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Abstract. In this paper, we propose a logical framework for reason-
ing about uncertain belief fusion. The framework is a combination of
multi-agent epistemic logic and possibilistic logic. We use graded epis-
temic operators to represent agents’ uncertain beliefs, and the operators
are interpreted in accordance with possibilistic semantics. Ordered fu-
sion can resolve the inconsistency caused by direct fusion. We consider
two strategies to merge uncertain beliefs. In the first strategy, called level
cutting fusion, if inconsistency occurs at some level, then all beliefs at the
lower levels are discarded simultaneously. In the second, called level skip-
ping fusion, only the level at which the inconsistency occurs is skipped.
We present the formal semantics and axiomatic systems for these two
strategies.
Key Words: Belief fusion, database merging, epistemic logic, multi-
agent systems, possibilistic logic.

1 Introduction

The development of epistemic logic has been stimulated by the philosophical
analysis of knowledge and belief [7]. This kind of logic has attracted the attention
of researchers from diverse fields, such as artificial intelligence (AI), economics,
linguistics, and theoretical computer science. Among them, AI researchers and
computer scientists have developed some technically sophisticated formalisms
and applied them to the analysis of distributed and multi-agent systems [6, 13].

The application of epistemic logic to AI and computer science emphasizes
the interaction of agents, from which multi-agent epistemic logic has been de-
veloped. One representative example of such logic is proposed by Fagin et al.
[6]. The term “knowledge” is used in a broad sense in [6] to cover cases of belief
and information1. The most novel feature of their logic is its consideration of
common knowledge and distributed knowledge among a group of agents. Dis-
tributed knowledge is that which can be deduced by pooling everyone’s knowl-
edge. In this paper, the distributed knowledge operator is also called the direct
fusion operator. While it is essential that proper knowledge must be true, the
belief of an agent may be wrong. Therefore, in general, there will be conflict
1 More precisely, the logic for belief is called doxastic logic. However, here we use the

three terms knowledge, belief, and information interchangeably, so epistemic logic is
assumed to cover all these notions.



between the beliefs to be merged. In this case, everything can be deduced from
the distributed belief due to the notorious omniscience property of epistemic
logic, so the merged result will be useless for further reasoning. To resolve the
inconsistency of merged belief, ordered fusion operators are incorporated into
multi-agent epistemic logic. This has resulted in the development of fusion log-
ics [3, 4, 8, 9], in which the reliability ordering of agents is taken into account
when their beliefs are merged.

While multi-agent epistemic logic does not consider the uncertainty of be-
liefs, a quantitative modal logic (QML) has been proposed for reasoning about
such beliefs [10–12]. The direct fusion of uncertain beliefs is also considered in
possibilistic logic, PL⊗n , which extends QML with distributed belief operators
[1]. The inconsistency problem in the direct fusion of beliefs also arises in the di-
rect fusion of uncertain beliefs. Therefore, in this paper, we propose the ordered
fusion of uncertain beliefs to resolve the problem.

2 Review of Previous Approaches

In this section, we review some logics for distributed belief fusion. For brevity,
we only sketch the syntax and semantics of these logics, and omit their proof
methods.

2.1 Direct fusion in epistemic logic

In [6], some variants of epistemic logic systems are presented. Using the nam-
ing convention in [2], the most basic system with distributed beliefs is called
KD

n , with n being the number of agents and D denoting the distributed belief
operators. In this system, logical omniscience is the only property imposed on
agents’ beliefs. Nevertheless, we further require that the belief of each individual
agent should be consistent, even though the agents’ collective beliefs may be in
conflict. Thus, we actually use the logic KDD

n in [6], where an axiom D is used
to guarantee the consistency of each agent’s belief.

The alphabet of KDD
n consists of the following symbols: a countable set Φ0 =

{p, q, r, . . .} of atomic propositions; the propositional constants ⊥ (falsum or
falsity constant) and > (verum or truth constant); the binary Boolean operator
∨ (or) and the unary Boolean operator ¬ (not); a set Ag = {1, 2, . . . , n} of
agents; the modal operator-forming symbols “[” and “]”; and the left and right
parentheses “ (” and “)”.

