A Simple Non-Interactive Pairwise Key Establishment Scheme in Sensor Networks

Chia-Mu Yu†‡, Chun-Shien Lu†*, and Sy-Yen Kuo§
†Institute of Information Science, Academia Sinica, Taipei, Taiwan 115, ROC
‡Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 106, ROC

Abstract—In this paper, a Constrained Random Perturbation based pairwise key establishment (CARPY) scheme and its variant, a CARPY+ scheme, for Wireless Sensor Networks (WSNs), are presented. Compared to all existing schemes which satisfy only some requirements in so-called sensor-key criteria, including 1) resilience to the adversary’s intervention, 2) directed and guaranteed key establishment, 3) resilience to network configurations, 4) efficiency, and 5) resilience to dynamic node deployment, the proposed CARPY+ scheme meets all requirements. In particular, to the best of our knowledge, CARPY+ is the first non-interactive key establishment scheme with great resilience to a large number of node compromises designed for WSNs. We examine the CARPY and CARPY+ schemes from both the theoretical and experimental aspects. Our schemes have also been practically implemented on the TelosB compatible mote to evaluate the corresponding performance and overhead.

I. INTRODUCTION AND RELATED WORK

A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes with limited resources. Since WSNs could be deployed in a hostile environment, designing an efficient key establishment scheme is of great importance to the data security in WSNs. Unfortunately, when considering the scarce resources available to each sensor node, the efficient design of key establishment becomes a great challenge.

In the literature, there were two classical threshold-based key distribution (TKD) protocols [1], [2] proposed. As the security of both protocols is completely broken as long as the number of captured nodes is above a pre-determined threshold, which is a trade-off to the storage overhead, they are considered not to be suitable for WSNs. To provide resilient security, a useful technique called probabilistic key pre-distribution (P-KPD), proposed by Eschenauer and Gligor [9], has been extensively studied. In a P-KPD scheme, a key pool consisting of a large number of randomly generated keys is first prepared. Then, several keys randomly selected from the key pool are stored in each sensor node to constitute a key ring. After sensor deployment, when required, a shared-key discovery procedure is performed to find a common key between two nodes, called shared-key, in their respective key rings. Two nodes, i and j, that fail to have a shared-key in the shared-key recovery step, perform a procedure, called path-key establishment, in which the path-key generated by i is relayed along the key path to j and acts as the common key between i and j. Here, the key path is a path on which each pair of consecutive nodes has a shared-key. Motivated by the P-KPD, Chan et al. [4] proposed that, instead of relying on only one common key, q common keys between two sensor nodes are necessary to construct the shared-key used for further communications.

Due to the problem that different pairs of nodes could share the same key, when the number of compromised nodes increases, the fraction of affected keys increases quickly as well. Liu and Ning [12], and Du et al. [7] proposed to treat the keys in the key pool S as bivariate polynomials and matrices, respectively, to provide pairwise keys between each pair of nodes. There are some other common drawbacks in the P-KPD schemes. For example, P-KPD schemes cannot guarantee that any two sensor nodes can have common keys. Moreover, the Merkle puzzle [17] must be used to guarantee the minimal secret information leakage. In view of this, several deterministic key pre-distribution (D-KPD) schemes such as PIKE [3] and combinatorial design scheme [5] are proposed. D-KPD schemes can guarantee that there exists at least one key path between two arbitrary nodes.

A common problem existing in both P-KPD and D-KPD schemes is that not every pair of nodes can directly establish their common key. Zhang et al. recently proposed a Random Perturbation-Based (RPB) scheme [25] to conquer this, while maintaining resilient security. Usually, one assumes that, prior to sensor deployment, nodes’ locations are not known by the network planner. When some special deployment models are considered, prior knowledge about nodes’ locations can be utilized to construct efficient location-aware key pre-distribution (L-KPD) schemes [6], [10]. In addition, based on the assumption that there is a short bootstrapping time secure after sensor deployment, LEAP [24] is proposed to establish the pairwise keys between each pair of neighboring nodes.

With the fact that the communication channels in WSNs are highly noisy [23] and that over 95% of energy consumption comes from communication [16] in mind, we can know that although numerous key establishment schemes are proposed, all of them, except the TKD schemes [1], [2] (which unfortunately cannot achieve resilient security), are inefficient and highly energy-consuming. Thus, it is desirable, but extremely challenging, to have a key establishment scheme satisfying both security and energy efficiency.

Evaluation Metrics. To evaluate the key establishment schemes, five requirements were recently presented in [25]. Nevertheless, we find that they are too weak to be utilized,

*Corresponding author: Dr. C. S. Lu (lcs@iis.sinica.edu.tw).
as the security and performance of certain key establishment schemes have been overestimated. Hence, a so-called sensor-key criteria composed of five new requirements is proposed as follows to thoroughly evaluate the key establishment schemes applied in the real world.

1) Resilience to the Adversary’s Intervention (RAI) – Instead of compromising the security of a key establishment scheme, the adversary may only want to hinder the nodes from establishing keys. Hence, in addition to the resilience to node capture considered in the literature, it is also necessary to consider the robustness against various attacks mounted by the adversary (described in Sec. III-A).

2) Directed and Guaranteed Key Establishment (DGKE) – Each pair of sensor nodes should be able to establish a common key by their own effort wherever they reside and whenever they need, without exposing secrets to or obtaining secrets from the third parties.

3) Resilience to Network Configurations (RNC) – Key establishment schemes are necessary to be applicable whatever network configuration is applied.

4) Efficiency (EFF) – Key establishment schemes are required to be performed efficiently in terms of storage, computation, and communication overhead.

5) Resilience to Dynamic Node Deployment (RDND) – A desirable key establishment scheme should be applicable under the consideration of on-the-fly addition of new sensor nodes.

Contributions. Our major contributions are:

1) Two constrained random perturbation based pairwise key establishment schemes, CARPY and CARPY+, are presented. While all the existing schemes only meet a part of the sensor-key criteria, CARPY+ is the only scheme satisfying all the requirements in the sensor-key criteria (Table I). In particular, CARPY+ is the first non-interactive key establishment scheme with great resilience to a large number of node compromises designed for WSNs, and thus act as the building block of other security mechanisms.

