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ABSTRACT   

We address an important issue of fully low-cost and low-complexity video encoding for use in resource limited 
sensors/devices. Conventional distributed video coding (DVC) does not actually meet this requirement because the 
acquisition of video sequences still relies on the high-cost mechanism (sampling + compression). Recently, we have 
proposed a distributed compressive video sensing (DCVS) framework to directly capture compressed video data called 
measurements, while exploiting correlations among successive frames for video reconstruction at the decoder. The core 
is to integrate the respective characteristics of DVC and compressive sensing (CS) to achieve CS-based single-pixel 
camera-compatible video encoder. At DCVS decoder, video reconstruction can be formulated as a convex unconstrained 
optimization problem via solving the sparse coefficients with respect to some basis functions. Nevertheless, the issue of 
measurement rate allocation has not been considered yet in the literature. Actually, different measurement rates should 
be adaptively assigned to different local regions by considering the sparsity of each region for improving reconstructed 
quality. This paper investigates dynamic measurement rate allocation in block-based DCVS, which can adaptively adjust 
measurement rates by estimating the sparsity of each block via feedback information. Simulation results have indicated 
the effectiveness of our scheme. It is worth noting that our goal is to develop a novel fully low-complexity video 
compression paradigm via the emerging compressive sensing and sparse representation technologies, and provide an 
alternative scheme adaptive to the environment, where raw video data is not available, instead of competing compression 
performances against the current compression standards (e.g., H.264/AVC) or DVC schemes which need raw data 
available for encoding. 

Keywords: Compressive sensing, sparse representation, distributed compressive video sensing, measurement rate 
allocation, single-pixel camera, dictionary learning, distributed video coding, low-complexity video coding. 
 

1. INTRODUCTION  
Low-complexity video coding has been potentially applicable for several emerging applications, such as video 
conferencing with mobile devices and wireless visual sensor networks (WVSN)1. Since the low-complexity restriction 
for a video device, efficient video compression is challenging. In particular, distributed video coding (DVC)1 based on 
the principle of distributed source coding (DSC)2 has been recently proposed to reduce video encoding complexity to the 
order of that for still image encoding via shifting major encoding burden to the decoder. Nevertheless, even for still 
image encoding, it is required to capture huge amounts of raw image data first, followed by performing some 
transformation operator, which is also memory- and computation-intensive3-4. With the advent of the compressive 
sensing (CS)-based single-pixel camera architecture5, CS is an emerging technology and enables to directly and 
efficiently capture compressed image data via randomly projecting raw image data to obtain linear and non-adaptive 
measurements. The image can then be reconstructed at the decoder via solving the convex optimization problem or using 
some iterative greedy algorithms6-7 from the captured data measurements. 

To directly capture compressed video data, a compressive video sensing framework8 has been proposed to individually 
capture and reconstruct each compressed video frame. Recently, compressive video sensing integrating both DVC and 
CS characteristics has emerged as a new way to directly capture compressed video data via random projection at a low-
complexity encoder while performing CS reconstruction together with exploiting correlations among successive frames 
at a high-complexity decoder9-12. A general structure is to divide a video sequence into several key frames and CS frames. 
Each key frame can be individually compressed and reconstructed while each CS frame can be individually compressed 
and conditionally reconstructed. We have proposed a distributed compressive video sensing (DCVS) framework9, where 
an efficient initialization and several stopping criteria were proposed to improve and speedup the employed convex 
optimization algorithm for CS frame reconstruction with respect to the discrete wavelet transform (DWT) basis. In 
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addition, a DVC algorithm using CS was proposed11, where at the decoder, each block in a CS frame is reconstructed 
with respect to the basis (dictionary) formed from a set of spatially neighboring blocks of previous decoded neighboring 
key frames. Similarly, a distributed compressed video sensing (DISCOS) framework was also proposed12, where the 
major core is also to assume each block in a CS frame can be sparsely represented with respect to the dictionary formed 
from a set of spatially neighboring blocks of previous decoded neighboring key frames. Here, we denote the two above-
mentioned schemes11-12 as the “local dictionary”-based scheme for their major core employing the local blocks extracted 
from the neighboring frames as the dictionary for each block in a CS frame. 

