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1. Introduction

Recently, knowledge discovery in databases (KDD) and its kernel data mining have received more and
more attention for practical applications. While the mainstream research of data mining concentrates
on the design of ef£cient algorithms for extracting knowledge from databases, the question to close the
semantic gap between structured data and human-comprehensible conceptshas been a lasting challenge
for the research community [25]. This is called the interpretability problem of intelligent data analysis
in [25]. Since the discovered knowledge is useful for a human user onlywhen he can understand its
meaning, the knowledge representation formalism will play an important role in the utilization of the
induced rules.

Many different forms of knowledge have been considered by the KDD researchers, notably, the asso-
ciation rules and sequential patterns [1, 2]. However, it is in general dif£cult to integrate the discovered
patterns and traditional AI systems. The main reason is that the inference engine of AI systems usually
employ a logic-based knowledge representation, which is quite different from the specialized patterns
discovered by a £xed data mining algorithm. Therefore, a uniform interfacebetween the discovery and
utilization of knowledge is urgently needed. The interface will transform thediscovered patterns into the
knowledge based on the logical formalism employed by the AI system(Figure 1).

Figure 1. An interface is needed between the KDD and AI systems

The advantages of the logic-based representation for data mining have also been observed in the past
[15].

. . . a coherent formalism, capable of dealing uniformly with induced knowledgeand
background, or domain, knowledge, would represent a breakthrough in the design and de-
velopment of decision support systems, in diverse application domains.The advantages of
such an integrated formalism are, in principle:

• a high degree of expressiveness in specifying expert rules, or business rules;

• the ability to formalize the overall KDD process, thus tailoring a methodology to a
speci£c class of applications;
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• the separation of concerns between the speci£cation level and the mappingto the un-
derlying databases and data mining tools.

The rough set theory proposed by Pawlak provides an effective toolfor extracting knowledge from
data tables [47]. In fact, many powerful data mining algorithms have been proposed based on the rough
set theory(for example, see papers in [55, 56, 49] for some recent progress). To represent and reason
about the extracted knowledge, a decision logic (DL) is also proposed in [47]. The semantics of the logic
is de£ned in a Tarskian style through the notions of models and satisfaction.

Due to the following two reasons, DL is a good candidate to serve as the bridge between the KDD
and AI systems: On the one hand, the data mining algorithms based on rough set theory usually extract
rules which can be easily represented in the syntactical form of DL language. On the other hand, the
semantic similarity between DL and Classical logic makes it easier to integrate the mined results into
knowledge-based systems.

While DL can be considered as an instance of classical logic in the context of data tables, different
generalizations of DL corresponding to some non-classical logics are also desirable from the knowl-
edge representation viewpoint. For example, to deal with uncertain or incomplete information, some
generalized decision logics have been proposed in [10, 31, 32, 63, 64].

These generalized decision logics, however, mostly focus on the representation of knowledge from
a single data table. Though in principle, all data can be put into a single table, itis sometimes more
natural to represent them by a collection of data tables. For example, in an enterprise database, the
business transaction records may be stored as a collection of data tables indexed by dates. To extract
knowledge from such structured data tables, we need richer representation languages than the decision
logic. Among the traditional logical tools, modal logic would be one of the most appropriate candidates
that can meet the requirement since it is a logic for reasoning about relations in a broad sense [4], whereas
the knowledge extracted from multiple data tables is usually concerned with the relationship of objects
across different tables. The objective of this paper is to present sucha formulation of modal decision
logics based on multiple data tables.

In the next section, we £rst review the decision logic proposed by Pawlak.A general modal decision
logic(MDL) is presented in section 3, which is followed by three case studies. They are respectively the
uncertain, epistemic, and temporal decision logic. In each case, the syntaxand semantics of the logics
are presented and some illustrative examples are given. In section 5, the notion of fuzzy decision logic is
reviewed and combined with the modal decision logic. It is shown that the combined formalism provides
a natural representation of fuzzy sequential patterns. Finally, the summary is given in the concluding
section and some further research directions are also pointed out.

2. Review of Decision Logic

In data mining tasks, a data table(DT) is taken as a regular approach for thestorage of data. A formal
de£nition of data table is given in [47].

De£nition 1. A data table1 is a triplet

T = (U, A, {aT | a ∈ A})

1Also called knowledge representation system, information system, or attribute-value system
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where

• U is a nonempty £nite set, called the universe,

• A is a nonempty £nite set of primitive attributes, and

• for eacha ∈ A, aT : U → Va is a total function, whereVa is the domain of values fora. Usually,
we will simply writea instead ofaT for the functions.

Given a data tableT , we will denote its universeU and attribute setA by Uni(T ) and Att(T )
respectively.

In [47], a decision logic(DL) is proposed for the representation of the knowledge discovered from
data tables. The logic is called decision logic because it is particularly usefulin a special kind of data
table, calleddecision table.A decision table is a data tableT = (U, C ∪ D, {aT | a ∈ C ∪ D}), where
Att(T ) can be partitioned into two setsC and D, called condition attributes and decision attributes
respectively. By data analysis, decision rules relating the condition and thedecision attributes can be
derived from the table. A rule is then represented as an implication between formulas of the logic.
Nevertheless, for a general data table, the acronym DL can also denotedata logic.

The basic alphabet of a DL consists of a £nite set of attribute symbolsA and fora ∈ A, a £nite set
of value symbolsVa. The syntax of DL is then de£ned as follows:

De£nition 2.