2) Detailed theoretical studies with respect to the performance and security of the proposed CARPY and CARPY+ schemes are provided. In addition, both CARPY and CARPY+ have also been practically implemented on the TelosB compatible mote to evaluate the performance and overhead.

II. THE PROPOSED METHOD

Since the proposed schemes, CARPY and CARPY+, remarkably generalize and improve Blom’s concept [1], after describing the system model in Sec. II-A, we will briefly review Blom’s scheme in Sec. II-B to facilitate the descriptions of our methods. Afterwards, CARPY and CARPY+ are described in detail in Sec. II-C and Sec. II-D, respectively. Finally, the methods for constructing constrained random perturbation will be described in Sec. II-E.

A. System Model

Network Model. We assume that N low-cost resource-constrained sensor nodes are deployed over the sensing region and no prior deployment knowledge about the nodes’ locations is known by the network planner in advance. There is a data collection unit, called data sink, placed in the network. We do not assume the trustworthiness and authenticity of data sink. Each sensor node is assumed to have a unique ID, which could be arbitrarily chosen in a general-purpose sensor node or fixed in a specific sensing hardware. In addition to static networks, mobile nodes are also allowed in our methods so that partial or entire nodes could have mobility. Moreover, we also do not assume the network topology. In other words, the density, deployment pattern, and other characteristics of sensor nodes could be arbitrary.

Security Model. Sensor nodes are assumed to have no tamper-resistant hardware so that once the sensor node is captured by the adversary, the secret information stored in the captured node will be exposed to the adversary. The adversary can mount attacks immediately after sensor deployment, i.e., the secure bootstrapping time [24] does not exist in our model. The objective of the adversary is to either compromise the secure communications between sensor nodes which have not yet been compromised by the adversary or just to hinder the nodes from establishing keys. To achieve this goal, the adversary can simultaneously launch several attacks. In this paper, we assume that four categories of attacks, which are eavesdropping, node capture, routing layer, and physical layer attacks, can be mounted by the adversary. They are described in detail in Sec. III-A.

B. A Review of Blom’s Scheme [1]

Suppose the number of sensor nodes is N. Let $\mathbb{F}_q = \{0, \ldots, q - 1\}, q > N$, be a finite field. For a matrix G, we denote the element in the i-th row and j-th column of G by $G_{i,j}$, the i-row of G by G_i, and the j-th column of G by G_{-j}. Assume that a symmetric matrix $D \in \mathbb{F}_q^{(\lambda + 1) \times (\lambda + 1)}$ and a matrix $G \in \mathbb{F}_q^{(\lambda + 1) \times N}$ are randomly generated. Note that the only requirement for G is that any $\lambda + 1$ columns of G should be linearly independent in order to achieve guaranteed security. Let $A = (D \cdot G)^T$ and $K = A \cdot G$. It can be easily checked that K is also a symmetric matrix. Blom’s idea [1] is that for each node i, the row vector A_i and the column vector G_{-i} are stored into the node i. Thus, when two nodes i and j would like to have a common key, they exchange their columns of G in plaintext and then use their private rows of A to calculate the shared key.

Table I

<table>
<thead>
<tr>
<th>Method</th>
<th>RAI</th>
<th>DGKE</th>
<th>RNC</th>
<th>EFF</th>
<th>RDND</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKD [1], [2]</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>P-KPD [4], [7], [9], [12]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>D-KPD [3], [5]</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPB Scheme [25]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-KPD [6], [10]</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAP [24]</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CARPY scheme</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CARPY+ scheme</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
C. The CARPY Scheme

We assume that the network consists of \(N\) sensor nodes with IDs, \(I = \{s_1, s_2, \ldots, s_N\}\) and \(s_1 < s_2 < \ldots, < s_N\). We also assume that \(q > s_N\), where \(q\) is a parameter of a finite field \(\mathbb{F}_q\), and \(\lambda\) is an appropriate security parameter independent of \(N\), which leverages the security level and storage overhead.

1) **Basic Idea of CARPY:** In Blom’s scheme, communications become insecure after more than \(\lambda\) sensor nodes are compromised. The reason for this is that the row vector \(\vec{A}_i\) in the sensor node \(i\) is directly related to the private matrix \(D\). Hence, after collecting a sufficient number of row vectors of \(A\), the adversary is able to construct the private matrix \(D\) by solving a system of linear equations since \(G\) is publicly known. An idea, similar to the one used in [25], to enhance the security is to break the direct relation between \(D\) and \(A\) by adding certain random noise\(^1\) on \(A\) to distort Blom’s key.

However, if improper random noise is applied, either additional computation and communication are needed to extract the common bits of distorted Blom’s key between two sensor nodes, or the common key cannot be found anymore. To conquer these drawbacks, we propose to apply **constrained random perturbation** (CRP). The constrained random perturbed Blom’s key, when compared to the original Blom’s key, will satisfy high signal-to-noise (SNR) ratio, i.e., if the length of Blom’s key is \(\ell\), then only the least \(r\) (\(r < \ell\)) bits of Blom’s key are perturbed after the CRP is added. Thus, the first \(\ell - r\) bits of Blom’s key are retained, resulting in the guaranteed establishment of the common key without the need of additional overhead. In contrast to the random perturbation [25] that incurs unnecessary computation and communication overhead, the way of constructing CRP and the corresponding efficiency gain substantially differentiate our work and [25].

The main idea of CARPY is shown in Fig. 2. Obviously, the execution of each round of the CARPY scheme can generate \(\ell - r\) bits of a pairwise key. When the bit-length of desired key is \(L > (\ell - r)\), the CARPY scheme should be executed \(\lceil \frac{L}{\ell - r} \rceil\) rounds to generate a pairwise key with desired key length. Although \(\lceil \frac{L}{\ell - r} \rceil\) rounds of CARPY are required, the overall computation overhead, which will be analyzed in Sec. III-B2, is still affordable for the current generation sensor nodes.