The set of well-formed formulas (wffs)is defined as the smallest set containing
Φ0 ∪ {⊥,>} and is closed under Boolean operators and the following rule2:

– if ϕ is a wff, then [G]ϕ is a wff for any nonempty G ⊆ Ag.

The intuitive meaning of [G]ϕ is “The group of agents G has distributed belief
ϕ”
2 We change the syntactic notation of epistemic logic in [6] slightly.



As usual, other classical Boolean connectives, such as ∧ (and), ⊃ (implica-
tion), and ≡ (equivalence) can be defined as abbreviations. Also, we write 〈G〉ϕ
as an abbreviation of ¬[G]¬ϕ. When G is a singleton {i}, we write [i]ϕ instead
of [{i}]ϕ, so [i]ϕ means that agent i knows ϕ.

For the semantics, a possible world model for KDD
n is a triple

(W, (Ri)1≤i≤n, V ),

where

– W is a set of possible worlds,
– Ri ⊆W ×W is a serial binary relation3 over W for 1 ≤ i ≤ n,
– V : Φ0 → 2W is a truth assignment mapping each atomic proposition to the

set of worlds in which it is true.

From the binary relations, Ri’s, we can define a derived relation, RG, for each
nonempty G ⊆ Ag:

RG = ∩i∈GRi.

Note that the seriality of Ri guarantees the consistency of each agent’s belief
state. However, RG may be not serial.

Informally, Ri(w) is the set of worlds that agent i considers possible under w
according to his belief, so RG(w) is the set of worlds that are considered possible
under w according to the direct fusion of agents’ beliefs. This informal intuition is
reflected in the definition of the satisfaction relation. Let M = (W, (Ri)1≤i≤n, V )
be a model and L be the set of wffs for KDD

n . The satisfaction relation |=M⊆
W ×L is then defined by the following inductive rules (we use the infix notation
for the relation and omit the subscript M for convenience):

1. w |= p iff w ∈ V (p), for each p ∈ Φ0,
2. w 6|= ⊥ and w |= >,
3. w |= ¬ϕ iff w 6|= ϕ,
4. w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ,
5. w |= [G]ϕ iff for all u ∈ RG(w), u |= ϕ.

2.2 Ordered fusion in epistemic logic

To encode the degrees of reliability of n agents, we use ordering relations over
any subset of {1, . . . , n}. Let T On denote the set of all possible strict total
orders over any non-empty subset of {1, . . . , n}; then we can associate a unique
syntactic notation with each total order in T On. Let X = {i1, i2, . . . , im} be a
non-empty subset of {1, . . . , n} and > be a strict total order such that ij > ik
iff j < k for all 1 ≤, j, k ≤ m; then the syntactic notation for (X,>) is the string

i1 > i2 > · · · > im.

3 A binary relation R is serial if ∀w∃u.R(w, u).



In this paper, the capital letter O is used to denote meta-variables ranging
over such notations. Let O be the string i1 > i2 > · · · > im; then the set
{i1, i2, . . . , im} is called the domain of O and denoted by δ(O). In this case,
O > im+1 denotes i1 > i2 > · · · > im > im+1 if im+1 6∈ δ(O). As the syntactic
notation is unique for each total order, we can also identify the notation with
the total order itself, so we can write O ∈ T On. Furthermore, the upper-case
Greek letter Ω is used to denote meta-variables ranging over nonempty subsets
of T On.

In [9], two logics for ordered distributed belief fusion are proposed. The first,
DBFc

n, is based on a level cutting strategy. The set of DBFc
n wffs is defined by

the rules for KDD
n and the following rule:

– if ϕ is a wff, then [O]ϕ is a wff for any O ∈ T On.

Intuitively, [O]ϕ means that ϕ is derivable from the merged beliefs of agents in
δ(O) according to the specific order of O.

