedded in order to satisfy the desired goal
[see (13)]. If a positive/negative watermark value is needed,
one can retrieve it from the bottom/top of the sorted water-
mark sequence . Under these circumstances,

is always guaranteed. Fig. 3 shows the diagram of
the proposed watermark embedding process.

In the watermark detection process, an attacked image (with
wavelet coefficient denoted as ) is first denoised
by means of a shrinkage-based denoising process. After this
process is finished, the original image can be estimated (with
wavelet coefficient denoted as ). Then, the estimated
original image can be used to conduct blind watermark detec-
tion by retrieving the watermark elements of , where

(16)

Finally, the normalized correlation value is calculated to mea-
sure the similarity between and by means of

(17)

where denotes the length of the watermark. In (17), it can
be easily checked from function and normalized corre-
lation that , being image-dependent, does not affect the water-
mark detection.

It is clear that the time bottleneck in the proposed system is
in the sparse code calculation. Since efficiency is a major con-
cern in watermark detection, we shall use wavelet transform to
perform the shrinkage-based denoising task [5]. The wavelet
shrinkage function, first proposed by Donoho et al. [5] and com-
monly used in denoising, is defined as

(18)

where MAX is a maximum function andis the noise level. The
noise level is defined as [5], where the noise
variance is usually unknown and has to be estimated, and
here is the number of samples. Based on [5],is approximately
estimated as the median absolute deviation of the wavelet co-
efficients at the smallest scale divided by 0.6745. On the other
hand, owing to a secret key is required to generate a hidden wa-

Fig. 4. Proposed watermark extraction process.

termark and this hidden watermark must be sorted in the embed-
ding process, a sorted watermark instead of a single secret key
needs to be provided in the watermark detection process. This
implies that our secret key (in fact, a secret sequence) is longer
than those in conventional methods and each image has to be
enforced to associate with a secret sequence. Fig. 4 shows the
diagram of the proposed watermark extraction process.

B. Performance Analysis

Some issues regarding performance evaluation of the pro-
posed method are discussed in the following.

1) False Negative and False Positive Analysis:In our
scheme, a threshold is used to indicate the presence/absence
of a watermark if a correlation value is larger/smaller than.
The error probabilities, composed of a false negative (miss
detection) and a false positive (false alarm), will be used to
evaluate our system. In our analysis, the distributions of the
detection results with respect to attacked images (including
watermarked images) and nonwatermarked images are, re-
spectively, approximated using Gaussian probability density
functions (PDFs). In fact, the detection results of attacked
images are represented using a normal Gaussian distribution
while those of nonwatermarked images are represented using a
generalized Gaussian. The statistics of the aforementioned dis-
tributions can be estimated by means of experiments. Suppose
the mean and the variance of the distribution of nonwater-
marked images and those of the attacked images are
and , respectively, with . The intersection area
of the two distributions is defined as the error probability, and
the intersection point of the above two distributions is defined
as the threshold . Then, the false negative
probability can be derived as follows:

(19)
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Similarly, the false positive probability can be derived as

(20)

False negative and false positive numerical results for different
threshold values were obtained in our experiments.

2) Analysis of Denoising-Based Prediction With Different
Noise Variance:For sparse code shrinkage [9] or wavelet
shrinkage [5], the variance of a noise distribution,(relevant
to the denoising capability), should be determined in advance
in order to separate the original image,, from its embedded
noise, . It should be noted that the value ofis hard to predict
but definitely affects the final reconstruction result. Fortunately,
the major concern here is not the original image. What we are
concerned about is the detected correlation values. Therefore,
it is sufficient if the watermark extracted from the estimated
host image is highly correlated with the hidden watermark.

In the following, we shall evaluate the performance of the
proposed system when noises with different variancevalues
are used. Here, we just summarize the final result that different
values will not affect the correlation value significantly because
the polarity of an extracted watermark value can always be kept
the same as that of its original one. Please see Appendix A for
more detailed analysis.

