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Abstract. In this paper, we propose some extensions of epistemic logic
for reasoning about information fusion. The fusion operators considered
in this paper include majority merging, arbitration, and general merg-
ing. Some modalities corresponding to these fusion operators are added
to epistemic logics and the Kripke semantics of these extended logics
are presented. While most existing approaches treat information fusion
operators as meta-level constructs, these operators are directly incorpo-
rated into our object logic language. Thus it is possible to reason about
not only the merged results but also the fusion process in our logics.
Key Words: Epistemic logic, database merging, belief fusion, majority
merging, arbitration, general merging, belief revision, multi-agent sys-
tems.

1 Introduction

The philosophical analysis of knowledge and belief has stimulated the develop-
ment of the so-called epistemic logic[21]. This kind of logic has attracted the
attention of researchers from diverse fields such as artificial intelligence(AI),
economics, linguistics, and theoretical computer science. Among them, the AI
researchers and computer scientists develop some technically sophisticated for-
malisms and apply them to the analysis of distributed and multi-agent sys-
tems[20, 36].

The application of epistemic logic to AI and computer science puts its em-
phasis on the interaction of agents, so multi-agent epistemic logic is urgently
needed. One representative example of such logic is proposed by Fagin et al.[20].
The term “knowledge” is used in a broad sense in [20] to cover cases of belief
and information.1 The most novel feature of their logic is the consideration of
common knowledge and distributed knowledge among a group of agents. Dis-
tributed knowledge is that which can be deduced by pooling together everyone’s
knowledge. While it is required that proper knowledge must be true, the belief of
an agent may be wrong. Therefore, in general, there will be conflict in the beliefs
to be merged. In this case, everything can be deduced from the distributed be-
liefs due to the notorious omniscience property of epistemic logic, so the merged
result will be useless for further reasoning.
1 More precisely, the logic for belief is called doxastic logic. However, here we will

use the three terms knowledge, belief, and information interchangeably, so epistemic
logic is assumed to cover all these notions.



Instead of directly putting all beliefs of the agents together, there are other
sophisticated techniques for knowledge base merging[12, 15, 25–27, 33–35]. Most
of the approaches treat belief fusion operators as meta-level constructs, so given
a set of knowledge bases, these fusion operators will return the merged results.
More precisely, a fusion operator is used to combine a set of knowledge bases
T1, T2, · · · , Tk, where each knowledge base is a theory in some logical langauge.

Some of the above-mentioned works present concrete operators that can be
used directly in the fusion process, while others stipulate the desirable prop-
erties of reasonable belief fusion operators by postulates. However, few of the
approaches provide the capability of reasoning about the fusion process. In this
paper, we propose that belief fusion operators can be incorporated into the ob-
ject language of the multi-agent epistemic logic, so we can reason not only with
the merged results but also about the fusion process.

1.1 Preliminary

Let L denote the language of epistemic logic. The alphabet of L contains the
following symbols: a countable set Φ0 = {p, q, r, . . .} of atomic propositions; the
propositional constants ⊥ (falsum or falsity constant) and > (verum or truth
constant); the binary Boolean operator ∨ (or), and unary Boolean operator ¬
(not); a set Ag = {1, 2, . . . , n} of agents; the modal operator-forming symbols
“[” and “]”; and the left and right parentheses “(” and “)”.

The set of well-formed formulas(wffs)is defined as the smallest set containing
Φ0 ∪ {⊥,>} and closed under Boolean operators and the following rule:

if ϕ is a wff, then [G]ϕ is a wff for any nonempty G ⊆ Ag.

The intuitive meaning of [G]ϕ is “The group of agents G has distributed belief
ϕ”

As usual, other classical Boolean connectives ∧ (and), ⊃ (implication), and
≡ (equivalence) can be defined as abbreviations. Also, we will write 〈G〉ϕ as an
abbreviation of ¬[G]¬ϕ. When G is a singleton {i}, we will write [i]ϕ instead of
[{i}]ϕ, so [i]ϕ means that agent i knows ϕ.