For the semantics, a DBFc
n model is a possible world model (W, (Ri)1≤i≤n, V )

for KDD
n . For each O ∈ T On, a derived relation, Rc

O, is defined inductively as
follows:

Rc
O>i(w) =

{
Rc

O(w) if
⋂

j∈δ(O>i)Rj(w) = ∅,
Rc

O(w) ∩Ri(w) otherwise,

for any w ∈W . The superscript c denotes level cutting fusion and can usually be
omitted when the context is clear. The following satisfaction condition is then
added to those of epistemic logic:

w |= [O]ϕ iff for all u ∈ RO(w), u |= ϕ.

Let O = i1 > i2 > · · · > im. Also, define Gj = {i1, i2 . . . , ij} for 1 ≤ j ≤ m
and assume k is the largest j such that

⋂
i∈Gj

Ri(w) 6= ∅; then we have

RO(w) =
⋂

i∈Gk

Ri(w).

In other words, beliefs from agents below level k are completely discarded from
the merged result. Our rationale is that if a belief in level k+ 1 is unacceptable,
then any belief in a less reliable level is also unacceptable.

The second logic, DBFs
n, is based on a level skipping strategy, which only

skips the agent causing the inconsistency and continues to consider the next level.
This strategy corresponds to the suspicious attitude of multi-source reasoning
[3], and has also been used in belief revision by Nebel [14]. The set of DBFs

n is
the smallest set containing Φ0 ∪ {⊥,>}, and is closed under Boolean operators
and the following rule:

– if ϕ is a wff, so is [Ω]ϕ for any nonempty Ω ⊆ T On.

WhenΩ is a singleton {O}, we write [O]ϕ instead of [{O}]ϕ. IfΩ = {O1, . . . , Om}
such that |δ(Oi)| = 1 for all 1 ≤ i ≤ m, then [Ω] is the distributed belief oper-
ator among ordinary agents. Therefore, the language is more general than that
of DBFc

n.



For the semantics, a DBFs
n model is still a possible world model (W, (Ri)1≤i≤n, V )

for KDD
n . Therefore, we can define Rs

O inductively as follows:

Rs
O>i(w) =

{
Rs

O(w) if Rs
O(w) ∩Ri(w) = ∅,

Rs
O(w) ∩Ri(w) otherwise,

for any w ∈W . As in the case of Rc
O, the superscript s denotes the level skipping

strategy and can be omitted when the context is clear. We further define

RΩ =
⋂

O∈Ω

RO.

Then, the following clause is used to define the satisfaction of modal formulas
in DBFs

n.

– w |= [Ω]ϕ iff for all u ∈ RΩ(w), u |= ϕ.

2.3 Direct fusion in possibilistic logic

In [1], a logic PL⊗n is proposed for reasoning about distributed belief fusion with
a continuous T-norm ⊗4. The set of PL⊗n wffs is the smallest set containing
Φ0 ∪ {⊥,>}, and is closed under Boolean operators and the following rule:

– if ϕ is a wff, so are Bi
aϕ and Daϕ for any 1 ≤ i ≤ n and rational number

a ∈ [0, 1].

The intuitive meaning of Bi
aϕ is that agent i believes ϕ with strength (at least)

a, and the modal operator, Da, represents the distributed beliefs of all agents
with strength (at least) a.

Formally, the semantics of PL⊗n is based on possibility theory [15]. A Π⊗
n -

structure is a tuple (W, (πi)0≤i≤n, V ) such that W is a set of possible worlds;
each πi maps each world w to a possibility distribution πi,w : W → [0, 1] over
W ; V maps elements in Φ0 to subsets of W ; and, for any w ∈W ,

π0,w ≤
n⊗

i=1

πi,w.

In possibility theory, each possibility distribution π can derive the associated
possibility measure Π : 2W → [0, 1] and necessity measure N : 2W → [0, 1] as

Π(X) = sup
x∈X

π(x)

N(X) = 1− sup
x6∈X

π(x).

Then, the satisfaction relation |= for Π⊗
n -structures are defined as

– w |= Bi
aϕ iff Ni,w(|ϕ|) ≥ a,

– w |= Daϕ iff N0,w(|ϕ|) ≥ a,

where |ϕ| = {x ∈W | x |= ϕ} is the truth set of ϕ in the model, and Ni,w is the
necessity measure associated to πi,w for 0 ≤ i ≤ n and w ∈W .
4 A T-norm is any binary operation on [0,1] that is commutative, associative, and

non-decreasing in each argument, and has 1 as its unit.