There are two steps in the CARPY scheme, the off-line step and the on-line step. In general, off-line step is performed, before deployment of sensor nodes, to determine the desired key length, select appropriate parameters, and pre-install the keying materials into the sensor nodes. The on-line step is performed for each pair of sensor nodes required to find the pairwise key in common after sensor nodes are deployed.

2) **Off-line Step of CARPY:** In addition to the parameters such as the size \(q\) of the finite field \(\mathbb{F}_q\), the security parameter \(\lambda\) of Blom’s scheme, and the set \(I\) of IDs of sensor nodes mentioned in the previous sections, some other parameters such as the number \(r\) of least bits perturbed by CRP for the Blom’s key, and the bit-length \(L\) of desired key should be determined by the network planner before off-line step is executed. Let \(\ell\) be the least number of bits necessary to represent the elements in \(\mathbb{F}_q\). Since the execution of each round of the CARPY scheme can generate \(\ell - r\) bits of a pairwise key, the CARPY scheme should be executed \(\xi = \lceil \frac{L}{\ell - r} \rceil\) rounds to obtain a pairwise key with desired key length \(L\).

The algorithm for the off-line step is shown in Fig. 3. Here, we explain the off-line step of the CARPY scheme from executing the \(t\)-th round of the CARPY scheme, where \(1 \leq t \leq \xi\). Note that all the arithmetic operations in the subsequent descriptions are accomplished in the finite field \(\mathbb{F}_q\) unless specifically noted. At first, as in Blom’s scheme, the network planner randomly generates two matrices \(D(0) \in \mathbb{F}_q^{(\lambda + 1) \times (\lambda + 1)}\) and \(G(0) \in \mathbb{F}_q^{\lambda \times s_N}\) such that \(D(0)\) is symmetric and any \(\lambda + 1\) columns of \(G(0)\) are linearly independent. After that, we calculate the matrix \(A(0) = (D(0) \cdot G(0))\T\).

Let \(c_{\min}(\varrho, r)\) be the value of \(\varrho\) which has least \(r\) bits of its binary representation set to 0. Similarly, let \(c_{\max}(\varrho, r)\) be the value of \(\varrho\) which has least \(r\) bits of its binary representation set to 1. For example, \(c_{\min}(524,5) = 512\) and \(c_{\max}(524,5) = 543\). Let \(\Phi(0)\) denote the set of CRPs applied on the row vector \(\vec{A}_n\) for \(s_n \in I\). When the \(t\)-th round of the CARPY scheme

\[K_{1,1} (= A_{1,1} \ldots G_{1,1}) \text{ and } K_{1,1} (= A_{1,1} \ldots G_{1,1}), \text{ respectively. Fig. 1 illustrates Blom’s idea. Blom’s scheme achieves so-called } \lambda\text{-secure [1], which ensures that as long as no more than } \lambda \text{ nodes are compromised, the security can be perfectly preserved. In spite of such guaranteed security, Blom’s scheme cannot be directly applied to WSNs because the storage overhead grows rapidly when the security level must be preserved in a network of large size. Intuitively, the security of Blom’s scheme comes from the privacy of the matrix } D, \text{ while the matrix } G \text{ acts as a public information even for the adversary. When } D \text{ is totally known by the adversary, Blom’s scheme becomes insecure.} \]

![Fig. 1. An illustration of the Blom’s scheme.](image)

![Fig. 2. An illustration of the CARPY scheme.](image)
Algorithm: CARPY-Off-line-Step(g, r, I, λ, L)
Input: g: elements of D and G are selected from \mathbb{F}_q
r: the least r bits which will be infected by CRP
I: the set of sensor nodes identities
λ: a security parameter
L: the bit-length of desired key
1 Calculate ℓ
2 for $t = 1$ to ξ ($= \left\lceil \frac{L}{r + 1} \right\rceil$)
3 Randomly generate $D^{(t)}$ and $G^{(t)}$, and Calculate $A^{(t)}$
4 for $u = 1$ to $|I|$ ($= N$)
5 Calculate Φ_{su}
6 Randomly select a row vector $\phi^{(t)}_{su}$ from Φ_{su}
7 Calculate $W^{(t)}_{su} = A^{(t)}_{su} \cdot \phi^{(t)}_{su}$
8 Store $W^{(t)}_{su}$ and $G^{(t)}_{su}$ into the sensor node s_u

Fig. 3. Off-line step of the CARPY scheme.

is performed, each CRP $\phi^{(t)}_{su} \in \Phi_{su}$ must satisfy the following constraints:

$$\begin{align*}
(A^{(t)}_{su} + \phi^{(t)}_{su}) \cdot G^{(t)}_{su} & \geq \min(A^{(t)}_{su}, G^{(t)}_{su}, r) \pmod{q} & \text{(1)} \\
(A^{(t)}_{su} + \phi^{(t)}_{su}) \cdot G^{(t)}_{su} & \leq \max(A^{(t)}_{su}, G^{(t)}_{su}, r) \pmod{q} & \text{(2)} \\
\phi^{(t)}_{su}(k) & \in \mathbb{Z}, & \text{(3)}
\end{align*}$$

where $u \neq v$, $1 \leq u, v \leq N$, $1 \leq k \leq (\lambda + 1)$, and $\phi^{(t)}_{su}(k)$ is the k-th element of $\phi^{(t)}_{su}$. Note that a CRP $\phi^{(t)}_{su}$ is a $(\lambda + 1)$-dimensional row vector. Eqs. (1) and (2) ensure that after CRP is added to $A^{(t)}_{su}$ of the sensor node s_u, the most significant $\ell - r$ bits of the corresponding Blom’s key are retained for every other sensor node s_v. These two constraints guarantee the existence of the common part of constrained random perturbed Blom’s keys without needing computation or communication overhead resulting from additional checks. The constraint indicated in Eq. (3) should be satisfied because in CARPY the elements of CRPs are constrained to be integers. As a whole, every $\phi^{(t)}_{su}$ that satisfies Eqs. (1)–(3) is one of the elements in Φ_{su}.