Similar to rate control/allocation for conventional video coding13 or DVC14, measurement rate allocation is very critical 
for a block-based CS video encoder. Here, the measurement rate (MR) for a signal (e.g., an image or an image block) is 
defined as: 

N
MMR = ,                                                                                   (1) 

where N is the length of the signal (e.g., the number of pixels in a block or an image), M is the number of measurements, 
i.e., the number of acquired samples, and M < N. 

Nevertheless, to keep the complexity of a CS-based video encoder be low, a unique characteristic is that CS can 
“directly” capture compressed video data without temporally storing the raw data. Hence, it is hard to accurately perform 
measurement rate allocation for each block without accessing the raw data. To the best of our knowledge, this issue was 
only roughly mentioned in the compressive video sensing framework8, where each block is determined to be either 
sparse or non-sparse by predicting the sparsity based on the previous reference frame (or key frame) being 
conventionally/fully sampled and transformed using the block-based discrete cosine transform (DCT). Each sparse block 
is compressively sampled whereas each non-sparse block is fully sampled. The major problems of this approach include: 
(i) it is required to periodically support fully sampled reference frame whose raw data are needed to be temporally stored 
and some transformation operation performed is required, which indeed violate the original intention of CS-based data 
compression and cannot be compatible with the CS-based single-pixel camera5; and (ii) the measurement rate allocation 
is too rough to only allocate either a certain rate or full rate for each block. 

In this paper, we propose a novel block-based distributed compressive video sensing (DCVS) framework with feedback 
channel supported, which is extended from our recently developed global dictionary-based DCVS15. We focus on 
studying dynamic measurement rate allocation for DCVS, which can adaptively adjust measurement rates by estimating 
the sparsity of each block via feedback information. Note that the support of feedback channel is usually a common 
assumption in most DVC researches1. The major characteristics of our DCVS include: (i) Dynamic measurement rate 
allocation: the target average measurement rate for each frame can be properly allocated to each block in the frame 
based on the estimated sparsity via feedback information. (ii) CS-based single-pixel camera-compatible: only CS 
random projection process is individually performed for each frame or each block, which is compatible with the single-
pixel camera architecture5. In the frameworks11,12, it is required to support standard MPEG-X/H.26X intra-frame encoder 
to encode each key frame (similar to conventional I frame), which is more complex and incompatible with the single-
pixel camera architecture5. (iii) Global-dictionary based sparse representation: to reconstruct a frame, a global 
dictionary, trained from a set of blocks extracted from the neighboring reconstructed frames together with the side 
information generated from them, is used as the basis of each block. The major advantages of our DCVS include: (a) 
more efficient utilization of available measurement rates; (b) the basis for a frame can be adaptively constructed based on 
neighboring reconstructed frames, which is better than using fixed basis (e.g., DWT or DCT basis); (c) extracting more 
blocks globally for dictionary training can provide better basis for representing blocks with large motions; and (d) even if 
the qualities of the training blocks from neighboring frames are not good enough, the trained dictionary may still provide 
good basis for the blocks in a frame. The fact can be similarly explained by dictionary-based image denoising based on 
the dictionary trained from the blocks extracted from a noisy image itself16,17. In the works11,12, for each block in a CS 
frame, a set of local (spatially neighboring) blocks are extracted from the neighboring reconstructed key frames to form 
its basis without training. Such local dictionary-based basis may not work very well for block with (very) large motion. 
In addition, such schemes highly rely on the qualities of neighboring reconstructed key frames. The performance may be 
degraded due to poorly reconstructed neighboring key frames. Other technical comparisons can be found in Table 1 of 
Sec. 4. An additional property is the inherent computational secrecy of measurements18 which can be only reconstructed 
at the decoder via the same secret key for constructing measurement matrix as the one used in random projection (data 
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acquisition) at the encoder, and, hence, our previous CS-based image security technology19 can be directly applied to 
support the security of our DCVS. 