For the semantics, a possible world model for L is a structure

(W, (Ri)1≤i≤n, V ),

where

– W is a set of possible worlds,
– Ri ⊆W ×W is a serial binary relation2 over W for 1 ≤ i ≤ n,
– V : Φ0 → 2W is a truth assignment mapping each atomic proposition to the

set of worlds in which it is true.

From the binary relations Ri’s, we can define a derived relation RG for each
nonempty G ⊆ Ag:

RG = ∩i∈GRi.

2 A binary relation R is serial if ∀w∃u.R(w, u).



Informally, Ri(w) is the set of worlds that agent i considers possible under w
according to his belief, so RG(w) is the set of worlds that are considered possible
under w according to the direct fusion of agents’ beliefs. The informal intuition is
reflected in the definition of the satisfaction relation. Let M = (W, (Ri)1≤i≤n, V )
be a model and Φ be the set of wffs for L, then the satisfaction relation |=M⊆
W × Φ is defined by the following inductive rules(we will use the infix notation
for the relation and omit the subscript M for convenience):

1. w |= p iff w ∈ V (p), for each p ∈ Φ0,
2. w 6|=M ⊥ and w |=M >,
3. w |= ¬ϕ iff w 6|= ϕ,
4. w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ,
5. w |= [G]ϕ iff for all u ∈ RG(w), u |= ϕ.

In the presentation below, we will extensively use the notions of pre-order.
Let S be a set, then a pre-order over S is a reflexive and transitive binary relation
≤ on S. A pre-order over S is called total (or connected) if for all x, y ∈ S, either
x ≤ y or y ≤ x holds. We will write x < y as the abbreviation of x ≤ y and y 6≤ x.
For a subset S′ of S, min(S′,≤) is defined as the set {x ∈ S′ | ∀y ∈ S′, y 6< x}.

2 Merging by Majority

Majority voting is a method to resolve conflict between agents. For example, if
three knowledge bases T1 = {ϕ}, T2 = {ϕ}, and T3 = {¬ϕ} are combined, then
the result would be {ϕ}, since two vote for ϕ, whereas only one votes against it.

One of the most general merging functions based on majority is defined
in [34]. A function Merge is applied to weighted knowledge bases. Let wt :
{T1, T2, · · · , Tk} → R+ be a weight function which assigns a positive real num-
ber to each component knowledge base, then a total pre-order over the set of
propositional interpretations is defined as:

w �({T1,T2,···,Tk},wt) w
′ iff

k∑
i=1

dist(w, Ti) · wt(Ti) ≤
k∑
i=1

dist(w′, Ti) · wt(Ti),

where dist is a function denoting the distance between a propositional inter-
pretation and a knowledge base. When the propositional language is finite, the
so-called Dalal distance (or Hamming distance) between two interpretations of
the language is used[16]. It is defined as the number of atoms whose valuations
differs in the two interpretations. Let dist(w,w′) denote the Dalal distance be-
tween two interpretations w and w′, then the distance from w to a theory T ,
denoted by dist(w, T ), is defined as:

dist(w, T ) = min{dist(w,w′) | w′ |= T}.

The merged result Merge(T1, T2, · · · , Tk, wt) is defined as:

{ϕ | ∀w ∈ min(Ω,�), w |= ϕ},



where Ω is the set of all propositional interpretations and � is �({T1,T2,···,Tk},wt).
This kind of weighted merging operator can be incorporated into epistemic

logic in the following way. Syntactically, a new class of modal operators [M(G,wt)]
for any nonempty G ⊆ {1, 2, · · · , n} and weight function wt : Ag → R+ is
added to our logic language. Then the semantics for the new modal opera-
tors is defined by extending a possible world model to (W, (Ri)1≤i≤n, V, µ),
where (W, (Ri)1≤i≤n, V ) is an L model, whereas µ : W × W → R+ ∪ {0} is
a distance metric function between possible worlds satisfying µ(w,w) = 0 and
µ(w,w′) = µ(w′, w).