Following the construction of Φ_{su}, for every $s_u \in I$, a CRP $\phi^{(t)}_{su}$ is randomly and independently selected from Φ_{su}. Then, the matrix $W^{(t)}$ is constructed by calculating $W^{(t)}_{su} = A^{(t)}_{su} + \phi^{(t)}_{su}$ for $1 \leq t \leq \xi$, $1 \leq u \leq N$. After the matrix $W^{(t)}$ is constructed, the row vector $W^{(t)}_{su}$ together with the column vector $G^{(t)}_{su}$ are stored into the node s_u.

3) On-line Step of CARPY: Assume that two sensor nodes, s_a and s_b in I, want to share a pairwise key. When the t-th round CARPY scheme is executed, they first exchange their columns of $G^{(t)}_{a}$ and $G^{(t)}_{b}$. Then, s_a and s_b calculate $K^{(t)}_{a,b} = W^{(t)}_{a} \cdot G^{(t)}_{a}$ and $\kappa^{(t)}_{a,b} = W^{(t)}_{a} \cdot G^{(t)}_{b}$, respectively. We can see from Eqs. (1)–(3) that the distortion of the constructed constrained random perturbed Blom’s keys between two nodes is guaranteed to be limited within their least r bits, and, thus, the t-th part of pairwise key between s_a and s_b is $X^{(t)}_{a,b} = f_{t,r}(\kappa^{(t)}_{a,b})$, where $f_{t,r}(x)$ is the most significant $\ell - r$ bits of t-bit binary representation of a number x. Eventually, the pairwise key $K^{(t)}_{a,b}$ is infected by CRP Φ_i between nodes s_a and s_b is $X^{(t)}_{a,b} = X^{(t)}_{a,b} \cdot |X^{(t)}_{a,b}| \ldots |X^{(t)}_{a,b}|$. The algorithm for the on-line step of CARPY is depicted in Fig. 4.

Algorithm: CARPY-On-line-Step

Scenario: nodes s_a and s_b want to agree a pairwise key

Note: this algorithm is executed by the sensor node s_b

1 for $t = 1$ to ξ ($= \left\lceil \frac{L}{r + 1} \right\rceil$)
2 Send $G^{(t)}_{a}$ to the sensor node s_b
3 Receive $G^{(t)}_{a}$ from the sensor node s_b
4 Calculate $K^{(t)}_{a,b} = W^{(t)}_{a} \cdot G^{(t)}_{a}$
5 Calculate $X^{(t)}_{a,b} = f_{t,r}(\kappa^{(t)}_{a,b})$
6 Calculate $X^{(t)}_{a,b} = X^{(t)}_{a,b} \cdot |X^{(t)}_{a,b}| \ldots |X^{(t)}_{a,b}|$

Fig. 4. On-line step of the CARPY scheme.

D. Communication-Free CARPY (CARPY+) Scheme

In the CARPY scheme, two sensor nodes communicate with each other only for exchanging the respective column of G, which can be known by the adversary. If each column of G can be generated by each sensor node itself, then communications will no longer be necessary. Recall that the only requirement for G is that any $\lambda + 1$ columns of G should be linearly independent. Thus, the Vandermonde matrix is most suitable for our use because, if φ is the primitive element of \mathbb{F}_q, then any $\lambda + 1$ columns of Vandermonde matrix, which is generated by only one element φ are linearly independent [14]. Note that such Vandermonde matrix is of the form that the i-th column is generated by $[1 \ \varphi^1 \ \varphi^{2^1} \ \cdots \ \varphi^{(\lambda)^1}]^T$, where λ is a security parameter independent of N. Therefore, communication overhead can be eliminated if the matrix G of CARPY is selected as a Vandermonde matrix. For convenience, the CARPY scheme with G being a Vandermonde matrix is called CARPY+. The off-line and on-line steps of the CARPY+ scheme are depicted in Fig. 5 and Fig. 6, respectively.

E. Constructing Constrained Random Perturbation

In this section, we deal with the problem of calculating the set $\Phi^{(t)}_{su}$ of CRPs for $1 \leq t \leq \xi$ and $1 \leq u \leq N$. Note that the calculation of CRPs is performed only by the network planner but not sensor nodes. A straightforward method for obtaining $\Phi^{(t)}_{su}$ is to adopt an exhaustive search. Specifically, given a finite field \mathbb{F}_q, all the $q^{\lambda + 1}$ possible $(\lambda + 1)$-dimensional vectors are examined in terms of Eqs. (1)–(3). An exhaustive search can be accomplished in $O((\xi \cdot q^{\lambda + 1} \cdot N)$ computational complexity, which is time-consuming. Thus, we present an algorithm, called TwiLP, for constructing $\phi^{(t)}_{su}$ which is less time-consuming than the exhaustive search in most of the cases of CARPY and CARPY+. Our approach takes advantage of
Algorithm: CARPY+-Off-line-Step(q, r, T, λ, L)
Input: q: elements of D and G are selected from \mathbb{F}_q
r: the least r bits which will be infected by CRP
T: the set of sensor node identities
λ: a security parameter
L: the bit-length of desired key
1 Calculate ℓ
2 for $t = 1$ to $\xi = \lceil \frac{L}{r+1} \rceil$
3 Select φ
4 Randomly generate $D^{(t)}$, and calculate $A^{(t)}$
5 for $u = 1$ to $|T| = N$
6 Calculate $\Phi_{s_u}^{(t)}$
7 Randomly select a row vector $\phi_u^{(t)}$ from $\Phi_{s_u}^{(t)}$
8 Calculate $W_{s_u}^{(t)} = A_{s_u}^{(t)} + \phi_u^{(t)}$
9 Store $W_{s_u}^{(t)}$ and φ into the sensor node s_u

Fig. 5. Off-line step of the CARPY+ scheme.