The rest of this paper is organized as follows. The overviews of distributed video coding (DVC), compressive sensing 
(CS), and sparse representation are given in Sec. 2. The proposed dynamic measurement rate allocation for our block-
based DCVS with feedback channel is described in Sec. 3. Simulation results are presented in Sec. 4, followed by 
conclusions in Sec. 5. 

2. BACKGROUND 
2.1 Distributed video coding 

In distributed video coding (DVC)1, the statistical dependency between a frame W and its side information I is modeled 
as a virtual correlation channel, where I can be viewed as a noisy version of W. At the encoder, without performing 
motion estimation, the compression of W can be achieved by transmitting only part of the parity bits derived from the 
channel-encoded version of W. The decoder uses the received parity bits and the side information I derived from 
previous decoded frames to perform channel decoding to correct some “errors” in I for the reconstruction of W. In our 
DCVS, the side information for a CS frame is incorporated in training dictionary (basis) for this frame. 

2.2 Compressive sensing 

Assume that an orthonormal basis matrix (dictionary) Ψ with size N×N can provide a K sparse representation for a real 
value signal x with length N, i.e., x = Ψθ, where θ with length N can be well approximated using only K << N non-zero 
entries. Compressive sensing (CS)3 states that x can be accurately reconstructed by taking only  
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⎝
⎛×=

K
NKM logO ,                                                                          (2) 

where K < M << N, linear and non-adaptive measurements from the random projection as 

xy Φ= ,                                                                                        (3) 

where y is a measurement vector with length M, Ф is an M×N measurement matrix that is incoherent with Ψ. More 
specifically, the M measurements in y are random linear combinations of the entries of x, which can be viewed as the 
compressed version of x. The reconstruction of x can be formulated as a convex unconstrained optimization problem 
described in Sec. 3.1. 

In our DCVS, the dictionary Ψ trained from selected blocks for each CS frame is an overcomplete learned dictionary16, 
not orthonormal, and, hence, the CS theory cannot be entirely applied20. However, by using the measurement matrix Ф6 
randomly generated from some distribution, the incoherence between Ф and Ψ should be usually high enough11,12. 

2.3 Sparse representation 

Given an overcomplete dictionary [ ]{ } PNPN
PpNp ≤∈= ×

=×
,RdD

,1,2,1 K
, containing P prototype signal atoms [ ]pd , a 

signal NRu∈  can be represented as a sparse linear combination of these atoms, which is εDαu 2 ≤− , where PRα∈  
is the sparse representation coefficients of u and ε ≥ 0 is an error tolerance. The sparsest representation α can be solved 
as16: 

0α
αmin  subject to εDαu 2 ≤− ,                                                              (4) 

where ||α||0 is the l0 norm of α, counting the number of nonzero coefficients of α. 

3. PROPOSED DYNAMIC MEASUREMENT RATE ALLOCATION FOR OUR DCVS 
3.1 Problem formulation 

In our DCVS shown in Figure 1, a video sequence consists of several GOPs (group of pictures), where a GOP consists of 
a key frame followed by some CS frames. At DCVS encoder, given a target average measurement rate, we want to 
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perform optimal measurement rate allocation to each frame (or block) before performing random projection (data 
acquisition). Then, each frame (or block) x can be compressed via random projection to get its measurement vector y = 
Фx, where Ф is a measurement matrix6. At DCVS decoder, the reconstruction of x from y and Ф can be formulated as: 

1
2
22

1min θτθ
θ

+− Ay ,                                                                         (5) 

where θ is a set of sparse coefficients with respect to a basis Ψ that is incoherent with Ф, x = Ψθ, A = ФΨ, τ is a non-
negative parameter, ||v||2 is the ℓ2 norm of v, and ||v||1 is the ℓ1 norm of v. Eq. (5) indicates a convex unconstrained 
optimization problem, which can be solved via certain iterative algorithm7. For reconstructing various types of frames, 
different basis functions Ψ or trained dictionaries will be employed, as described later in Secs. 3.3~3.5. 