1. An atomic formula of DL is a descriptor(a, v), wherea ∈ A andv ∈ Va.

2. The well-formed formulas (wff) of DL is the smallest set containing the atomicformulas and
closed under the Boolean connectives¬,∧, and∨.

A data tableT = (U, A, {aT | a ∈ A}) is an interpretation for a given DL if there is a bijection
f : A → A such that for everya ∈ A, Vf(a) = Va. Thus, by somewhat abusing the notation, we will
usually denote an atomic formula as(a, v), wherea ∈ A andv ∈ Va, if the data tables are clear from
the context. Intuitively, each element in the universe of a data table corresponds to a data record and an
atomic formula, which is in fact an attribute-value pair, describes the value ofsome attribute in a data
record. Thus the atomic formulas (and so the wffs) can be veri£ed or falsi£ed in a data record. This gives
rise to a satisfaction relation between the universe and the set of wffs.

De£nition 3. Given a DL and an interpretationT = (U, A, {aT | a ∈ A}) for it, the satisfaction relation
|= betweenx ∈ U and wffs of DL is de£ned inductively as follows:

1. (T, x) |= (a, v) iff a(x) = v

2. (T, x) |= ¬ϕ iff (T, x) 6|= ϕ

3. (T, x) |= ϕ ∧ ψ iff (T, x) |= ϕ and(T, x) |= ψ

4. (T, x) |= ϕ ∨ ψ iff (T, x) |= ϕ or (T, x) |= ψ
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If ϕ is a DL wff, the setmT (ϕ) de£ned by

mT (ϕ) = {x ∈ U | (T, x) |= ϕ}, (1)

is called the meaning of the formulaϕ in T . If T is understood, we simply writem(ϕ).

A formula ϕ is said to be valid in a data tableT , written T |= ϕ or |= ϕ for short whenT is clear
from the context, if and only ifm(ϕ) = U . That is,φ is satis£ed by all individuals in the universe.

A DL wff talks about the properties of individuals in the universe, so it is satis£ed by some indi-
viduals but falsi£ed by the others. However, the mined knowledge is usually regarding the aggregated
or statistical information of all individuals. Obviously, the wffs valid in a data table represent a kind
of knowledge that can be induced from the table since they hold for all individuals. However, not all
kinds of useful information are in the form of valid wffs. Sometimes, even probabilistic rules are very
useful from the viewpoint of knowledge discovery. To quantify the usefulness of the mined rules, some
measures have been proposed in [63, 65].

In contrast with DL, where extra meta-level measures must be attached to thewffs, these measures
can also be internalized to the language by the so-called generalized quanti£ers [13, 26]. This is the
approach adopted by the monadic observational predicate calculus(MOPC) in [16]. A wff in DL corre-
sponds to the open formula of MOPC, however, there is no counterpart for the closed formulas of MOPC
in DL as yet. To de£ne the corresponding extension in DL, let us call the above-de£ned DL wffs indi-
vidual formulas and £x a set of unary and binary quanti£ers in advance, then theaggregate formulasfor
a data tableT are de£ned by the following formation rules:

1. if ϕ is an individual formula andq is an unary quanti£er, then(q)ϕ is an aggregate formula,

2. if ϕ andψ are individual formulas andq is a binary quanti£er, then(q)(ϕ, ψ) is an aggregate
formula,

3. if ϕ andψ are aggregate formulas, so are¬ϕ, ϕ ∧ ψ, andϕ ∨ ψ

Sometimes, we will use the in£x notationϕqψ instead of(q)(ϕ, ψ) for a binary quanti£erq. Each
quanti£erq is interpreted by its truth functionTrq according to [16]. For each unary quanti£erq, Trq :
N2 → {0, 1} is a 2-place function from natural numbers to{0, 1} and for the binary one,Trq : N4 →
{0, 1} is a four-place function. Then the satisfaction of an aggregate formula withrespect to a data table
T is de£ned as follows:

1. T |= (q)ϕ iff Trq(|m(ϕ)|, |m(¬ϕ)|) = 1,

2. T |= (q)(ϕ, ψ) iff Trq(|m(ϕ ∧ ψ)|, |m(ϕ ∧ ¬ψ)|, |m(¬ϕ ∧ ψ)|, |m(¬ϕ ∧ ¬ψ)|) = 1,

3. T |= ¬ϕ, T |= ϕ∧ψ, andT |= ϕ∨ψ are de£ned inductively as in the case of individual formulas.

Note that the classical quanti£ers∀ and∃ are de£ned with truth functionsTr∀(n1, n2) = 1 iff n2 = 0
andTr∃(n1, n2) = 1 iff n1 > 0.
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3. General Modal Decision Logic

Just like the models of DL are data tables, those for modal decision logic (MDL) will be structured sets
of data tables.

De£nition 4. Let I andJ be two £xed sets of indices, then a structured set of data tables (SSDT) is a
pair

S = ({Ti | i ∈ I}, {Rj | j ∈ J}),

where eachTi is a data table and eachRj is a binary relation over{Ti | i ∈ I}.

In this paper, we will consider only the SSDTS = ({Ti | i ∈ I}, {Rj | j ∈ J}) satisfying the
following assumptions:

• £xed attribute assumption:

∀i, j ∈ I, Att(Ti) = Att(Tj),

namely, we assume the data tables in an SSDT are homogeneous.

• constant domain assumption:

∀i, j ∈ I, Uni(Ti) = Uni(Tj).

In other words, we assume the set of individuals stays unchanged between different data tables.

• £nite table assumption:I is £nite. This is a practical assumption since we will consider only a
£nite amount of data in the knowledge discovery process.