Algorithm: CARPY+-On-line-Step
Scenario: nodes $s_{\hat{u}}$ and s_v want to agree a pairwise key
Note: this algorithm is executed by the sensor node $s_{\hat{u}}$
1 for $t = 1$ to $\xi = \lceil \frac{L}{n} \rceil$
2 Calculate $G_{s_{\hat{u}}, s_v}^{(t)}$
3 Calculate $A_{s_{\hat{u}}, s_v}^{(t)} = W_{s_{\hat{u}}}^{(t)} - G_{s_{\hat{u}}, s_v}^{(t)}$
4 Calculate $X_{s_{\hat{u}}, s_v}^{(t)} = f_{s_{\hat{u}}, s_v}(A_{s_{\hat{u}}, s_v}^{(t)})$
5 Calculate $X_{s_{\hat{u}}, s_v}^{(1)} \parallel X_{s_{\hat{u}}, s_v}^{(2)} \parallel \cdots \parallel X_{s_{\hat{u}}, s_v}^{(L)}$

Fig. 6. On-line step of the CARPY+ scheme.

An immediate observation is that the solutions satisfying the weak CRP criteria are a subset of the solutions satisfying the CRP criteria, because the weak CRP criteria can be regarded as the CRP criteria without considering the modular arithmetic. From an integer linear programming (ILP) point of view, some CRPs can be thought of as the set of all the feasible solutions in the feasible region formed by the linear constraints of Eqs. (4)~(7). In other words, finding a CRP amounts to finding a point in the feasible region. Thus, by introducing an arbitrary objective function, a CRP can be constructed by finding an optimum solution of the corresponding ILP. Recall that, since $\Phi_{s_u}^{(t)}$ is composed of several CRPs, the strategy we use here is to discover a CRP one by one. Once more than two CRPs are found, the construction of $\Phi_{s_u}^{(t)}$ is considered successful. In the following, we explain the construction of $\Phi_{s_u}^{(t)}$, an element of $\Phi_{s_u}^{(t)}$.

By assuming two objective functions O_1 and O_2 are opposite each other, we propose an algorithm, called TwiLP, in which LP-relaxation [20] is used twice to find the two optimum solutions with respect to O_1 and O_2 in LPs and then performs randomized rounding [19] on the point resulted from averaging those two optimum solutions to search for a feasible solution of ILP. A more detailed description is as follows. Note that the usage of averaging is to enhance the possibility that the result is still within the feasible region.

Implementation Issues. It can be observed that TwiLP could fail to find the CRPs even if several iterations are performed. From the implementation perspective, there exists another way to construct CRPs. The observation here is that if the elements of $G^{(t)}$ are relaxed to small floating point numbers instead of integers, then Eqs. (4)~(7) can be easily satisfied. Specifically, $G^{(t)}$ can be constructed as described in Sec. II-D, followed by a division using a large integer γ (e.g., $\gamma \geq 100$). Note that after such scalar division, the property of $G^{(t)}$ that any $\lambda + 1$ columns are linearly independent can still be kept. The algorithm of constructing CRPs is described as follows. At first, an integer vector $\hat{\phi}_{s_u}^{(t)}$ is randomly generated. For $\hat{\phi}_{s_u}^{(t)}$, we examine if Eqs. (4)~(7) are satisfied. The above procedure is repeated until a satisifiable vector is found. Despite its similarity to exhaustive search, in practice, after the relaxation of $G^{(t)}$, such a simple randomized algorithm is very efficient and effective for generating CRPs. For example, when $q = 2^{16} - 15$, $\lambda = 128$, and $r = 14$, only less than 10 seconds are needed to generate a CRP.

III. SECURITY AND PERFORMANCE EVALUATION

A. Security Analysis

In this paper, we assume that four categories of attacks could be mounted by the adversary. They are eavesdropping attack, node capture attack, routing layer attack, and physical layer attack. Note that the intention of the adversary’s intervention could be the compromise of the security of the key
establishment scheme, or the impediment of key establishment between two nodes. The resilience of CARPY and CARPY+ to these four possible attacks is described in Sec. III-A1~Sec. III-A4, respectively. In addition to the aforementioned attacks, Denial of Service (DoS) is a common strategy mounted by the adversary to attack networks. While DoS attack has no direct impact on the information leakage of the key establishment schemes, an ill-designed key establishment scheme easily incurs DoS attack. The immunity of CARPY and CARPY+ to DoS attack will be described in Sec. III-A5.

1) Eavesdropping Attack: In our assumption, a global eavesdropper is involved in the network so that all the traffic on the network will be immediately known by the adversary. In the CARPY scheme, the message exchanged between nodes is only the column vectors of the matrix G, which is assumed to be publicly known by everyone including the adversary. On the other hand, there is no message exchanged between nodes during the key establishment of the CARPY+ scheme. Thus, the adversary gains nothing about the pairwise key between each pair of nodes by using eavesdropping attack.

2) Node Capture Attack: The CARPY and CARPY+ schemes can be regarded as a generalization of Blom’s scheme. In particular, the construction of the matrix $W(t)$ in CARPY and CARPY+ comes from the elements of the matrix $A(t)$ of Blom’s scheme, on which the CRPs are applied. Due to this observation, directly inherited from Blom’s scheme, the security of both CARPY and CARPY+ can be perfectly guaranteed before $\lambda + 1$ sensor nodes are captured by the adversary. Therefore, we only consider the case where the number of captured nodes is larger than $\lambda + 1$.

Recall that the security of both CARPY and CARPY+ is completely broken if $D(t)$ is obtained by the adversary. We will study the breaking complexity of compromising the matrix $D(t)$ as follows. After CRPs have been applied on $A(t)$ to construct the matrix $W(t)$, the relation between the matrices $A(t)$ and $D(t)$ in Blom’s scheme does not exist any more. Here, a metric, called computational breaking complexity (CBC), for evaluating the computational difficulty of recovering $D(t)$ is defined. While physical breaking complexity (PBC), meaning the least number of nodes necessary to be captured to compromise the security, acts as a metric for evaluating the hardness of recovering $D(t)$ in terms of physical attack, the CBC is defined in terms of computational effort the adversary needs to pay. A theorem describing the breaking complexity of compromising the matrix $D(t)$ is as follows.