3) Resistance to Denoising Attacks:From the above
analysis, we know that the predicted watermark is indeed
very similar to the hidden one. Recently, Voloshynovskiy
et al. [28] have presented a “denoising and perceptual re-
modulation attack” which is created by first predicting the
hidden watermark using some denoising techniques and then
removing the predicted watermark from a watermarked image
by means of perceptual remodulation. Kutteret al. [14] also
used denoising techniques to estimate a watermark. In contrast
to Voloshynovskiyet al.’s work [28], Kutteret al. [14] added
the estimated watermark into a nonwatermarked image to
create a false alarm situation. This kind of attack is a so-called
“copy attack” and can be used to challenge the concept of
watermarking. From the above two works, we know that a
watermark can be predicted by means of denoising and then
used to create either a miss detection [28] or false alarm
[14] situation. One may ask: “Doessuccessfulprediction of
a watermark also imply that watermark removal can be done
successfully?” Our answer isNO. We will explain why such
an attack cannot successfully destroy a watermark embedded
using our method.

a) Resistance to the denoising and perceptual re-
modulation attack:First, we will examine “denoising and
remodulation attacks” [28]. Let be an attacked image which
is obtained by applying a denoising operation to a watermarked
image . Suppose the denoising operation is a technique
such as low-pass filtering, median filtering, Wiener filtering, or
shrinkage-based denoising [5], [9]. After applying the denoising
operation, we will have either or

. In fact, most coefficients will be
graduallyreduced in magnitude during denoising except when
some nonshrinkage-based denoising techniques (like low-pass
filtering) are used. Therefore, holds
for most coefficients. In our scheme, a hidden watermark is de-
tected in an attacked image by means of a shrinkage-based
denoising operation. Therefore, the coefficients of the estimated
original image and those of the attacked image should
satisfy the following inequality:

(21)

From this analysis, we have

(22)

In the proposed scheme, positive modulation is applied to the
original image. Therefore, we can obtain that

is equal to . This
means that the overall correlation value will increase. From the
above analysis, we conclude that a watermark embedded by our
scheme is hard to remove using a shrinkage-based denoising
algorithm.

b) Resistance to the copy attack:Next, we will examine
the effect caused by the “copy attack” [14] on our scheme.
Let be the wavelet coefficient of an image
belonging to us, and let be the wavelet coefficient
of an image belonging to someone else. Let the modulated,
attacked, and denoised versions of be denoted as

, and , respectively. Further-
more, let the hidden watermark be denoted as. Suppose a
denoising technique such as Wiener filtering [15] or sparse
code shrinkage [9] is applied to ; the predicted watermark

will have the following value:

(23)

where . The predicted watermark value is
then added to the nonwatermarked imageas

(24)

to create a counterfeit image with the wavelet coefficients
. Under these circumstances, we can check to see if

a watermark retrieved from the counterfeit image is similar to
the hidden one, i.e., . Using the proposed method, the wa-
termark-free counterfeit image can be estimated by ,
where . As a consequence, the value
of the predicted watermark which can be calculated from

is

(25)

Due to the gradual change caused by shrinkage-based denoising,
we can guarantee that
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Fig. 5. Robustness test of the proposed scheme (a nonblinder embedder and a blind detector). (a) Host image; (b) watermarked image; (c) Gaussian noiseadded
image; (d) attacked image with the shading effect; (e) comparison of detected watermarks, respectively, predicted using wavelet shrinkage, SCS, and Wiener
filtering. The first response was obtained without applying any attack and the remaining results were obtained by applying the 21 attacks described previously
(zeroeth attack denotes attack-free); and (f) unique watermark test for the StirMark attack.

Because cannot significantly affect from the
viewpoint of transparency, we are assured that

(26)

On the other hand, since the hidden watermark is designed to
have the same sign as its corresponding wavelet coefficient

, we have

(27)

From (26) and (27), we find, in summary, that
. The above conclusion

indicates that the correlation value between and is
directly related by the signs of their corresponding wavelet co-
efficients. Because the property of a nonwatermarked image is
random in nature, it can be expected that the correlation value
between the retrieved watermark and the hidden one will
be close to zero. This means that the proposed denoising-based
oblivious watermarking method (positive modulation incorpo-
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Fig. 6. Proposed scheme under theSPIHTcompression attack: (a) theSPIHTcompressed image with a ratio of 16 : 1; (b)SPIHTcompressed image with a ratio
of 64 : 1; and (c) detection results obtained underSPIHTcompression at different ratios ranging from2 : 1 � 2 : 1.

rated with shrinkage-based watermark prediction) is able to re-
sist a “copy attack” [14].