3 Ordered Fusion in Possibilistic Logic

To resolve the inconsistency problem in PL⊗n , we combine DBFc
n (resp. DBFs

n)
with PL⊗n . Since possibilistic logic is inconsistency-tolerant [5], we introduce
a parameter, ε, to denote the degree of inconsistency tolerance. Recall that a
possibility distribution π : X → [0, 1] is normalized if Π(X) = supx∈X π(x) = 1.
A normalized possibility distribution represents a consistent belief state. If π is
not normalized, i.e., supx∈X π(x) < 1, π represents a partially inconsistent belief
state. 1 − supx∈X π(x) is called the inconsistency degree of π, and denoted by
ι(π).

3.1 Level cutting fusion in possibilistic logic

In this subsection, we present a logic for reasoning about possibilistic belief fusion
based on a level cutting strategy. The logic is called CFPL⊗,ε

n , where ε is the
inconsistency tolerance degree of the logic. The set of CFPL⊗,ε

n wffs is defined as
the smallest set containing Φ0 ∪ {⊥,>}, and is closed under Boolean operators
and the following rule:

– if ϕ is a wff, then [G]aϕ, [O]aϕ, [G]+a ϕ, and [O]+a ϕ are wffs for any nonempty
G ⊆ Ag, any O ∈ T On, and any rational number a ∈ [0, 1].

As in epistemic logic, we use [i] instead of [{i}] when {i} is a singleton. The
intuitive meanings of [i]aϕ and [Ag]aϕ are respectively the same as those of
Bi

aϕ and Daϕ in PL⊗n . However, we not only consider a single agent and the
set of all agents, but also any nonempty subset of agents. [G]+a ϕ is similar to
[G]aϕ, except that the former means the strength of belief is greater than a.
Additionally, we have modal operators corresponding to the ordered fusion of
uncertain beliefs. [O]aϕ (resp. [O]+a ϕ) means that an agent merging distributed
beliefs in accordance with the ordering O will believe ϕ with a strength of at
least (resp. more than) a.

For the semantics, a CFPL⊗,ε
n -model is a tuple M = (W, (πi)1≤i≤n, V ) such

that W is a set of possible worlds; each πi maps each world w to a possibility
distribution πi,w : W → [0, 1] overW such that ι(πi,w) ≤ ε; and V maps elements
in Φ0 to subsets of W . Note that we require the inconsistency degree of the belief
state of each single agent to be no more than ε. This is the inconsistency tolerance
degree of the logic. Any belief with inconsistency beyond this degree must be
discarded. Let us now define derived possibility distributions πG,w and πO,w from
{πi | 1 ≤ i ≤ n} for each nonempty subset G ⊆ Ag, O ∈ T On, and w ∈ W as
follows:

πG,w =
⊗
i∈G

πi,w

πO>i,w =
{
πO,w if ι(

⊗
j∈δ(O>i) πj,w) > ε,

πO,w ⊗ πi,w otherwise,

Then, the satisfaction relation |= for the CFPL⊗,ε
n -model is defined as



– w |= [G]aϕ iff NG,w(|ϕ|) ≥ a,
– w |= [G]+a ϕ iff NG,w(|ϕ|) > a,
– w |= [O]aϕ iff NO,w(|ϕ|) ≥ a,
– w |= [O]+a ϕ iff NO,w(|ϕ|) > a,

where |ϕ| is the truth set of ϕ in the model, andNG,w (resp.NO,w) is the necessity
measure associated with πG,w (resp. πO,w) for G ⊆ Ag (resp. O ∈ T On) and
w ∈W .