Theorem 1. Let Υ be the set of captured nodes. Let Δ_i be the i-th subgroup of captured nodes, on which the same CRP is applied, correctly identified by the adversary. In the case of $|\Upsilon| \geq \lambda + 1$, the CBC for recovering the matrices $D(t)$, where $1 \leq t \leq \xi$, is $\Omega(\xi \sum_{j=1}^{\xi} \prod_{i=1}^{\xi} \prod_{b \in \Delta_i} |\Phi_b^{(j)}|)$ if $\sum_{j=1}^{\xi} (|\Delta_i| - 1) \geq \lambda + 1$, and $\Omega(\xi \sum_{j=1}^{\xi} \prod_{b \in \Upsilon} |\Phi_b^{(j)}|)$ otherwise, for both the CARPY and CARPY+ schemes.

Corollary 1. Given that $|\Phi_b^{(t)}| \geq \rho$, $1 \leq t \leq \xi$, and $1 \leq u \leq N$, the CBC for recovering the matrices $D(t)$ is $\Omega(\xi \cdot \rho^{\lambda + 1})$ for both the CARPY and CARPY+ schemes.

The intuition behind Theorem 1 and Corollary 1 is that, after capturing a set $\Upsilon \subset \Omega$ of $\lambda + 1$ nodes the adversary must guess the correct CRPs applying on the row vectors of $\lambda + 1$ captured nodes. Since a successful guess in one attempt is with probability $O(1/\prod_{b \in \Upsilon} |\Phi_b^{(t)}|)$ and there are ξ rounds of CARPY and CARPY+ needed to be performed, if $|\Phi_b^{(t)}| \geq \rho$ for all u and t, the required computational effort is $\Omega(\xi \sum_{t=1}^{\xi} \prod_{b \in \Upsilon} |\Phi_b^{(t)}|) = \Omega(\xi \cdot \rho^{\lambda + 1})$. The security levels under different settings can be found in Table II. Consider for example that the parameters, $\xi = 16$, $\lambda = 128$, $\tau = 14$, and $\rho = 2$ are used. Even with the unrealistic assumptions that I/O operations can be ignored and each trial can be accomplished within single one cycle, the time needed for breaking $D(t)$’s is over 10^{25} years on a 3GHz processor.

In addition to recovering the matrices $D(t)$, the adversary may also try to derive the CRP applied on each captured node by using the methods described in Sec. II-E. Given $|\Phi_b^{(t)}| \geq \rho$, if $\lambda + 1$ nodes have been captured, since $\lambda + 1$ CRPs should be simultaneously and correctly guessed, exhaustive search incurs $\Omega(\xi \cdot \rho^{\lambda + 1})$ computation overhead, which is infeasible for the adversary. On the other hand, TwiLP algorithm can be utilized by the adversary. However, the parameters, $c, d, \text{and } \omega$, used in TwiLP are only known by the network planner and unknown by the adversary. The adversary is forced to examine $\Omega(\xi \cdot \rho^{\lambda + 1})$ possibilities for the captured nodes. Therefore, it is also inefficient for the adversary to find CRPs by using TwiLP.

3) Routing Layer Attack: Routing layer attacks typically focus on disrupting the routing mechanisms. The adversary may not gain information about the pairwise key by directly mounting routing layer attacks. However, routing layer attacks (such as Sybil [15] and sink hole [11] attacks) could be used to either hinder the legitimate nodes from achieving key establishment or even strengthen the effectiveness and efficiency of node capture attack. Accordingly, attention to the study of the resilience of key establishment schemes to routing layer attacks is of primary importance.

For CARPY, since two nodes establish their pairwise key by exchanging their respective column vectors of G, CARPY is not resilient to routing layer attacks. Nevertheless, when CARPY+ is exploited, since no communication is required for establishing the pairwise key, routing layer attacks cannot disrupt the key establishment procedure. Hence, the resilience of CARPY+ against routing layer attacks can be guaranteed.

4) Physical Layer Attack: Physical layer attack usually means jamming attack [21], in which the adversary disrupts

| L | q | ℓ | λ | r | $|\Phi_u^{(t)}|$ | ξ | BC |
|-------|------|--------|-----------|-----|----------------|------|------|
| 128 | $2^{16} - 15$ | 16 | 32 | 14 | ≥ 2 | 64 | $\geq 2^{10}$ |
| 128 | $2^{16} - 15$ | 16 | 64 | 14 | ≥ 2 | 64 | $\geq 2^{10}$ |
| 128 | $2^{16} - 15$ | 16 | 128 | 8 | ≥ 2 | 16 | $\geq 2^{54}$ |
| 128 | $2^{16} - 15$ | 16 | 128 | 8 | ≥ 2 | 64 | $\geq 2^{40}$ |
the capability of transmitting and receiving packets for some
specified nodes through radio frequency interference. Solely
exploiting physical layer attack cannot help the adversary
gain the information about the pairwise key, but it can block
the communications among a group of selected nodes so
that the key establishment has the possibility of not being
accomplished. However, the CARPY+ scheme is indeed robust
to the physical layer attacks since the pairwise key can be
calculated without the need of communication.

5) Denial of Service (DoS) Attack: In this paper, we only
emphasize the DoS attack incurred by applying the key
establishment schemes. As for the Path-based DoS (PDoS)
attack [8], the bogus message, aiming at performing shared-
key discovery or path-key establishment, can always be sent
from the adversary to a victim node to exhaust the energies of
the victim node and the nodes on the path to the victim nodes.
However, because no communication or interaction between
nodes is required in CARPY+ for establishing the pairwise
key, DoS attacks can be resisted.

B. Performance Analysis

The prototypes of both the CARPY and CARPY+ schemes have been implemented on the TelosB compatibi-
ble mote (Micro-Controller: TI MSP430F1611; Flash Mem-
ory: 48KB+256B; RAM: 10KB; Radio Chipset: ChipCon
CC2420). The programming tool we used is the native C
compiler on IAR Embedded Workbench, instead of TinyOS.
In our experiments, the parameters were set as follows. The
desired key length L was 128, $q = 2^{16} - 15$, $\lambda = 128,$
and $r = 8$. We used the diagnostic and profi led outputted
from IAR Embedded Workbench to estimate storage and
computation overhead. It should be noted that the elements
of $G^{(i)}$ used in the experiments were selected and represented
in floating points for ease of implementation.