The distance metric between possible worlds is defined as in the semantics
of conditional logic[37, 40]. The distance from a possible world w to the belief
state of an agent i in the possible world u is defined by:

distu(w, i) = inf{µ(w,w′) | (u,w′) ∈ Ri}.

Then a total pre-order�u(G,wt) over the possible worlds is defined for each possible
world u and modal operator [M(G,wt)]:

w �u(G,wt) w
′ iff

∑
i∈G

distu(w, i) · wt(i) ≤
∑
i∈G

distu(w′, i) · wt(i).

The most straightforward definition for the satisfaction of the wff [M(G,wt)]ϕ
is:

u |= [M(G,wt)]ϕ iff for all w ∈ min(W,�u(G,wt)), w |= ϕ.

However, since for infinite W , the set min(W,�u(G,wt)) may be empty, the defini-
tion may result in u |= [M(G,wt)]⊥ in some cases. Alternatively, since �u(G,wt) is
a total pre-order, it is simply a system-of-spheres in the semantics of conditional
logic[37], so we can define the satisfaction of the wff [M(G,wt)]ϕ by

u |= [M(G,wt)]ϕ iff there exists w0 such that for all w �u(G,wt) w0, w |= ϕ.

Note that the function wt is used only for encoding the reliability of agents.
It is tempting to propagate the weights into a group of agents so that we have
a weight wt(G) for each group G. This weight may be useful in the belief fusion
of two groups of agents. However, we do not really need this because if we want
to merge the beliefs of two groups G1 and G2, we can simply merge the beliefs
of agents in G1 ∪G2.

3 Arbitration

The notion of distance measure between possible worlds is also used in arbitra-
tion, another type of merging operator [32, 38, 39].

A semantic characterization for arbitration is given in [32]. A knowledge
base in [32] is identified with a set of propositional models, thus the semantic
characterization for this kind of arbitration is given by assigning to each subset of
models A a binary relation ≤A over the set of model sets satisfying the following
conditions (the subscript is omitted when it means all binary relations of the
form ≤A):



1. transitivity: if A ≤ B and B ≤ C then A ≤ C,
2. if A ⊆ B then B ≤ A,
3. A ≤ A ∪B or B ≤ A ∪B,
4. B ≤A C for every C iff A ∩ C 6= ∅,

5. A ≤C∪D B ⇔
{
C ≤A∪B D and A ≤C B or
D ≤A∪B C and A ≤D B.

By slightly abusing the notation, ≤A may also denote binary relations between
models in the sense that w ≤A w′ iff {w} ≤A {w′}. The arbitration between two
sets of models A and B is then defined as:

A4B = min(A,≤B) ∪min(B,≤A). (1)

To incorporate the arbitration operator of [32] into epistemic logic, we first
note that according to (1), the arbitration is commutative but not necessarily
associative. Thus, the arbitration operator should be a binary operator between
two agents. We can add a class of modal operators for arbitration into our logic
just as in the case of majority merging. However, to be more expressive, we will
also consider the interaction between arbitration and other epistemic operators,
so we define the set of arbitration expressions over Ag recursively as the smallest
set containing Ag and closed under the binary operators +, ·, and 4. Here + and
· correspond respectively to the distributed belief and the so-called “everybody
knows” operators in multi-agent epistemic logic[20]. Then the operator [G] in
epistemic logic can be replaced with a new class of modal operators [a] where a
is an arbitration expression.

For the semantics, a model is extended to (W, (Ri)1≤i≤n, V,≤), where ≤
is a function assigning to each subset of possible worlds A a binary relation
≤A⊆ 2W ×2W satisfying the above-mentioned five conditions. Note that the first
two conditions imply that ≤A is a pre-order over 2W . Then for each arbitration
expression, we can define the binary relations Ra4b,Ra·b and Ra+b over W
recursively by:

Ra4b(w) = min(Ra(w),≤Rb(w)) ∪min(Rb(w),≤Ra(w))

Ra+b = Ra ∩Rb

Ra·b = Ra ∪Rb

Thus the satisfaction for the wff [a]ϕ is defined as:

u |= [a]ϕ iff for all w ∈ Ra(u), w |= ϕ.