C. Relationship With the Concept of Watermarking as
Communications With Side Information

In [4], Cox et al. proposed a new concept which views wa-
termarking as communications with side information. In their
scheme, the embedded signal, which is composed of an ex-
tracted signal and a watermark , is perceptually similar to
the extracted signal to achieve fidelity and is highly correlated
with the hidden watermark to achieve robustness. In general,

can be obtained as a combination ofand by a mixing
function , i.e.,

(28)

A suboptimal way of computing is defined as

(29)

where is a weight. Recently, four different embedding strate-
gies (including the above one) have been proposed as “informed

embedders” [21]. Their performance was compared with that of
blind embedding and it was found that informed embedding is
better. If our watermarking scheme is interpreted by Coxet al.’s
concept [4], then we can derive the following result:

(30)

This is because our scheme attempts to keep the signs of water-
mark values unchanged. In this paper, robustness can be guar-
anteed if the signs of watermark values remain unchanged after
attacks, i.e., holds. Under the assumption
that an attacked image will not be perceptually different from
the original one [see (12)], should hold.
Based on this, (30) can be derived. Therefore, the hiding strategy
should be designed so as to satisfy . This
design has been realized by means of positive modulation [17],
as expressed in (15).

IV. EXPERIMENTAL RESULTS

Five standard images of size 256256 were used as the host
images in our experiments. Using our watermarking scheme,
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Fig. 7. Analysis of false positive and false negative: (a) comparisons of the detection results for five images under 21 attacks; (b) distribution of 100
watermarked/attacked images; (c) distribution on the right is rescaled version of (b), but the one on the left is the distribution formed by 90 nonwatermarked
images.

TABLE I
PROBABILITIES OF FALSE NEGATIVE (p ) AND FALSE POSITIVE (p )

CORRESPONDING TODIFFERENTTHRESHOLDS(T )

we set the length of a hidden watermark as 16 128. After
watermarking was applied, the PSNR values of the five water-
marked image were between 41 and 42 dB, and no perceptual
distortion could be observed. 21 commonly used attacks were
adopted to test the robustness of our method. These attacks
included 1) blurring; 2) median filtering; 3) Wiener filtering;
4) rescaling; 5) histogram equalization; 6) sharpening; 7) and
8) Gaussian noise addition with different variance values; 9)
and 10) uniform noise addition with different variance values;
11) mosaic effects; 12) texturizing; 13) shading; 14) and (15)
JPEG compression with quality factors of 10% and 5%; 16)
and 17) SPIHT compression with ratios of 16 : 1 and 32 : 1; (18)
StirMark [24]; (19) dithering; (20) wavelet shrinkage-based

denoising [5]; (21) sparse code shrinkage-based denoising [9].
Therefore, there were in total 110 attacked images (including
five watermarked images). Among them, the original and
the watermarked Barbara images are, respectively, shown in
Fig. 5(a) and (b). The two Barbara images which were attacked,
respectively, by means of Gaussian noise adding and shading
are shown in Fig. 5(c) and (d). Three watermark prediction
techniques, wavelet shrinkage-based denoising [5], sparse code
shrinkage-based denoising [9], and Wiener filtering [15], were
compared in terms of robustness. The comparison results based
on the Barbara image are shown in Fig. 5(e). From Fig. 5(e),
it can be found that the results obtained by applying Wiener
filtering was the worst since prediction (denoising) in this case
is not consistent with our modulation operation. We also found
that none of the three denoising techniques could correctly
predict the hidden watermark from an attacked image with the
shading effect (13th attack). The reason why the shading effect
attack could succeed was that the signs of most of the chosen
coefficients changed. As a result, the predicted watermark
values had signs which were different from their original ones.
As we have noted with respect to (12), these sign changes
violate our basic assumption and, thus, degrade the correlation
value. Fig. 5(f) shows the result of the uniqueness test when
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Fig. 8. Effects of the “denoising and remodulation attack” [28] and the “copy attack” [14]: (a) predicted watermark of Fig. 5(b) using the adaptive Wiener filter
[5]; (b) and (c) watermarked images with the predicted watermark (a) removed using different weights; and (d) and (e) predicted watermark (a) added into a
nonwatermarked image using different weights.

the famous StirMark attack (except for its geometric effects)
was applied.