 
Figure 1. Proposed DCVS with dynamic measurement rate allocation. 

3.2 DCVS encoder with dynamic measurement rate allocation 

At DCVS encoder shown in Figure 1, without performing motion estimation, each key frame xt viewed as a column 
vector with length N is compressed via frame-based random projection as yt = Фxt, where yt is the measurement vector 
with length Mt, Mt < N, forming the compressed version of xt, which will be transmitted to the decoder. Ф is an Mt×N 
measurement matrix6 described later. Given a target average measurement rate MRave, we simply set the measurement 
rate MRt of each key frame xt to MRave. Hence, the number of measurements of a key frame xt is aveMRNM t ×= . 

On the other hand, each CS frame xt consisting of B non-overlapping blocks, bti, i = 1, 2, …, B, is compressed via block-
based random projection by individually projecting each bti viewed as a column vector with length Nb via yti = Фbti, 
where yti is the measurement vector with length Mti, Mti < Nb, and Ф is an Mti×Nb measurement matrix6. The vectors yti, i 
= 1, 2, …, B, forming the compressed version of xt, will be transmitted to the decoder. 

Similar to key frame, we set the measurement rate MRt of a CS frame xt to MRave which will be adaptively allocated to 
each block bti in the frame based on its estimated sparsity via feedback information. Recall from Eq. (2) that the number 
of required measurements for reconstructing a block highly depends on the sparsity of the block. Hence, sparser blocks 
need fewer measurements whereas less sparse blocks need more measurements. Nevertheless, at the encoder, no raw 
block data can be available and the basis for a CS frame cannot be known which is adaptively constructed at the decoder. 
Hence, we propose to estimate the sparsity of a block based on its spatially co-located block in the previous 
reconstructed frame at the decoder. Then, the estimated number of measurements for compressively sampling current 
block can be obtained from the feedback information, addressed in Sec. 3.6. 

Here, the used measurement matrix Ф is the scrambled block Hadamard ensemble (SBHE) matrix6, which takes the 
partial block Hadamard transform, followed by randomly permuting its columns. SBHE has been shown to satisfy the 
five requirements, including near optimal performance, university, fast computation, memory efficient, and hardware 
friendly. Therefore, it can be seen from Figure 1 that our DCVS encoder is indeed memory and computation efficient. 

3.3 DCVS decoder for key frame reconstruction 

At DCVS decoder, each key frame xt can be reconstructed via solving the convex unconstrained optimization problem 
described in Eq. (5) as: 

1
2
22

1min ttt Ay
t

θτθ
θ

+− ,                                                                       (6) 
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where yt is the received measurement vector, yt = Фxt, A = ФΨ, Ф is the SBHE measurement matrix6, Ψ is the DWT 
basis, θt is the sparse coefficients to be solved for xt with respect to Ψ, and τ is a non-negative parameter. In DCVS, θt is 
solved via the “sparse reconstruction by separable approximation (SpaRSA)” algorithm7 due to its superior efficiency. 
Other algorithms solving convex optimization problem or iterative greedy algorithms can also be employed. Finally, the 
key frame xt can be reconstructed via ttx θ

~~ Ψ= , where tθ
~  is the final solution obtained by SpaRSA. For individual 

reconstruction of a key frame, a general-purpose basis, DWT basis, for image representation is employed. 