It seems that these assumptions are restrictive. However, the £rst two assumptions can be relaxed.
We will discuss them further in the concluding section.

The syntax of MDL is an extension of DL with the following rule:

• if ϕ is an individual (resp. aggregate) formula, so are[j]ϕ and〈j〉ϕ for anyj ∈ J .

Given an SSDTS = ({Ti | i ∈ I}, {Rj | j ∈ J}), the satisfaction of individual formulas are de£ned
by

1. (Ti, x) |=S [j]ϕ iff for all T such that(Ti, T ) ∈ Rj , (T, x) |=S ϕ

2. (Ti, x) |=S 〈j〉ϕ iff there existsT such that(Ti, T ) ∈ Rj and(T, x) |=S ϕ

3. the satisfaction of classical formulas is de£ned as in the case of DL.

The satisfaction of aggregate formulas can be analogously de£ned and is denoted byT |=S ϕ. An
aggregate formulaϕ is said to be valid in an SSDTS, denoted by|=S ϕ, if T |=S ϕ for each data table
in S.
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4. Case Studies

In MDL, there is a set of modal operators[j] which are interpreted semantically by the binary relationsRj

over the data tables of an SSDT, however, it remains unspeci£ed how the binary relations are constructed.
In the following sections, we will study some cases in which the binary relationsbetween data tables arise
naturally from the application problems.

4.1. Uncertain decision logic

We consider the application of MDL to the problem regarding uncertain data tables. The approach we
adopt here is somewhat related to that given in [45, 46].

De£nition 5. An uncertain data table is a triplet

T = (U, A, {aT | a ∈ A})

where

• U andA are de£ned as in the standard data tables and

• for eacha ∈ A, aT : U → (2V
a − {∅}) is a set-valued function, whereVa is the domain of values

for a.

For eachx ∈ U , aT (x) denotes the set of possible values for its attributea. SinceaT (x) may
contain more than one values, this means that we do not have the exact knowledge about what the value
is. In particular, ifaT (x) = Va, then we have null information for the particularx on its attributea.
Given an uncertain data tableT = (U, A, {aT | a ∈ A}), a possible realizationof T is a data table
T ′ = (U, A, {aT ′ | a ∈ A}) such that for anyx ∈ U anda ∈ A, aT ′(x) ∈ aT (x). Let Ξ(T ) denote the
set of all possible realizations ofT , then the SSDT forT is de£ned as

S = (Ξ(T ), Ru)

whereRu is the universal relation, i.e., for eachTi andTj ∈ Ξ(T ), (Ti, Tj) ∈ Ru.
Thus the language of uncertain modal logic(UDL) contains only two modalities[u] and〈u〉 and we

will denote them by the ordinary alethic modalities2 and3 respectively.

Example 1. The following table is simpli£ed from one example in [27] used in the evaluation of re-
searchers for a leadership in a computer science grant. (We omit one attribute and replace the null value
by the corresponding domain of values.)

Researcher Talent Grade d

1 {math, cs} {B, MSc, Ph.D} good

2 {cs} {Ph.D} excel.

3 {math} {MSc} good

4 {math, phil.} {B, MSc, Ph.D} good
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In this table, d denotes the decision attribute. There are in total 36 possible realizations for the uncertain
data table. Among them is the following one:

Researcher Talent Grade d

1 math Ph.D good

2 cs Ph.D excel.

3 math MSc good

4 math Ph.D good

Thus according to the semantics of UDL, the following aggregate formula canbe veri£ed in each possible
realization:

3∀((Talent, math) ⊃ (d, good)).

4.2. Epistemic decision logic

The epistemic decision logic arises naturally in the reasoning about data security in the KDD process.
The main challenge is to protect personal sensitive information in the releaseof microdata set, i.e. a set
of records containing information on individuals. To achieve this, the re-identi£cation of individuals
must be avoided. In other words, it is necessary to prevent the possibilityof deducing which record
corresponds to a particular individual even if the explicit identi£er of the individual is not contained in
the released information. This problem has previously been studied in depth[21, 22, 53, 54, 57].

Since useful knowledge can be induced from the data tables, it is desirable that they can be released
to the public. To protect the privacy of the individuals whose personal information is contained in a data
table, the attributes of the table can be divided into three sets. The £rst one consists of thekey attributes,
which can be used to identify whom a data record belongs to. Therefore,they are always masked off
before the table is released. Since the key attributes uniquely determine the individuals, we can assume
that they are associated with elements in the universeU and omit them hence forth. Second, we have a
set ofpublic attributes, the values of which are known to the public. For example, in [57], it is pointed
out that some attributes like birth-date, gender, ethnicity, etc., are included insome public databases such
as census data or voter registration lists. These attributes, if not appropriately generalized, may be used
to re-identify an individual’s record in a medical data table, and this will cause privacy leakage. The last
kind of attribute is thecon£dential ones, the values of which we have to protect. It is often the case that
there is an asymmetry between the values of a con£dential attribute. For example, if the attribute is the
HIV test result, then the revelation of a ’+’ value may cause serious privacy invasion, whereas it does
not matter to know that an individual has a ’−’ value.