A set of wffs Σ is satisfied in a world w, written as w |= Σ, if w |= ϕ for all
ϕ ∈ Σ. We write Σ |=M ϕ if for each possible world w in M , w |= Σ implies
w |= ϕ, and Σ |=CFPL⊗,ε

n
ϕ if Σ |=M ϕ for each CFPL⊗,ε

n -model M . A wff ϕ is
valid in M if ∅ |=M ϕ. Σ can be omitted when it is empty. Thus, |=M ϕ and
|=CFPL⊗,ε

n
ϕ are the abbreviations of ∅ |=M ϕ and ∅ |=CFPL⊗,ε

n
ϕ respectively.

The subscript is also usually omitted if it is clear from the context.
An axiomatic system for CFPL⊗,ε

n is presented in Figure 1. The system was
developed by generalizing KDD

n to QML [10–12]. However, the consistency of
each individual agent’s belief is replaced by (1 − ε)-consistency, which means
that the inconsistency degree of each agent’s belief state is at most ε. Axiom G2
enforces this requirement. The axioms governing modal operators [O]a and [O]+a
are generalized from those of DBFc

n. Also, the symbol ⊕ in axiom G3 denotes a
T-conorm corresponding to ⊗, which is defined by a⊕ b = 1− (1− a)⊗ (1− b).

A wff ϕ is derivable from the system CFPL⊗,ε
n , or simply, ϕ is a theorem

of CFPL⊗,ε
n , if there is a finite sequence ϕ1, . . . , ϕm such that ϕ = ϕm and

every ϕi is an instance of an axiom schema, or obtained from earlier ϕj ’s by the
application of an inference rule. It is written as `CFPL⊗,ε

n
ϕ if ϕ is a theorem of

CFPL⊗,ε
n . Let Σ ∪ {ϕ} be a subset of wffs, then ϕ is derivable from Σ in the

system CFPL⊗,ε
n , written as Σ `CFPL⊗,ε

n
ϕ, if there is a finite subset Σ′ of Σ

such that `CFPL⊗,ε
n

∧
Σ′ ⊃ ϕ. We drop the subscript when no confusion occurs.

We now have the soundness and completeness results for the system CFPL⊗,ε
n .

Theorem 1 For any wff of CFPL⊗,ε
n , |= ϕ iff ` ϕ.

3.2 Level skipping fusion in possibilistic logic

In this subsection, we present a logic for reasoning about possibilistic belief fusion
based on a level skipping strategy. The logic is called SFPL⊗,ε

n , where ε is the
inconsistency tolerance degree of the logic. The set of SFPL⊗,ε

n wffs is defined as
the smallest set containing Φ0 ∪ {⊥,>}, and is closed under Boolean operators
and the following rule:

– if ϕ is a wff, then [Ω]aϕ and [Ω]+a ϕ are wffs for any nonempty Ω ⊆ T On

and any rational number a ∈ [0, 1].

Semantically, an SFPL⊗,ε
n -structure is the same as a CFPL⊗,ε

n -structure.
However, we redefine πO,w for each O ∈ T On and w ∈W as follows:

πO>i,w =
{
πO,w if ι(πO,w ⊗ πi,w) > ε,
πO,w ⊗ πi,w otherwise.



– Axioms:
1. P: all tautologies of propositional calculus
2. Bookkeeping (� denotes either [G] or [O]):

(a) �cϕ ⊃ �+
d ϕ if c > d

(b) �+
c ϕ ⊃ �cϕ

(c) �0ϕ
(d) ¬�+

1 ϕ
3. G1:

(a) ([G]aϕ ∧ [G]a(ϕ ⊃ ψ)) ⊃ [G]aψ
(b) ([G]+a ϕ ∧ [G]+a (ϕ ⊃ ψ)) ⊃ [G]+a ψ

4. G2: ¬[i]+ε ⊥
5. G3: if G1 ∩G2 = ∅, then

(a) ([G1]aϕ ∧ [G2]bϕ) ⊃ [G1 ∪G2]a⊕bϕ
(b) ([G1]

+
a ϕ ∧ [G2]

+
b ϕ) ⊃ [G1 ∪G2]