3.4 DCVS decoder for CS frame reconstruction 

At DCVS decoder, each CS frame xt can also be reconstructed via solving the convex unconstrained optimization 
problem for each block bti, i = 1, 2, …, B, in xt as 

1
2
22

1min tititti Ay
ti

ατα
α

+− ,                                                                 (7) 

where yti is the received measurement vector with length Mti for the block bti, viewed as a column vector with length Nb, 
yti = Фbti, At = ФDt, Ф is the SBHE measurement matrix6 with size Mti×Nb, Dt is the trained dictionary with size Nb×P, 
Nb ≤ P, for xt, described in Sec. 3.5, αti is the sparse coefficient vector with length P to be solved for bti with respect to 
the basis Dt, and τ is a non-negative parameter. Similarly, bti can be reconstructed via tittib α~D

~
= , where tiα~  is the final 

solution obtained by SpaRSA. That is, each block bti in xt can be represented as a linear combination of the atoms 
(column vectors) in Dt. Finally, the CS frame xt can be reconstructed by integrating tib

~ , i = 1, 2, …, B. 

3.5 Dictionary training for CS frame reconstruction 

If the basis for an image can be created based on the atoms of the image itself, this basis should provide much sparser 
representation for the image. Although, it is impossible to get the basis created from an image itself to be reconstructed at 
decoder, based on the general fact that the image contents of successive frames in the same scene of a video should be 
similar, a frame can be well-predicted based on its side information generated from the interpolation of its neighboring 
reconstructed frames, which has been successfully employed in DVC1. 

At DCVS decoder, for a CS frame xt, its side information It can be generated from the motion-compensated interpolation 
of its previous and next reconstructed key frames, respectively, denoted by xt-j and xt+j. Then, we use the three frames, xt-j, 
It, and xt+j to train the dictionary (basis) for this CS frame xt as follows. First, we extract Q training patches bN

i Ru ∈ , i = 
1, 2, …, Q, from xt-j, It, and xt+j, where each frame is divided into several non-overlapping blocks. For each non-
overlapping block in the three frames, we extract the 9 training patches including the nearest 8 blocks overlapping this 
block and this block itself, where each extracted patch can be viewed as a column vector with length Nb. Second, we 
apply the K-SVD algorithm16 to these Q training patches to train the dictionary Dt with size Nb×P, Nb ≤ P, for xt, where 
Dt is an overcomplete dictionary containing P atoms. With respect to Dt, each block bti in xt can be represented as a 
sparse coefficient vector αti whose length P is larger than or equal to that (Nb) of bti, but αti is usually very sparse, i.e., 
||αti||0 << Nb. Using the trained dictionary for all the blocks of a CS frame can usually provide sparser representation for 
the frame than using a fixed DWT basis. The block diagram of our DCVS can be illustrated in Figure 2. 

An illustrative example of the Foreman QCIF video sequence at measurement rate (MR, defined in Eq. (1)) = 0.3 shown 
in Figure 3 is used to demonstrate the efficiency of DCVS decoder, where the parameter settings are described in Sec. 4. 
Figure 3(a) and (b) show, respectively, an original CS frame (the 32nd frame), and its dictionary with size 256×256, 
where each atom (column vector) with length 256 in the dictionary is displayed as a block. Figure 3(c) and (d), 
respectively, show the reconstructed CS frame using the dictionary shown in Figure 3(b) and the frame-based DWT basis 
(treat this frame as a key frame). It can be observed from Figure 3 that using the trained dictionary can provide better CS 
frame reconstruction than using the DWT basis at the same MR. 