To formally state the data security problem, letT1 = (U1, A, {aT1
| a ∈ A}) be a data table and

T2 = (U2, A ∪ C, {aT2
| a ∈ A ∪ C}) be an uncertain data table such that for eachc ∈ C andx ∈ U2,

c(x) is a singleton. Then for anyB ⊆ A, T1 andT2 are said to beB-linkable if there exists a bijection
σ : U1 → U2 such thataT1

(x) ∈ aT2
(σ(x)) for anyx ∈ U1 anda ∈ B. Note that ifT1 andT2 are

B-linkable, then they are alsoB′-linkable for anyB′ ⊆ B.
Given anA-linkable pair(T1, T2) andB ⊆ A, then each bijectionσ mentioned above de£nes a

B-linked con£guration which is a data tableTσ = (U1, A ∪ C, {aTσ
| a ∈ A ∪ C}) such that for each

x ∈ U1
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1. if a ∈ A, thenaTσ
(x) = aT1

(x) and

2. if c ∈ C, thencTσ
(x) = cT2

(σ(x)).

In this formulation, tableT1 is assumed to be publicly available to everybody, so a user can know the
A-values of each individual inU1. On the other hand, tableT2 is the one to be (partially) released to the
public. However, because the identity of each individual has been masked off, it is assumed thatU2 only
contains some record serial numbers with which we can by no means identify the owner of the record.
However, by linking theB-values between the two tables, it is possible to partially determine the owners
of the records. AB-linked con£guration is such a linked mapping betweenU1 andU2 when only the
sub-table ofT2 consisting of the columnsB ∪ C is released.

Example 2. Let us consider the following two tablesT1 and T2 for medical records, whereU1 =
{a, b, c, d, e}, U2 = {1, 2, 3, 4, 5}, A = {Sex, Age}, andC = {HIV}:

Sex Age Sex Age HIV

a M 20 1 {M} [20,30] +

b M 25 2 {M} [20,30] -

c F 30 3 {F} [25,35] +

d F 35 4 {F} [30,40] -

e F 40 5 {F} [30,40] +

If B = A or B = {Sex}, then all possibleB-linked con£gurations are characterized by the HIV values
of {a, b, c, d, e} in the following table, so in total there are sixB-linked con£gurations. Each column of
the table corresponds to exactly aB-linked con£guration:

a + + + - - -

b - - - + + +

c + + - + + -

d + - + + - +

e - + + - + +

This means that if tableT2 or its sub-table consisting of the Sex and HIV columns only are released, then
there are only six possible linked mappings between the individuals and the data records.

On the other hand, ifB = {Age}, then in total there are eight{Age}-linked con£gurations charac-
terized by the following table.

a + + + - + + - -

b - - + + - + + +

c + - - + + - + -

d - + - + + + - +

e + + + - - - + +
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The effect of releasing only part of the uncertain data table is equivalent to making all values of the
unreleased attributes null. In fact, the eight{Age}-linked con£gurations are the same as the{Sex, Age}-
linked con£gurations for the two tablesT1 andT ′

2, whereT ′
2 is as follows:

Sex Age HIV

1 {M,F} [20,30] +

2 {M,F} [20,30] -

3 {M,F} [25,35] +

4 {M,F} [30,40] -

5 {M,F} [30,40] +

Given anA-linkable pair(T1, T2) as above, we can de£ne its epistemic SSDT as

S(T1, T2) = (T , {RB | B ⊆ A})

whereT is the set of allB-linked con£gurations for anyB ⊆ A and for eachRB and any two tables
Ti, Tj ∈ T , (Ti, Tj) ∈ RB iff Ti andTj are bothB-linked con£gurations. According to the semantics of
general modal decision logic,[B]ϕ means thatϕ can be known by data table linkage provided that the
sub-table containing only the attributesB ∪ C is released. In general, we can stipulate some sensitive
formulas which we would like to prevent the end user from knowing. Thus,if [B]ϕ is true for some
sensitiveϕ, then the release of such sub-table is unsafe.

Example 3. Continuing example 2, if the sensitive formula is(HIV, +), then, since in anyA-linked
con£gurationsT , (T, x) 6|=S [A](HIV, +) for all x ∈ U1, the release of the whole data table is safe.
However, if we consider another sensitive formulaϕ = (Sex, F ) ⇒0.5 (HIV +) where⇒0.5 is a binary
quanti£er de£ned byTr⇒0.5

(n1, n2, n3, n4) = 1 iff n1

n1+n2
≥ 0.5, thenT |=S [A]ϕ for anyA-linked

con£gurationsT , so the release of the whole table is unsafe for the sensitive formula. To guarantee the
safety, we can only release the sub-table consisting of the attributes Age and HIV.

4.3. Temporal decision logic

Perhaps the most useful instance of modal decision logics is the temporal one. There may be many
variants of temporal decision logic. Here, we £rst formulate the most simple onebased on linear time
structure. The linear time structure can be mapped to an initial segment of the natural numbers and the
main relations between time points are the “next” and “earlier-than” relations. Furthermore, we also
need the universal relation for the formulation of sequential patterns in data mining.

De£nition 6. A (linear-time) temporal SSDT is of the form

S = ({Ti | 0 ≤ i ≤ n − 1}, {R+, R<, Ru})

where

• eachTi is a data table,
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• (Ti, Tj) ∈ R+ iff j = i + 1,

• (Ti, Tj) ∈ R< iff i < j, and

• (Ti, Tj) ∈ Ru for all 0 ≤ i, j ≤ n − 1.

The modalities[+] and [<] corresponds to the “next” and “future” operators in ordinary temporal
logic and will be denoted by© and

→
2 respectively. The dual operator of

→
2(i.e. 〈<〉) is denoted by

→
3 as

usual. Furthermore, we abbreviate a sequence ofn modal operators© by ©n. Also recall that[u] and
〈u〉 are denoted by2 and3 as in uncertain decision logic.