In the second group of experiments, we applied SPIHT com-
pression with different compression ratios to see how the cor-
relation value was affected. Fig. 6 shows a curve which reflects
the change of the detector response under different compres-
sion ratios. It is apparent that when the ratio was small, its
corresponding detector response was large. When the compres-
sion ratio reached 128 : 1, the corresponding detector response
dropped to 0.2.

In the third group of experiments, we obtain false positive
and false negative numerical results. In Fig. 7(a), we compare
the detection results obtained by applying 21 attacks to the five
host images. We find that the five curves are very consistent. A
Gaussian distribution was used to approximate these 110 de-
tection results, as shown in Fig. 7(b). In addition, the detec-
tion results obtained from 90 nonwatermarked images were also
approximated by means of another Gaussian distribution, as
shown on the left-hand side of Fig. 7(c). The distribution shown
on the right hand side of Fig. 7(c) was a redrawn version of
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Fig. 7(b). It is clear that the distribution formed by the 90 nonwa-
termarked images was a sharp peak clustered around a detection
value close to zero. On the other hand, the distribution formed
by the five watermarked images and 105 attacked images was
an obtuse curve centered at a detection value close to 0.5. Ac-
cording to the results of our experiments, the mean and stan-
dard deviation of the distribution formed by the 90 watermarked
but nonattacked images were 0.94 and 0.04, respectively. On
the other hand, the mean and standard deviation of the distri-
bution formed by the 90 nonwatermarked images were 0 and
0.01, respectively. Based on (19) and (20), a threshold could be
easily determined to obtain that both the false negative and the
false positive were negligibly small under a nonattack situation.
However, when attacks were imposed, the mean and standard
deviation of the distribution formed by the 110 attacked images
were 0.54 and 0.24, respectively. Under these circumstances,
both false negative and false positive were expected to increase
no matter what the threshold was. In Table I, we show the
false negative and the false positive probabilities corresponding
to different threshold values.

Finally, we conducted experiments to see how a “denoising
and remodulation attack” [28] and a “copy attack” [14] would
affect the proposed scheme. First, the hidden watermark was
predicted from the watermarked image shown in Fig. 5(b) using
Wiener filtering [15]. The predicted watermark was shown in
Fig. 8(a). As for the “denoising and remodulation attack,” the
predicted watermark was subtracted from the watermarked
image to which it belonged [Fig. 5(b)]. Since our objective
was to demonstrate how to remove the predicted watermark,
the transparency issue was not a major concern. Therefore, the
predicted watermark was directly subtracted from Fig. 5(b), and
the de-watermarked image is shown in Fig. 8(b). In addition, the
predicted watermark was also triplicated and then subtracted to
yield a de-watermarked image, as shown in Fig. 8(c). As ex-
pected, Fig. 8(c) is less transparent than Fig. 8(b). However, the
detection results obtained from Fig. 8(b) and (c) show that the
hidden watermark still survived with a high correlation value
( 0.79). This implies that the proposed scheme is insensitive
to the weight added to the predicted watermark which is to be
removed. This phenomenon clearly indicates that our scheme is
able to preserve the signs of the watermark values. In addition,
the predicted watermarks with different weights were added to
the nonwatermarked “Lenna” image, as shown in Fig. 8(d) and
(e), to examine the effect caused by a “copy attack.” Similarly,
the detection results reveal that no watermark was detected
when our scheme was applied (the detection values were close
to zero). That is, the false positive problem did not occur.