3.6 Feedback information for dynamic measurement rate allocation 

After reconstructing a key frame xt, we want to exploit the sparsity of each block in xt to estimate the sparsity of the 
spatially co-located block in the next CS frame xt+1 which will be immediately encoded at the encoder. Nevertheless, it 
should be noted that the basis (fixed DWT basis) of xt is different from that (trained dictionary) of xt+1. Hence, it is 
desired to find the sparse representation of each block in xt with respect to the basis of xt+1. Based on the assumption that 
two successive frames in a video should be similar, the sparsity with respect to the same basis of each corresponding pair 
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of blocks in the two frames should also be similar. Because the training basis of xt+1 depends on xt and its succeeding key 
frame that is unavailable before compressing xt+1, we use the dictionary trained in the previous GOP, which has existed 
at the decoder, to simulate the basis Dt of xt and find the sparse representation of each block bti with respect to Dt by 
solving Eq. (4) to get αti. The simulated basis Dt should be similar to the real basis Dt+1 used for reconstructing xt+1 to 
some extent if GOP size is small enough. We are also currently investigating the achievable performance by comparing 
with the performance upper bound when the next key frame is assumed to be available. Then, we use the sparse 
representation αti of bti to predict that (α(t+1),i) of the spatially co-located block b(t+1),i in xt+1, Bi ,1,2,K= . Actually, it is 
not easy to use the number of nonzero coefficients (obtained by performing some CS reconstruction algorithm) of the 
sparse representation of a block to estimate its real sparsity. Alternately, based on the fact that the complexity and 
sparsity of an image are highly correlated21, we propose to exploit the variance of the coefficients of each block to 
perform measurement rate allocation. Based on the variance of estimated α(t+1),i, denoted by v(t+1),i, for b(t+1),i and the 
target measurement rate MRt+1 of xt+1, we allocate the number of measurements for each block b(t+1),i as 
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it
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∑
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where N is the frame size. The allocation strategy implies that more complex (less sparse) blocks will be allocated more 
measurements, and vice versa. Then, the information including M(t+1),i will be sent back to the encoder via the feedback 
channel for compressively sampling xt+1. 

Furthermore, after reconstructing a CS frame xt, if its next frame xt+1 is also a CS frame, we just use the variance of the 
coefficients of each block in xt to estimate that of the spatially co-located block in xt+1 because the bases of the two CS 
frames in the same GOP are identical. Then, the measurements rate allocation can be similarly performed using Eq. (8), 
which will be sent back to the encoder for compressively sampling xt+1. 
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Figure 2. The block diagram of our DCVS. 

4. SIMULATION RESULTS 
In this paper, several QCIF (frame size: 176×144) video sequences (51 Y frames for each) with GOP size = 2, and 
different measurement rates (MRs) were employed to evaluate the proposed DVCS with dynamic measurement rate 
allocation (denoted by Proposed). For training the dictionary for each CS frame consisting of several non-overlapping 
16×16 blocks, the parameter settings are described as follows. The dictionary size was set to 256×256, i.e., Nb = 16×16 = 
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256 and P = 256 (atoms). In K-SVD16, the number of iterations for training was set to 10 while the number of nonzero 
coefficients used to represent each signal (block) was set to 10. Basically, the two parameters should be adjusted to adapt 
to the contents of video sequences, which will be a subject for future work. According to our simulations, the 
performances will not exhibit significant changes when the two above-mentioned parameters for K-SVD are increased, 
which will increase the complexity of dictionary training based on K-SVD. For SpaRSA7, its default parameter settings 
were used. 

    
(a)                                             (b)                                                (c)                                                    (d) 

Figure 3. Comparison of the luminance (Y) components of CS frame reconstruction between trained and fixed dictionaries: (a) The 
original 32nd frame; (b) the trained dictionary for (a); (c) the reconstructed 32nd frame with respect to the dictionary shown in (b) 
(PSNR=31.49dB); and (d) the reconstructed 32nd frame with respect to the frame-based DWT basis (PSNR=27.83dB). 