The temporal decision logic may be applied to the mining of sequential patterns [2]. According to
their de£nition, the sequential pattern mining problem is as follows:

Given a set of sequences, where each sequence consists of a list of elements and each
element consists of a set of items, and given a user-speci£ed min support threshold, sequen-
tial pattern mining is to £nd all of the frequent subsequences, i.e., the subsequences whose
occurrence frequency in the set of sequences is no less than min support.

For example, in the analysis of customer purchase behavior, each sequence is the purchase history of
a customer and each element of the sequence consists of all items purchased simultaneously by the
customer at some time.

Example 4. To formulate the customer purchase behavior analysis, we can constructa temporal SSDT
on the following way: The universe consists of all customers and the attributes are the items. Each
attribute is bi-valued. Each data table contains the transaction records at some time. Thus if customerx
purchased itemsb, c, e at timei, then, in tableTi, b(x) = c(x) = e(x) = 1 anda(x) = 0 for all other
attributesa. A sequential pattern is in general represented as an individual formulain temporal decision
logic:

3(ϕ0∧
→
3 (ϕ1∧

→
3 (ϕ2 · · · ))) (2)

where eachϕi is a conjunction of atomic formulas. To ensure the mining of frequent patterns, assuming
the minimum support isr ∈ [0, 1], we can use the aggregate formula(r)ϕ whereϕ is an individual
formula denoting a sequential pattern andr is a unary quanti£er de£ned byTr r(m, n) = 1 iff m

m+n
≥ r.

Recently, sequential pattern mining was also used in the construction of intrusion detection rules
[28, 29]. According to [29]:

The main techniques for intrusion detection are misuse detection and anomalydetec-
tion. For the former, the “signatures” of known attacks, i.e., the patterns ofattack behavior
and effects are used to identify a matched activity as an attack instance, whereas the latter
uses established normal pro£les, i.e., the expected behavior, to identify anyunacceptable
deviation as possibly the result of an attack.

In [29], the data mining technique is applied to a set of audit records. One kind of data they considered
is the BSM data developed and distributed by MIT Lincoln Lab for the 1999 DARPA evaluation of
intrusion detection systems. The data contains audit records of allsendmailsessions during a period of
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time. Each audit record corresponds to a UNIX system call made bysendmail. The attributes of each
record include the system call name, the user and group IDs, the name of object accessed by the system
call, arguments, etc. The expected patterns to be discovered is of the formPr(sn | s0, · · · , sn−1) which
is the probabilistic prediction of the(n+1)-th system call given the previousn system calls in a session.

Example 5. To model the intrusion detection application, we consider the universeU as the set of all
sessions during a period of time. For the purpose of simpli£cation, we assume all sessions start at the
same time. The attributes of each data table are just those for the system calls in the audit records. For
0 ≤ i ≤ n, the data tableTi contains the system calls made at timei by each session. Then the expected
patterns to be mined will be expressed by the following formula:

(ϕ0 ∧©ϕ1 ∧ · · · ∧©n−1ϕn−1) ⇒r ©nϕn (3)

where eachϕi is an individual formula denoting the properties of system calls and⇒r is a binary quan-
ti£er de£ned byTr⇒r

(n1, n2, n3, n4) = 1 iff n1

n1+n2
≥ r.

4.3.1. Dynamic decision logic

A variant of temporal decision logic is the dynamic decision logic. Sometimes, we may be interested in
the effects of some actions. For example, the promotion of some items may be in¤uential to customers’
purchase behavior with respect to the particular and other related items. Or, in the medical domain, some
medical treatment may have certain effects on the test results of the patients. To formulate this kind of
analysis, we need the dynamic decision logic.

Let Act be a set of actions, then the dynamic SSDT based onAct is

S(Act) = ({Ti | i ∈ I}, {Rα | α ∈ Act})

where

• I is a £nite set of time points andTi contains the data collecting at timei for i ∈ I

• for eachα ∈ Act andi, j ∈ I, (Ti, Tj) ∈ Rα if α is carried out between timei and timej.

According to the semantics of MDL, a dynamic decision logic formula[α]ϕ means thatϕ necessarily
holds after the actionα is carried out.

Example 6. Let us consider again the customer purchase behavior analysis. If the actionα denote “one-
week sale of itema at a discount”, then the induced patterns may be something like

(0.5)(a, 1) ⊃ [α](0.8)(a, 1) (4)

or
(b, 1) ⇒0.6 [α](a, 1). (5)

Recall that(0.5) and(0.8) are unary quanti£ers and⇒0.6 is a binary one. The formula at (4) means
that if at least 50% of customers are purchasing itema, then after the promotion action, at least 80%
of customers will be doing so. The formula at (5) means that ifa andb are two related items, then the
promotion of itema also has an effect on buyers of itemb. In other words, 60% of customers purchasing
b will be attracted by the price reduction ofa (though they may still buyb at the same time).
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5. Fuzzy Decision Logic and its Modal Extension

With the motivation of quantizing numerical attributes, a fuzzy decision logic is introduced in [10]. There
are in general two kinds of attributes in a data table, the nominal ones and the numerical ones. The former
is usually with £nite domains. For example, the status of a switch may be on or off, the sex of a person
may be male or female, etc. On the other hand, numerical attributes often have an in£nite domain of
values. Even though the domain is £nite, its cardinality may be very large. For example, the temperature
may be a subset of real numbers.