There are some critical issues that should be particularly ad-
dressed. First, the length of the current watermark is defined
to be about one-quarter of an original image size. However, to
claim the rightful ownership (in the application of robust wa-
termarking) needs only about watermark bits (before
error correction coding). In other words, it is possible to reduce
the size of embedding places so that some high-frequency com-
ponents cannot be watermarked. This kind of arrangement will
prevent these components from being removed by an attack such
as compression. Secondly, our false probability analysis was
conducted with respect to all attacks instead of one particular

attack. This will lead to higher but more practical false positive
and false negative probabilities, as indicated in Table I. If we
want to know the false probability with respect to one partic-
ular attack, some benchmarking algorithms [13], [7] should be
adopted to evaluate a watermarking approach. Under these cir-
cumstances, the false probabilities will be significantly reduced.

V. CONCLUSION

In this paper, a novel watermarking approach, called the “non-
blind” embedder, has been applied by exploiting the available
information of denoising-based watermark prediction. We have
found that the information obtained using shrinkage-based de-
noising (soft-thresholding) techniques is easy to control, and,
that denoising itself is, in fact, a solution for oblivious water-
mark detection. The knowledge at the detector side can then be
utilized to design a “nonblind” embedder, which is extremely
advantageous over the common blind embedders. On the other
hand, the predicted watermark can be purposely used to remove
a hidden watermark or to confuse judgment about legal own-
ership. Therefore, we have conducted analysis to confirm that
our method indeed can resist the “denoising and remodulation
attack” and the “copy attack.” The performance of our scheme,
composed of a nonblind embedder and a blind detector, has also
been analyzed regarding false negative and false positive prob-
abilities.

At the present, it still is not possible for a watermarking
scheme to resist all attacks because attackers are always smarter
and one step ahead. Therefore, our first future work will focus
on the problem of geometric attack resistance, which has not
been treated in this paper. In the past, some techniques such as
pilot signal [29], template [23], and invariant transform [16]
have been developed to deal with geometric attacks. Unfortu-
nately, resistance to both removal attacks and geometric attacks
is still a challenging and contradictory problem up to now. In
addition, each image should be associated with a secret key
in our current watermarking design such that only semi-blind
detection can achieve. This should be further improved. Finally,
the problems of public-key detection [6] and other known
attacks [30] should also be studied in order to obtain a mature,
practical watermarking system.

APPENDIX A
PERFORMANCEANALYSIS OF THEPROPOSEDSCHEME UNDER

DIFFERENTVARIANCE VALUES

Recall that is the original/modulated
wavelet coefficient of at scale , orientation , and
position . The attacked wavelet coefficient is denoted as

with respect to . After conducting sparse code
shrinkage-based denoising on, the estimated original wavelet
coefficient satisfies be-
cause shrinkage (i.e., soft thresholding) is an operation
which gradually reduces the magnitude of a coefficient.
Now, we quantitatively analyze the relationship between the
SCS-based denoising process and the positive modulation
process (15) as follows. According to the function of posi-
tive modulation, we know that .
When attacks are encountered, we may have three possible
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situations: (P1) ;
(P2) ; and (P3)

. To simplify the
analysis, we assume that (12) holds. If (12) does not hold,
then either 1) is small or 2) the behavior caused
by attacks is extremely different from that caused by the
embedding process and is, thus, difficult to predict. With this
basic assumption, the extracted watermark value derived
from satisfies

(31)

Similarly, the hidden watermark value satisfies

(32)

Under situation (P1) and after applying sparse code shrinkage
with different values of , we can get

(33)

when is large or

(34)

when is small. From (33) and (34), we know that the extracted
watermark will have the same sign as the hidden watermark. It
is intuitive that preservation of the same sign between the value
of a hidden watermark and that of an extracted watermark will
be beneficial for deriving a higher correlation value. Under the
conditions that (P2) is valid and that sparse code shrinkage has
been executed, we can get

(35)

whether is small or large. Again, (35) tends to help increase
the correlation value, which is the same as in the case of (P1).
Similarly, if the situation is (P3) and sparse code shrinkage has
been executed, then we have

(36)

whether is small or large. Once again, (36) will help increase
the correlation value, which is the same as in the cases of (P1)
and (P2). From the above analysis, we find that different
values will not affect the correlation value significantly because
the polarity of the value of an extracted watermark can always
be kept the same as that of the original watermark.
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