In this paper, three compressive video sensing schemes without measurement rate allocation were used for comparison 
with our global dictionary training-based DCVS scheme with measurement rate allocation. The first one is our DCVS 
without measurement rate allocation (denoted by “Proposed W/O”)15. The second one is a “Frame-DWT6” scheme. 
Under our DCVS architecture, all frames are treated as key frame (reconstructed with respect to the frame-based DWT 
basis). The third one is a “Local-Dict11-12” scheme. Based on our DCVS architecture, each block in a CS frame is 
reconstructed with respect to its corresponding local dictionary-based basis similar to the major core in the works11-12. 
Here, based on the work11, the dictionary of each block in a CS frame includes the blocks extracted from the two 
spatially corresponding square 17×17 windows, respectively, in the two neighboring reconstructed key frames without 
needing dictionary training. The characteristics of our DCVS with measurement rate allocation (Proposed) and the 
Local-Dict schemes11-12 are summarized in Table 1. Please note that we only implemented the major core of the 
schemes11-12 instead of the full system for comparison. In the simulations, the key frames with the same index in a certain 
simulation of the three schemes are all kept to be the same. That is, the three schemes mentioned above will exhibit 
different capabilities to affect the qualities of CS frames. Currently, additional complexity for dictionary training is 
required for each CS frame, which is, however, usually acceptable in a DVC scenario supporting a high-complexity 
decoder, which may be further reduced for future work. 

Table 1. Comparisons of the proposed DCVS and Local-Dict schemes. 

Scheme Proposed Local-Dict11-12 

Ingredients of 
dictionary 

Training based on the extracted 
blocks from neighboring key 
frames and side information 

Spatially neighboring blocks from 
neighboring key frames without training 

Dictionary size 256 atoms 
Spatially corresponding square window 

size × Number of neighboring key frames 
(17×17×2 = 578 atoms) 

Number of 
dictionaries 

per CS frame 
1 Number of blocks per CS frame 

(99 dictionaries for a QCIF CS frame) 

Dictionary type Global Local 
Decoding 

complexity per 
CS frame 

Dictionary training by K-SVD + 
Sparse decoding for 256 

coefficients per block 

Sparse decoding for 578 coefficients per 
block 

Measurement 
rate allocation Yes No 
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The average PSNR (dB) performances of CS frames at different MRs for the News, Foreman, and Football video 
sequences are shown in Tables 2-4, respectively, where it can be observed that the PSNR performances of the proposed 
DCVS can outperform the three schemes for comparison, especially at lower MRs and for large-motion sequences. In our 
scheme (Proposed), available measurement rates can be more efficiently utilized. It can also be observed from Table 4 
that the PSNR performances obtained from the four evaluated schemes are somewhat poor (< 25 dB). The major reasons 
include: (i) the frame contents of the Football sequence are somewhat complex, which may not be exactly sparse signals 
with respect to most bases, and (ii) the motions of the sequence are very large so that it is hard to find a good dictionary 
for a CS frame from its neighboring key frames. It is worth noting that the dictionary training of our DCVS can reveal 
some “denoising” capability to obtain a basis better than that of the Local-Dict scheme11-12 without relying on dictionary 
training. It should be noted that the ranges of PSNR values presented in this paper are lower than those presented in the 
papers11-12. The major reason is that in the papers11-12, each key frame is encoded using the H.264/AVC encoder which is 
very efficient, but also very complex and single-pixel camera-incompatible, resulting in better basis for CS frame 
reconstruction, while in this paper, all frames are encoded based on compressive sensing. 

Table 2. The performances of the News sequence. 

MR(%) 10 20 30 40 
Proposed 21.01 24.75 27.43 28.94 

Proposed W/O15 16.44 23.75 26.67 28.65 
Local-Dict11-12 15.09 22.18 25.74 28.12 
Frame-DWT6 14.85 21.87 23.93 26.24 

 

Table 3. The performances of the Foreman sequence. 

MR(%) 10 20 30 40 
Proposed 23.41 26.33 28.22 29.92 

Proposed W/O15 16.98 25.90 27.87 29.68 
Local-Dict11-12 14.80 23.94 26.82 29.40 
Frame-DWT6 13.58 22.29 24.06 26.25 

 

Table 4. The performances of the Football sequence. 