Note that the original distributed belief operator [G] is equivalent to [i1 + (i2 +
· · · (ik−1 + ik))] if G = {i1, i2, · · · , ik}. Furthermore, it has been shown that the
only associative arbitration satisfying postulates 7 and 8 of [32] is A4B = A∪B,
so if 4 is an associative arbitration satisfying those postulates, then [a4b]ϕ is
reduced to [a · b]ϕ, which is in turn equivalent to [a]ϕ ∧ [b]ϕ.

By this kind of modal operators, the postulates 2-8 of [32] can be translated
into the following axioms:



1. [a4b]ϕ ≡ [b4a]ϕ,
2. [a4b]ϕ ⊃ [a+ b]ϕ,
3. ¬[a+ b]⊥ ⊃ ([a+ b]ϕ ⊃ [a4b]ϕ),
4. [a4b]⊥ ⊃ [a]⊥ ∧ [b]⊥,
5. ([a4(b · c)]ϕ ≡ [a4b]ϕ) ∨ ([a4(b · c)]ϕ ≡ [a4c]ϕ) ∨ ([a4(b · c)]ϕ ≡ [(a4b) ·

(a4c)]ϕ),
6. [a]ϕ ∧ [b]ϕ ⊃ [a4b]ϕ,
7. ¬[a]⊥ ⊃ ¬[a+ (a4b)]⊥.

However, since the set of possible worlds W may be infinite in our logic, the
minimal models in (3) may not exist, so the axioms 4 and 7 are not sound with
respect to the semantics. To make them sound, we must add the following limit
assumption[2] to the binary relations ≤A for any A ⊆W :

for any nonempty U ⊆W , min(U,≤A) is nonempty.

4 General Merging

In [26], an axiomatic framework unifying the majority merging and arbitration
operators is presented. A set of postulates common to majority and arbitration
operators is first proposed to characterize the general merging operators and then
additional postulates for differentiating them are considered respectively. In that
framework, a knowledge base is also a finite set of propositional sentences. The
general merging operator is defined as a mapping from a multi-set3 of knowledge
base, called a knowledge set , to a knowledge base. Therefore, the arbitration
operator defined via this approach can merge more than two knowledge bases,
whereas the definition of arbitration operator in [32] is limited to two knowledge
bases. The merging operator is denoted by 4, so for each knowledge set E, 4(E)
is a knowledge base. Two equivalent semantic characterizations are also given
for the merging operators. One is based on the so-called syncretic assignment .
A syncretic assignment maps each knowledge set E to a pre-order ≤E over
interpretations such that some conditions reflecting the postulated properties
of the merging operators must be satisfied. Then 4(E) is the knowledge base
whose models are the minimal interpretations according to ≤E .

This logical framework is further extended to dealing with integrity con-
straints in [27]. Let E be a knowledge set and ϕ be a propositional sentence de-
noting the integrity constraints, then the merging of knowledge bases in E with
integrity constraint ϕ, 4ϕ(E), is a knowledge base which implies ϕ. The models
of 4ϕ(E) are characterized by min(Mod(ϕ),≤E), i.e., the minimal models of ϕ
with respect to the ordering ≤E . 4ϕ(E) is called an IC merging operator. Ac-
cording to the semantics, it is obvious that 4(E) is a special case of IC merging
operator 4>(E). It is also shown that when E contains exactly one knowledge
base, the operator is reduced to the AGM revision operator proposed in [1].

3 A multi-set, also called a bag, is a collection of elements over some domain which
allows multiple occurrences of elements.



Therefore, IC merging is general enough to cover majority merging, arbitration,
and AGM revision operator.

To incorporate IC merging operators into epistemic logic, we will extend its
syntax with the following formation rule:

– if ϕ and ψ are wffs, then for any nonempty G ⊆ {1, 2, . . . , n}, [4ϕ(G)]ψ is
also a wff.