Due to the continuity of the numerical domains, the objects which possess proximate values may
behave similarly at their decision attributes. For example, two persons who have proximate ages may
have a similar shopping behavior. Since data tables are £nite, not all possiblevalues of the attributes
appear in a table, so we should be able to extrapolate or interpolate the extracted rules to the values not
appearing in the table.

To solve the data interpolation problem, many quantization techniques have been adopted [38]. The
most direct one is the crisp quantization approach. By this technique, for an attributea, we can partition
Va into na mutually disjoint subsetsD1, D2, . . . , Dna

, and in the decision table, for eachx ∈ U , a(x) is
replaced byDj if a(x) ∈ Dj for some1 ≤ j ≤ na. Although the quantization process may reduce the
precision of the data, it also effectively hides irrelevant details of the data, so it is useful in summarizing
the data. However, since the intervals do not necessarily correspond tonatural language terms, the
extracted rules lack a colloquial reading when we try to explain them. To obtainmore meaningful
quantization, we may in advance stipulate some linguistic terms as the labels of the resultant classes
of the partition, and then the values in the domain are assigned to the respective classes according to
the meaning of these linguistic terms. Thus semantics of natural language may guide the quantization
process. However, even if some linguistic terms are given in advance, it issometimes still dif£cult to
decide the membership of some values. This is due to the fuzziness of these terms, so it is natural to
interpret these terms as fuzzy sets instead of crisp ones. This means that the fuzzy quantization approach
may be more appropriate for the problem. To represent the rules induced by the fuzzy quantization
approach, we need a fuzzy decision logic (FDL).

The basic alphabet of FDL also consists of a £nite set of attribute symbolsA and fora ∈ A, a £nite
set of linguistic termsLa and the atomic formula of an FDL is now a descriptor(a, la) wherea ∈ A and
la ∈ La. Then the formation rules of wffs for FDL are the same as those for DL. However, to interpret
the wffs of an FDL in a data table, we have to £x a context for the linguistic terms.

It is well-known that many natural language terms are highly context-dependent. For example, the
term “tall” may have quite different meanings for “a tall basketball player” and “a tall child”. To model
the context-dependency, we associate a context with each FDL. The context determines the domain of
values of each attribute and assigns an appropriate meaning to each linguisticterm. Formally, a context
associated with an FDL is a pair({Va}a∈A, ct), whereVa is a domain of values for eacha ∈ A andct is
a function on the linguistic terms such thatct(la) ∈ P̃(Va) if la ∈ La, whereP̃(Va) denote the class of
all fuzzy subsets ofVa. Henceforth, we assume a £xed context is given. By the £xed context, a data table
T = (U, A, {aT | a ∈ A}) is an interpretation for a given FDL if there is a bijection betweenA andA

such that for everya ∈ A, the linguistic terms inLa are all mapped to fuzzy subsets of the domain for
the corresponding attribute by the context.

Since each linguistic term is interpreted as a fuzzy subset of the attribute values, a data record may
satisfy an individual formula in FDL to some degree. Thus the satisfaction between data records and
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individual formulas is no longer a qualitative relation.

De£nition 7. Let Φ denote the set of individual formulas of an FDL and a data tableT = (U, A, {aT |
a ∈ A}) be an interpretation for the FDL, then the evaluation functionET : U × Φ → [0, 1] is de£ned
as follows:

1. ET (x, (a, la)) = µct(la)(a(x)), whereµct(la) is the membership function of the fuzzy setct(la)

2. ET (x,¬ϕ) = 1 − ET (x, ϕ)

3. ET (x, ϕ ∧ ψ) = ET (x, ϕ) ⊗ ET (x, ψ)

4. ET (x, ϕ ∨ ψ) = ET (x, ϕ) ⊕ ET (x, ψ)

where⊗ : [0, 1]×[0, 1] → [0, 1] is a t-norm2 and⊕ is the t-conorm de£ned bya⊕b = 1−(1−a)⊗(1−b)

The meaning function of FDL can be de£ned as a mapping of an individual formula to a fuzzy subset
of the universe. LetmT denote the meaning function forT andϕ is an individual formula, then

µmT (ϕ)(x) = ET (x, ϕ) (6)

for all x ∈ Uni(T ). The cardinality of a fuzzy subsetX of the universeU is de£ned by the so-called
Σ-count [23], i.e.

|X| =
∑

x∈U

µX(x). (7)

The semantics of aggregate formulas can now be de£ned analogously as in the case of DL with the help
of fuzzy cardinality. However, the truth functions for unary and binaryquanti£ers are now respectively
Trq : <2 → {0, 1} andTrq : <4 → {0, 1}. Note that according to the semantics, the aggregate formulas
are still two-valued, whereas the individual formulas are many-valued, so for an aggregate formulaϕ of
FDL and a data tableT , we can still writeT |= ϕ for its satisfaction. Other possibilities for de£ning the
semantics of FDL aggregate formulas exist in [16], however, we only need the above de£nition for the
purpose of this paper.

5.1. Fuzzy modal decision logic and its applications

What differentiates FDL and DL is their semantics. The syntax of DL and FDLis the same, so is the
syntax of MDL and fuzzy modal decision logic (FMDL). The evaluation function for individual formulas
of FDL is extended to the modal case as follows: LetS = ({Ti | i ∈ I}, {Rj | j ∈ J}) be an SSDT,
then the evaluation functionES : I × U × Φ → [0, 1] is de£ned by

1. ES(i, x, ϕ) = ETi
(x, ϕ) if ϕ is an FDL individual formula andETi

is the evaluation function as
de£ned above.