MR(%) 10 20 30 40 
Proposed 20.10 21.63 23.40 24.95 

Proposed W/O15 17.11 21.08 22.53 23.85 
Local-Dict11-12 15.08 18.45 19.47 20.72 
Frame-DWT6 15.68 20.10 22.08 24.00 

5. CONCLUSIONS 
In this paper, a distributed compressive video sensing (DCVS) framework via global dictionary-based sparse coding with 
measurement rate allocation is proposed to directly capture compressed video for CS-based single-pixel camera 
architecture. The simulation results have shown that the available measurement rates can be more efficiently utilized and 
the trained global dictionary can provide better basis for video reconstruction than using the DWT basis and local 
dictionary-based basis. For the future works, several important issues need to be investigated in depth for achieving a 
complete CS-based video coding system are descried as follows. (i) Frame-level measurement rate allocation: The 
available measurements should be adaptively allocated to each frame based on its sparsity. (ii) Measurement rate 
allocation without needing feedback channel. (iii) Adaptive measurement matrix learning: If a measurement matrix can 
be adaptively learned based on the characteristics of current signal to be captured20, the number of captured 
measurements should be reduced while preserving a certain performance. (iv) Measurement quantization22: Real 
measurement values should be properly quantized to get the best tradeoff between the number of quantization levels and 
quantization loss. (v) Bit allocation and entropy coding for measurements22-23. (vi) Fast dictionary training at the decoder. 
(vii) More efficient algorithm solving the convex optimization problem. (viii) More robust algorithm solving the convex 
optimization problem against quantization errors and transmission errors or other error resilience techniques. (ix) More 
accurate side information generation: If more accurate side information for a CS frame can be generated, the trained 
dictionary can provide much sparser representation for this frame, resulting in better compression performance. 
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On the other hand, it has been shown that the compression efficiency of CS currently cannot be comparable with 
traditional compression techniques23-24. We think the major reason is that most image/video data are not really sparse 
signals. That is, it is hard to find the optimal basis to represent an image or a video frame at decoder without knowing the 
real raw data. If the basis for an image can be created based on the atoms of the image itself, this basis should provide 
much sparser representation for the image. Even though it is impossible to get the basis created from an image itself to be 
reconstructed at decoder, our DCVS try to find good basis of the current image to be reconstructed via dictionary training 
for the atoms extracted from the neighboring reconstructed frames together with the generated side information. If the 
training samples for dictionary training can be more comprehensive (e.g., with training samples extracted from more 
temporal and/or interview reference frames and the side information generated from them), better basis should be 
obtained. Hence, we believe that CS will succeed in low-complexity image/video compression if the important issues 
described in the previous paragraph can be well-solved. 

In addition, a unique characteristic of CS is to directly capture compressed data (measurements) without temporally 
storing the complete raw data. This characteristic is beneficial to applications with limited resources for data 
acquisition23, such as wireless sensor networks25 and low-power mobile device. Although the process of data 
reconstruction from measurements is currently more computationally expensive, some applications have been shown to 
be accomplished in measurement domain, such as image retrieval26 and video surveillance operations27-28. At meanwhile, 
CS can provide computational security18 and, hence, the above-mentioned applications can be performed in 
secure/private domain. CS can also be suitable to applied to develop security technologies19,29. On the other hand, CS and 
sparse representation technologies have been shown to be useful in developing several image/video post-processing 
techniques16,17,30-35, such as denoising, deblurring, demosaicking, enhancement, restoration, super-resolution, and 
inpainting, which can be used to further enhance reconstructed image quality. CS has also been applied to data 
transmission over networks25,36. For further applications, CS and sparse representation have been applied to face 
recognition37 and object recognition38. In conclusion, compressive sensing and sparse representation technologies can be 
applicable to multimedia data acquisition, compression, transmission, security, post-processing, and several applications, 
which are worthy to be further investigated. 
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