1) Storage Overhead: If CARPY is used, then, for sensor
node s_u, the row vectors $A_{s_u}^{(i)}$ and column vectors $G^{(i)}_{s_u}$
are needed to be stored. Since ξ rounds of CARPY need to be
performed independently, when $G^{(i)}$, $1 \leq t \leq \xi$, are selected
to be the same, the storage overhead is therefore $O(\xi \cdot \lambda)$. If
CARPY+ is used, for sensor node s_u, only row vectors $A_{s_u}^{(i)}$
and an element s need to be stored. Since the CARPY+ scheme
also needs to be performed ξ rounds, the storage overhead for
CARPY+ is, thus, $O(\xi \cdot \lambda)$. In our experiments, the storage
overhead of CARPY is 288 bytes for CODE memory and 8912
bytes for DATA memory, while that of CARPY+ is 690 bytes
for CODE memory and 8906 bytes for DATA memory.

2) Computation Overhead: For different s_u and s_v, $\lambda + 1$
multiplications and λ additions are needed to carry out the
multiplication of $A_{s_u}^{(i)}$ and $G^{(i)}_{s_v}$ in each round of CARPY.
The computation overhead of CARPY+ is slightly larger than
that of CARPY because each node calculates the needed
column vectors by itself. From the s_u point of view, after
the calculation of ϕ^s (see Sec. II-D), $\lambda + 1$ multiplications
and λ additions are suficient to simultaneously carry out the
generation of $G^{(i)}_{s_v}$, and the multiplication of $A_{s_u}^{(i)}$ and
$G^{(i)}_{s_v}$ by using Horner’s rule in each round of execution of
CARPY+. The computation overhead, i.e., number of cycles
required for the key generation, in CARPY is 1138548, which
is approximately equivalent to 0.14 seconds. In addition, the
number of cycles required for the key generation of CARPY+
is 1209756, which is about 0.15 seconds.

3) Communication Overhead: In CARPY, the communica-
tions happen only when two sensor nodes exchange their
respective column vectors. As the length of a column vector
is $O(\lambda)$ and the expected hop distance between two arbitrary
nodes in a random flat network is $O(\sqrt{N})$, the communication
overhead is therefore $O(\xi \cdot \lambda \cdot \sqrt{N})$. On the other hand, it can
be easily observed from the scheme described in Fig. 6 that
there is no communication needed in the CARPY+ scheme.

4) Energy Consumption: In this paper, we utilize a model
similar with the one considered in [18] and [22] to estimate
the energy consumption of CARPY and CARPY+, and then
compare it with the other schemes. In general, we consider the
networks composed of N sensor nodes, in which the packet
loss rate p_{loss} of each link between any two neighboring nodes
is the same. In other words, delivery of single packet will fail with probability p_{loss}. Assume that the byte-length of
the maximum payload in a packet is L_{packet}. The expected
length of the shortest path connecting two arbitrary nodes in
the network is assumed to be h. Denote the energy consump-
tion of transmitting and receiving one packet as e_t and e_r, respec-
tively. In the following, we first formulate the energy
consumption for the CARPY and CARPY+ schemes. Then, a
comparison among them will be presented.

We calculate the energy consumptions E_{CARPY} and
E_{CARPY+} for both CARPY and CARPY+, respectively.
E_{CARPY} can be estimated as $E_{CARPY} = E_{comp}^{CARPY} + E_{comp}^{CARPY}$. Here, E_{comp}^{CARPY} is calculated as:

$$2 \cdot h \cdot \xi \cdot \left[\frac{\ell \cdot (\lambda + 1)}{8 \cdot L_{packet}}\right] \cdot \left(\frac{e_t}{1 - p_{loss}} + e_r\right),$$

because the respective column vectors of G of two nodes s_u
and s_v need to be exchanged. As for E_{comp}^{CARPY+}, it can be computed as $2 \cdot h \cdot \xi \cdot (\ell + 1) \cdot e_m + \lambda \cdot e_a$, where e_m and e_a, respectively, denote the energy consumption of accomplishing
the addition and multiplication of two integers, as the primary
function needed to be performed by two ends is to calculate an
inner product.

Since, in the CARPY+ scheme, a pairwise key can be
directly constructed between any pair of nodes without the
need of communication, the energy consumption E_{comp}^{CARPY+}
is zero. As to the computation needed for the construction of
the common key between two nodes s_u and s_v, the node s_u
should first generate the corresponding column vector $G^{(i)}_{s_u}$,
requiring $\xi \cdot \log(s_u + 1)$ multiplications if the set $\{\varphi^2[i \in N, 2^i \leq s_N]\}$ is stored in each node. After that, the computation
of the inner product, which is similar to the one used in
the CARPY scheme, is carried out to construct the common
key. As a result, when Horner’s rule is exploited, the energy
consumption E_{comp}^{CARPY+} of the CARPY+ scheme for the
computation is at most $\xi(2(\lambda + 1) + \log(s_N + 1)) + 2\lambda e_a)$.

Energy Calculation. We consider the energy consumption of several operations implemented on the TelosB mote. CC2420 consumes 18.8 mA current for receiving and 17.4 mA for transmission. If the battery voltage and the data rate are set to 3.6V and 250kbps, respectively, then the energy for receiving one byte needs 2.1658μJ and the energy for transmitting one byte needs 2.0045μJ. In our experiments, e_a and e_m are about 0.2164μJ and 0.2405μJ, respectively. In a network whose N nodes are evenly and randomly deployed, the expected hop distance is $O(\sqrt{N})$, i.e., $h = O(\sqrt{N})$. For P-KPD [9], the parameters are selected to achieve ≥ 0.999 network connectivity. For D-KPD, the 2-D PIKE [3] is adopted.

The parameter setting of RPB is done according to [25]. For CARPY and CARPY+, the parameters, $\ell = 16$, $\xi = 20$, and $\lambda = 75$, which achieve the same level of security with RPB, are used. We compare these schemes in two cases:\n
- $L_{\text{packet}} = 29$ and $L_{\text{packet}} = 102$. Under the setting of $p_{\text{loss}} = 30\%$, the comparisons of energy consumption for establishing a key between two nodes among different schemes are shown in Fig. 7.