For the convenience of naming, we will call a subset of possible worlds a be-
lief state. Let U = {U1, U2, . . . , Uk} denote a multi-set of belief states, then⋂
U = U1 ∩ · · ·Uk. For the semantics, a possible world model is extended to

(W, (Ri)1≤i≤n, V,≤), where ≤ is an assignment mapping each multi-set of belief
states U to a total pre-order ≤U over W satisfying the following conditions:

1. If w,w′ ∈
⋂
U , then w ≤U w′,

2. If w ∈
⋂
U and w′ 6∈

⋂
U then w <U w

′,
3. For any w ∈ U1, there exists w′ ∈ U2, such that w′ ≤{U1,U2} w, where U1

and U2 are two belief states,
4. If w ≤U1 w

′ and w ≤U2 w
′, then w ≤U1tU2 w

′, where t denotes the union of
two multi-sets,

5. If w <U1 w
′ and w ≤U2 w

′, then w <U1tU2 w
′.

These conditions are model-theoretic correspondences of those for syncretic as-
signments in [26, 27]. Condition 1 says that possible worlds appearing in the
belief states of all agents are equally plausible. Condition 2 asserts that a pos-
sible worlds appearing in the belief states of all agents is more plausible than
those not. Condition 3 requires that all agents are treated fairly. Therefore, if
agent 1 considers w possible, then w is not more plausible than all worlds in the
belief state of agent 2. Conditions 4 and 5 essentially require that if two groups
of agents agree on the ordering between w and w′, then the united group of these
two groups does not reverse the ordering.

For a group of agents G and a possible world u, let us define a total pre-order
≤uG over W as follows:

w ≤uG w′ iff w ≤{Ri(u)|i∈G} w
′.

The truth condition of [4ϕ(G)]ψ is defined as that for conditional logic[10, 9].
Formally, u |= [4ϕ(G)]ψ iff

(i) there are no possible worlds in W satisfying ϕ, or
(ii) there exists w0 ∈W such that w0 |= ϕ and for any w ≤uG w0, w |= ϕ ⊃ ψ.

Note that in IC merging, a knowledge set consists of a multi-set of objec-
tive sentences, whereas for the modal operator [4ϕ(G)], G is a set of agents
whose beliefs may contain subjective sentences or beliefs of other agents. Also,
an integrity constraint in [27] must be an objective sentence, whereas ϕ may be
arbitrary complex wffs of our extended language. Furthermore, instead of select-
ing minimal models of ϕ, since the set of possible worlds may be infinite in our
case, we adopt the system-of-spheres semantics as in section 2 for the epistemic
operator [4ϕ(G)].



5 Belief Change

Unlike knowledge merging, where the component knowledge bases are equally
important, belief change is a kind of asymmetry operator, where new information
always outweighs the old. The main belief change operators are belief revision
and update. They are characterized by different postulates[1, 23, 24]. In [23], a
uniform model-theoretic framework is provided for the semantic characterization
of the revision and update operators. In that context, a knowledge base is a
finite set of propositional sentences, so it can also be represented by a single
sentence(i.e., the conjunction of all sentences in the knowledge base).

For the revision operator, it is assumed that there is a total pre-order ≤ψ
over the propositional interpretations for each knowledge base ψ. The revision
operators satisfying the AGM postulates in [1] are exactly those that select
from the models of the new information ϕ the minimal ones with respect to the
ordering ≤ψ. More precisely, let ψ be a knowledge base and ϕ denote the new
information, then the result of revising ψ by ϕ, denoted by ψ ◦ ϕ, will have the
set of models

Mod(ψ ◦ ϕ) = min(Mod(ϕ),≤ψ).