2. ES(i, x, [j]ϕ) =
⊗

{ES(k, x, ϕ) | k ∈ I, (Ti, Tk) ∈ Rj}

3. ES(i, x, 〈j〉ϕ) =
⊕

{ES(k, x, ϕ) | k ∈ I, (Ti, Tk) ∈ Rj}

2A binary operation⊗ is a t-norm iff it is associative, commutative, and increasing in both places, and1⊗a = a and0⊗a = 0
for all a ∈ [0, 1].
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where⊗ and⊕ are respectively the t-norm and t-conorm mentioned in de£nition 7. We use thet-norm
and t-conorm in the semantics of modal formulas because[j] and 〈j〉 are respectively considered as
conjunctive and disjunctive on the set of tables. Analogously, we can also de£ne the meaning function
mTi

as a mapping from the individual formulas of FMDL to fuzzy subsets ofUni(Ti) for eachi ∈ I.
Then the satisfaction of aggregate formulas can be de£ned by using the fuzzy cardinality for the non-
modal cases and the semantic de£nition of MDL for the modal cases.

A direct application of the FMDL is the representation of fuzzy sequential patterns. In [18, 20],
fuzzy data mining algorithms are proposed to deal with the discovery of fuzzy association rules from
quantitative data. While the conventional association rule mining algorithms identify the simultane-
ous occurrence of some events, the fuzzy association rule mining algorithmsare also concerned with
how many times the events occur. The last-mentioned algorithms are further extended to £nding fuzzy
sequential patterns from multiple-items transactions in [19]. In this subsection, we show that fuzzy se-
quential patterns can be easily represented as FMDL wffs. To facilitate such representation, we need
only consider the temporal case. In fact, a fuzzy sequential pattern is syntactically the same as the one
shown in (2). What is different is the computation of its support from the SSDT.

Example 7. Let us consider the following sequences of transaction data tablesS,

T1 a b c d T2 a b c d

1 3 8 0 0 1 0 2 6 0

2 0 5 8 0 2 0 0 5 5

3 0 0 0 0 3 4 0 9 0

4 0 0 0 0 4 1 8 3 0

5 0 7 3 3 5 0 4 4 0

T3 a b c d T4 a b c d

1 0 0 0 9 1 0 0 0 0

2 0 0 0 0 2 0 0 0 0

3 0 0 2 10 3 0 12 0 0

4 5 0 6 0 4 0 0 2 7

5 0 0 0 0 5 0 0 5 3

and from [20], we borrow the membership function for three linguistic terms “Low”, “Middle”, and
“High” as in £gure 2. Now, the representation of the following fuzzy sequential pattern: “purchasing
high volume of itemb followed by purchase of middle amount ofc”, in the FMDL is:

ϕ = 3((b, High)∧
→
3 (c, Middle)).

Assume that the minimum support is 0.3, so we would like to know whether the aggregate formula(0.3)ϕ
holds in someTi. In this example, we assume the t-norm and t-conorm are min and max respectively.
Then, according to the semantics, for1 ≤ i ≤ 4,

ES(i, 1, ϕ) = min(µHigh(8), µMiddle(6)) = min(0.4, 1) = 0.4
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Figure 2. The membership functions for the linguistic terms

ES(i, 2, ϕ) = min(µHigh(5), µMiddle(5)) = min(0, 0.8) = 0

ES(i, 3, ϕ) = 0

ES(i, 4, ϕ) = min(µHigh(8), max(µMiddle(6), µMiddle(2))) = min(0.4, max(1, 0.2)) = 0.4

ES(i, 5, ϕ) = max(min(µHigh(7), max(µMiddle(4), µMiddle(5))), min(µHigh(4), µMiddle(5)))

= max(min(0.2, max(0.6, 0.8)), min(0, 0.8)) = 0.2

Thus the fuzzy cardinality of the meaning function|mTi
(ϕ)| = 0.4 + 0.4 + 0.2 = 1 and|mTi

(¬ϕ)| =
5 − 1 = 4. Consequently, the aggregate formula(0.3)ϕ does not hold at anyTi, i.e.,

Ti 6|=S (0.3)ϕ,

sinceTr0.3(1, 4) = 0 due to 1
1+4 < 0.3.

6. Conclusion

Just like DL is used in the knowledge representation for data mining of a singledata table, the MDL pro-
vides a uniform framework for representing knowledge mined from a collection of multiple data tables.
The sets of data tables are structured in the sense that some relationship exists between their elements.
We interpret the MDL formulas in such structured sets of data tables. In particular, the modalities are
interpreted with respect to the relations between the data tables according to the Kripke semantics. Three
instances of MDL are presented to illustrate the application potentials of the MDLrepresentation for-
malism. Th combination of MDL and FDL is also proposed and its use in the representation of fuzzy
sequential patterns is shown by an example.

6.1. Related works

Orłowska has been one of the £rst logicians proposing the modal logic systems for Pawlak’s information
systems [40, 39, 42, 41, 43, 44, 37]. Many excellent works on the modal logic systems for rough set
theory and data tables have also been done by Demri, Düntsch, Rasiowa and Skowron, Vakarelov, and
others [3, 5, 6, 7, 8, 9, 24, 51, 50, 52, 58, 60, 59, 61]3. Some of these works, in particular those of Demri,

3The list is by no means exhaustive. For further references, see forexamples [30, 48].
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have explored the computational properties of the logical systems, while someof them provide complete
axiomatization of such logics. D̈untsch has also developed some systems from both the algebraic and
logical aspects. All these works show the close connection between modallogic and Pawlak’s informa-
tion systems. This paper can be seen as a followup work of these previousworks. However, while these
works mainly deal with the logic for a single data table, we concentrate on the semantic structure of mul-
tiple data tables. Therefore, the accessibility relations in the Kripke semantics for the previous systems
are usually de£ned between the individuals of a single data table, whereas inour semantic structures, the
accessibility relations are de£ned between different data tables.