![Energy Consumption for different key establishment schemes](image)

Fig. 7. Energy Consumption for different key establishment schemes (The number in the parenthesis indicates the payload size).

Due to the fact that CARPY incurs larger packet overhead, CARPY consumes more energy than D-KPD and RPB. Note that if the parameters, such as ℓ, r, and ξ, are chosen properly, the overhead can be further reduced. Fortunately, it can be easily observed that the energy consumption in the proposed CARPY+ scheme is substantially smaller than all the known schemes chosen for comparisons. For example, in a network with 10^4 nodes, the energy consumption of P-KPD [9] is about 100 times greater than that of CARPY+. In particular, the scalability of CARPY+ is superior to the other schemes because only the energy consumption of CARPY+ is independent of the network size.

2The default maximum payload size in TinyOS is 29 bytes and the maximum payload size in IEEE 802.15.4 is 102 bytes.

C. Comparisons

Here, we emphasize the comparisons among CARPY+ and other known key establishment schemes from the sensor-key criteria point of view. The results are shown in Table I and are described in detail in the following.

Resilience to the Adversary’s Intervention (RAI). Due to the need of path-key establishment, the P-KPDs, D-KPDs, L-KPDs, and LEAP are all vulnerable to the node capture attack. In addition, due to the need of communications, the adversary can always impede the key establishment between two nodes in P-KPDs, D-KPDs, RPB, L-KPDs, and LEAP. For CARPY+, since there is no need of communications in key establishment, all the eavesdropping, node capture, routing layer, and physical attacks cannot degrade the security between a pair of nodes having not been compromised. Even better, for the same reason, key establishment can be guaranteed to be successfully accomplished whenever the aforementioned attacks occur. This implies the strongest survivability. In addition, it does not incur DoS attacks in that key establishment is carried out in a spontaneous way. Thus, a message claiming the request for establishing keys will simply be dropped. Hence, the proposed CARPY+ scheme is considered to be a key establishment scheme satisfying RAI.

Directed and Guaranteed Key Establishment (DGKE). Due to the storage limitations of each sensor node, predetermined keys cannot be preloaded into each pair of nodes if P-KPDs, D-KPDs, and L-KPDs are applied, leading to the partial connectivity of key sharing. Hence, there always exists pairs of nodes that do not have shared-keys and require path-key establishment. For LEAP, a node can establish common keys with its neighbors only. However, we can know from the descriptions of the proposed CARPY and CARPY+ schemes in Fig. 4 and Fig. 6 that key sharing can be always established between any two nodes.

Resilience to Network Configurations (RNC). While L-KPDs and LEAP obviously cannot be applied to mobile networks, the efficiency for establishing key sharing will be significantly decreased if P-KPDs and D-KPDs are considered in the mobile networks. This is because the bootstrapping procedure involves considerable communication and computation overheads and cannot be repeated quite often. The RPB scheme is applicable in a wide range of networks. However, the advantages come from sacrificing its applicability to heterogeneous networks because the IDs of sensor nodes in the RPB scheme should be artificially assigned, which could be infeasible in certain devices. For CARPY+, it works irrespective of the network scale. In addition, key establishment can be performed independent of deployment knowledge. In fact, CARPY+ can be carried out with arbitrary network topology because the pairwise key is calculated by the node itself. Finally, CARPY+ does not assume the knowledge of hardware; thus, it can be considered to be hardware independent and is applicable in heterogeneous networks.

Efficiency (EFF). As for the efficiency of the CARPY+ scheme, it does not require any message exchange and only
involves a constant number of additions and multiplications. Hence, because of the communication-free property of the CARPY+ scheme, both the energy saving and reduction of latency incurred by the key establishment are very significant.

Resilience to Dynamic Node Deployment (RDND). In D-KPDs, key sharing between nodes usually relies on some fixed structures, such as the hypercube in [3] and the symmetric design in [5]. If the construction of the underlying structure does not consider the nodes to be deployed in the future, on-the-fly addition of nodes is usually infeasible. A possible solution is to construct the structure with the consideration of a large number of nodes, but it also increase the storage overhead. Compared with D-KPDs, on-the-fly addition of nodes can be supported by also taking a large number of nodes to be deployed in the future into account prior to the initial node deployment. Fortunately, irrespective of the number of nodes considered, the size of keying materials necessary to be stored in each node is the same. Accordingly, by considering the nodes to be deployed in the future in the construction of \(W(0) \) and \(G(0) \), our proposed CARPY and CARPY+ schemes are resilient to dynamic node deployment.

Other Advantages. A unique feature possessed by CARPY+ is that it is transparent to the other network services, that is, CARPY+ can work well in cooperation with the other network services such as routing and power saving mechanisms. For example, radio function of sensor nodes usually should be turned off to prolong the network lifetime. However, if the other schemes requiring communications are used for establishing keys, for the efficiency of key establishment the nodes should be always in the active mode to deliver the packets with minimal latency, resulting in the faster energy depletion of sensor nodes. On the other hand, for the efficiency of power consumption, the nodes often turn off their radio, leading to an unstable route between nodes and, therefore, larger latency in establishing keys. Fortunately, since the proposed CARPY+ scheme does not require communications, it does not need to face such a dilemma.

IV. Conclusion

Two ConstrAined Random Perturbation based pairwise keY establishment (CARPY and CARPY+) schemes are constructed via a novel constrained random perturbation technique. In terms of the so-called sensor-key criteria, while all the existing schemes only satisfy a few requirements, the proposed CARPY+ scheme meets all the requirements. In particular, CARPY+ is the first non-interactive key establishment scheme with great resilience to a large number of node compromises for WSNs. Together with a comprehensive comparison, theoretical and experimental results are provided to validate the performance of the CARPY and CARPY+ schemes.

Acknowledgment: Chia-Mu Yu and Chun-Shien Lu were supported by NSC 97-2221-E-001-008. Sy-Yen Kuo was supported by NSC 96-2628-E-002-138-MY3.

References