As for the update operator, assume for each propositional interpretation w,
there exists some partial pre-order ≤w over the interpretations for closeness to
w, then update operators select for each model w in Mod(ψ) the set of models
from Mod(ϕ) that are closest to w. The updated theory is characterized by the
union of all such models. That is,

Mod(ψ � ϕ) =
⋃

w∈Mod(ψ)

min(Mod(ϕ),≤w),

where ψ � ϕ is the result of updating the knowledge base ψ by ϕ.
Both belief revision and update may occur in the observation of new infor-

mation ϕ. For belief revision, it is assumed that the world is static, so if the
new information is incompatible with the agent’s original beliefs, then the agent
may have an incorrect belief about the world. Thus he will try to accommodate
the new information by minimally changing his original beliefs. However, for the
belief update, it is assumed that the observation may be due to dynamic changes
of the outside world, so the agent’s belief may be out-of-date, though it may be
totally correct for the original world. Thus the agent will assume the possible
worlds are those resulting from the minimal change of the original world. In [11],
a generalized update model is proposed which combines aspects of both revision
and update. It is shown that a belief update model will be inadequate without
modelling the dynamic aspect (i.e. the events causing the update) in the same
time. Since the dynamic change of the external worlds does not play a role in
the belief fusion process, we will not model belief update in our logic. Therefore,
in what follows, we will concentrate on the belief revision operator.

Let us now consider the possibility of incorporating the belief revision op-
erator into epistemic logic. In addition to the original meaning of revising a
knowledge base ψ by new information ϕ, there is an alternative reading for the



revision operator. That is, we can consider ◦ as a prioritized belief fusion oper-
ator that gives priority to its second argument[22]. In the context of knowledge
base revision, these two interpretations are essentially equivalent. However, from
the perspective of our logic in multi-agents systems, they may be quite different.
Roughly speaking, i◦ϕ will denote the result of revising the beliefs of agent i by
new information ϕ, whereas i ◦ j is the result of merging the beliefs of agents i
and j by giving priority to j. More formally, a revision expression will be defined
inductively as follows:

– If 1 ≤ i, j ≤ n and ϕ is a wff, then i ◦ j and i ◦ ϕ are revision expressions.
– If r is a revision expression, 1 ≤ i ≤ n and ϕ is a wff, then r ◦ i and r ◦ϕ are

revision expressions.

The syntactic rule is extended to include the modal operators [r] for any revision
expression r, so [r]ϕ would be a wff if ϕ is. Note that a revision expression allows
us to represent a revision sequence, which is directly related to iterated revision
in [8, 17].

To interpret the modal operator in our semantic framework, a possible world
model is extended to (W, (Ri)1≤i≤n, V,≤), where ≤ is an assignment mapping
each belief state (i.e. subset of possible worlds) U to a total pre-order ≤U over
W such that (i) if w,w′ ∈ U , then w ≤U w′ and (ii) if w ∈ U and w′ 6∈ U , then
w <U w′. Let S·U denote the sequence (U1, U2, · · · , Uk, U) if S = (U1, U2, · · · , Uk)
is a sequence of belief state, then the assignment ≤ is extended to sequences of
belief states in the following way (we assume ≤(U)=≤U ):

1. w <S·U w′ if w ∈ U and w′ 6∈ U ,
2. w ≤S·U w′ iff w ≤S w′ when both w,w′ ∈ U or both w,w′ 6∈ U .

For each wff ϕ, let the truth set of ϕ, denoted by |ϕ|, be defined as {w ∈ W |
w |= ϕ}. For each possible world u, define a function mapping any agent i and
revision expression r into a sequence of belief states u(i) and u(r) as follows:

1. u(i) = (Ri(u)),
2. u(r ◦ i) = u(r) · Ri(u),
3. u(r ◦ ϕ) = u(r) · |ϕ|.

Then the truth condition for the wff [r ◦ ϕ]ψ is u |= [r ◦ ϕ]ψ iff

(i) there are no possible worlds in W satisfying ϕ, or
(ii) there exists w0 ∈W such that w0 |= ϕ and for any w ≤u(r) w0, w |= ϕ ⊃ ψ.

Analogously, the truth condition for the wff [r ◦ i]ψ is

u |= [r ◦ i]ψ iff there exists w0 ∈ Ri(u) such that for any w ≤u(r) w0, if
w ∈ Ri(u), then w |= ψ.