There is some similarity between our notion of SSDT and the relational informationsystems(RIS)
proposed in [62]. An RIS is a triple(A,R, A0), whereA is a family of data tables (maybe with different
attributes and domains),R is a set of relations between the domains of data tables inA, andA0 is a
distinguished data table inA. Both SSDT and RIS deal with the structures of multiple data tables. It can
be seen that the basic difference between SSDT and RIS is that the formerimposes the relations between
data tables, whereas the latter has its relations between the objects. In this sense, the binary relations for
RIS are £ner than those for SSDT. A general adaptive scheme is also proposed for the mining of rules
from RIS. However, no logical formalisms are developed for such structures. Therefore, the works in
[62] should be complementary with ours.

It is also interesting to note the relationship between our work and the granular computing(GrC)
model proposed in [33, 34, 35, 36]. In the GrC model, a binary relation between two universe is con-
sidered as essential. From the viewpoint of SSDT, this is a binary relation between two data tables.
However, again, the relations of GrC models are imposed between objects instead of tables and no logi-
cal formalisms have been proposed for such models.

6.2. Future works

For simpli£cation of semantics, we have imposed some restrictive assumptions forthe SSDT in the
development of MDL. Therefore, further investigation is needed to lift therestriction.

For the £xed attribute assumption, if we allow the unde£ned value⊥ for every attribute, the assump-
tion will not cause any loss of generality since we can assume that all data tables virtually have the same
set of attributes. If an attribute really does not exist in one data table, the values of this speci£c attribute
for individuals in that data table are all⊥. In this way, we can force all data tables to have the same
set of attributes though some of them may be only virtually existing on some data tables. Nevertheless,
to interpret the formulas in our logic, we must take the⊥ value into account and this will somewhat
complicate the semantics of the logic, so we adopt the assumption for the purpose of simpli£cation. An
analogous approach has been proposed in [12] for studying the modallogic formulation of databases.

As for the constant domain assumption, this means that we do not allow the birth and death of data
records in different data tables. The same assumption has been made for some systems of modal predicate
logic [14], so the well-known Barcan formula

∀[j]ϕ ⊃ [j]∀ϕ

holds in MDL for any modality[j]. This assumption can be replaced by the more relaxed increasing
domain assumption. That is,

∀i, k ∈ I, j ∈ J if (Ti, Tk) ∈ Rj then Uni(Ti) ⊆ Uni(Tk).
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This means that the birth of new records is allowed though the records will never disappear along the
direction of any binary relation. This assumption does not cause loss of generality any more since, if one
record disappears in some data table, we can replace its attribute values by the⊥ value.

Another important research problem is the development of data mining algorithms based on the
proposed logics. Since we mainly concentrate on the representation formalisms in this paper, the algo-
rithmic or computational aspects of data mining have been largely ignored. However, it is indeed possible
to develop some data mining algorithms with results representable in MDL or FMDL.The adaptive clas-
si£cation algorithm proposed in [62] provides a practical direction along which the data mining tasks on
multiple data tables can be done.

Also, we are currently working on the data mining algorithms for temporal decision logic. The basic
idea is to employ the rough set-based algorithms or GUHA methods[17] to discover the rules in each
single data table. The mined rules are represented by DL aggregate formulas. LetMT (T ) denote the
set of mined rules from the single data tableT . For a data tableT , we can compute the set

T→ =
⋂

i∈I,(T,Ti)∈R<

MT (Ti).

By the mined rules, we mean thatϕ ∈ MT (T ) impliesT |=S ϕ. Therefore, ifψ ∈ T→, thenT |=S
→
2 ψ.

Now if ϕ is an aggregate formula, then the set

⋂

T |=Sϕ

T→

contains all mined rulesψ such thatϕ ⊃
→
2 ψ is a mined rule for the whole SSDT.

This is only one of many possible forms of rules which can be discovered from multiple data tables,
so it remains to be seen what kinds of rules are interesting from a KDD perspective.
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[62] J. Wŕoblewski. “Analyzing relational databases using rough setbased methods”. InProceedings of the
8th International Conference on Processing and Managementof Uncertainty in Knowledge-Based Systems,
volume 1, pages 256–262, 2000.



344 T.F. Fan, C.J. Liau, Y.Y. Yao / On modal and fuzzy decision logics

[63] Y.Y. Yao and C.J. Liau. “A generalized decision logic language for granular computing”. InProceedings of
the 11th IEEE International Conference on Fuzzy Systems. IEEE Press, 2002.

[64] Y.Y. Yao and Q. Liu. “A generalized decision logic in interval-set-valued information tables”. In N. Zhong,
A. Skowron, and S. Ohsuga, editors,New Directions in Rough Sets, Data Mining, and Granular-Soft Com-
puting, LNAI 1711, pages 285–293. Springer-Verlag, 1999.

[65] Y.Y. Yao and N. Zhong. “An analysis of quantitative measures associated with rules”. InProceedings of the
2nd Paci£c-Asia Conference on Knowledge Discovery and Data Mining, pages 479–488. IEEE Press, 1999.