+
a⊕bϕ

6. O1:
(a) ¬[δ(O > i)]+ε ⊥ ⊃ ([O > i]aϕ ≡ [δ(O > i)]aϕ)
(b) ¬[δ(O > i)]+ε ⊥ ⊃ ([O > i]+a ϕ ≡ [δ(O > i)]+a ϕ)

7. O2:
(a) [δ(O > i)]+ε ⊥ ⊃ ([O > i]aϕ ≡ [O]aϕ)
(b) [δ(O > i)]+ε ⊥ ⊃ ([O > i]+a ϕ ≡ [O]+a ϕ)

– Rules of Inference:
1. R1 (Modus ponens, MP):

ϕ ϕ ⊃ ψ

ψ

2. R2 (Generalization, Gen):
ϕ

[G]1ϕ

Fig. 1. The axiomatic system for CFPL⊗,ε
n

Furthermore, we also define πΩ,w for each Ω ⊆ T On and w ∈W as

πΩ,w =
⊗
O∈Ω

πO,w.

Then, the satisfaction relation |= for the SFPL⊗,ε
n -model is defined as

– w |= [Ω]aϕ iff NΩ,w(|ϕ|) ≥ a,
– w |= [Ω]+a ϕ iff NΩ,w(|ϕ|) > a,

where |ϕ| is the truth set of ϕ in the model, and NΩ,w is the necessity measure
associated with πΩ,w. The definition of the validity and consequence relation is
the same as above.

An axiomatic system can be also developed for SFPL⊗,ε
n by generalizing the

corresponding axioms in DBFs
n, as shown in Figure 2.



– Axioms:
1. P: all tautologies of propositional calculus
2. Bookkeeping:

(a) [Ω]cϕ ⊃ [Ω]+d ϕ if c > d
(b) [Ω]+c ϕ ⊃ [Ω]cϕ
(c) [Ω]0ϕ
(d) ¬[Ω]+1 ϕ

3. V1:
(a) ([Ω]aϕ ∧ [Ω]a(ϕ ⊃ ψ)) ⊃ [Ω]aψ
(b) ([Ω]+a ϕ ∧ [Ω]+a (ϕ ⊃ ψ)) ⊃ [Ω]+a ψ

4. V2: ¬[i]+ε ⊥
5. V3: if Ω1 ∩Ω2 = ∅, then

(a) ([Ω1]aϕ ∧ [Ω2]bϕ) ⊃ [Ω1 ∪Ω2]a⊕bϕ
(b) ([Ω1]

+
a ϕ ∧ [Ω2]

+
b ϕ) ⊃ [Ω1 ∪Ω2]

+
a⊕bϕ

6. O1:
(a) ¬[{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]aϕ ≡ [Ω ∪ {O, i}]aϕ)
(b) ¬[{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]+a ϕ ≡ [Ω ∪ {O, i}]+a ϕ)

7. O2:
(a) [{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]aϕ ≡ [Ω ∪ {O}]aϕ)
(b) [{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]+a ϕ ≡ [Ω ∪ {O}]+a ϕ)

– Rules of Inference:
1. R1 (Modus ponens, MP):

ϕ ϕ ⊃ ψ

ψ

2. R2 (Generalization, Gen):
ϕ

[Ω]1ϕ

Fig. 2. The axiomatic system for SFPL⊗,ε
n

The definition of derivability and theoremhood in the SFPL⊗,ε
n system is

the same as above. We now have the soundness and completeness theorem for
SFPL⊗,ε

n .

Theorem 2 For any wff of SFPL⊗,ε
n , |= ϕ iff ` ϕ.

4 Concluding Remarks

In this paper, we present two logics for reasoning about ordered possibilistic belief
fusion. Direct fusion and ordered fusion in epistemic logic, as well as direct fusion
in possibilistic logic have been proposed in the previous literature. Therefore, the
results in this paper fill a gap in the previous work. We believe that the logics,
which are summarized in Table 1, are applicable to reasoning in multi-agent
systems.



Table 1. Logics for belief fusion

without uncertainty with uncertainty

direct fusion KDD
n DBFc

n /DBFs
n

ordered fusion PL⊗n CFPL⊗,ε
n /SFPL⊗,ε

n
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