It can be seen that [i ◦ϕ]ψ is equivalent to [4ϕ({i})]ψ in section 4 according to
the semantics.



6 Concluding Remarks

In preceding sections, we assume an agent’s belief states are represented as a
subset of possible worlds, i.e. Ri(w) is the belief state of agent i in world w.
However, some more fine-grained representations have been also proposed, such
as total pre-orders over the set of possible worlds [8, 17, 28, 41], ordinal condi-
tional functions [11, 43, 44], possibility distributions[3, 18, 19], belief functions[42]
and pedigreed belief states[22]. Further development of logical systems that in-
corporate fusion operators based on more fine-grained representations of belief
states should be a very interesting research direction.

We mainly present the semantics of epistemic logics for information fusion in
this paper. However, to do practical reasoning, we must develop proof methods
for these logics. There have been some previous works on the development of
axiomatic or Gentzen-style calculi for information fusion. For example, in [4–
7], logics for information fusion based on possibility theory are proposed. The
Hilbert-style or Gentzen-style proof systems of those logics are also presented. In
particular, the logic PL⊗n in [4] is an extension of QML in [29–31] with distributed
belief operator, so the fusion operator in PL⊗n is different than the merging
operators used in this paper. The axiomatic system and theorem prover for a
majority fusion logic MF have also been developed in [13, 14]. The belief bases
in MF are sets of literals, so it does not allow nested modalities as in our logics.
In spite of these differences, the further development of proof theory for logics
proposed in this paper could take these previous works as good starting points.
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L. Pólos, editors, Knowledge Representation and Reasoning under Uncertainty,
LNCS 808, pages 183–196. Springer-Verlag, 1994.

13. L. Cholvy and Ch. Garion. “A logic to reason with contradictory beliefs with a
majority approach”. In Proceedings of the IJCAI Workshop on Inconsistency in
Data and Knowledge, 2001.

14. L. Cholvy and Ch. Garion. “Answering queries addressed to several databases: a
query evaluator which implements a majority merging approach”. In M.-S. Hacid,
Z.W. Ra, and D.A. Zighed andY. Kodratoff, editors, Proc of 13th International
Symposium on Methodologies for Intelligent Systems, LNAI 2366, pages 131–139.
Springer-Verlag, 2002.

15. L. Cholvy and A. Hunter. “Information fusion in logic: A brief overview”. In
Qualitative and Quantitative Practical Reasoning(ECSQARU’97/FAPR’97), LNAI
1244, pages 86–95. Springer-Verlag, 1997.

16. M. Dalal. “Investigations into a theory of knowledge base revision: Preliminary
report”. In Proceedings of the 7th National Conference on Artificial Intelligence,
pages 475–479. AAAI Press, 1988.

17. A. Darwiche and J. Pearl. “On the logic of iterated belief revision”. Artificial
Intelligence, 89(1):1–29, 1997.

18. D. Dubois and H. Prade. “Belief change and possibility theory”. In P. Gärdenfors,
editor, Belief Revision, pages 142–182. Cambridge University Press, 1992.

19. D. Dubois and H. Prade. “Possibility theory in information fusion”. In Proc. of
the Third International Conference on Information Fusion, pages TuA–1, 2000.

20. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge.
MIT Press, 1996.

21. J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.
22. P. Maynard-Reid II and Y. Shoham. “Belief fusion: Aggregating pedigreed belief

states”. Journal of Logic, Language and Information, 10(2):183–209, 2001.
23. H. Katsuno and A. Medelzon. “On the difference between updating a knowledge

base and revising it”. In Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning (KR’91), pages 387–394.
Morgan Kaufmann Publisher, 1991.

24. H. Katsuno and A. Medelzon. “Propositional knowledge base revision and minimal
change”. Artificial Intelligence, 52:263–294, 1991.

25. S. Konieczny. “On the difference between merging knowledge bases and combining
them”. In Proceedings of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’00)., pages 135–144. Morgan Kauf-
mann Publisher, 2000.
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