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This paper provides a modal logic framework for reasoning about multi-agent belief and its fusion.
We propose logics for reasoning about cautiously merged agent beliefs that have different degrees
of reliability. These logics are obtained by combining the multi-agent epistemic logic and multi-
source reasoning systems. The fusion is cautious in the sense that if an agent’s belief is in conflict
with those of higher priorities, then his belief is completely discarded from the merged result. We
consider two strategies for the cautious merging of beliefs. In the first, called level cutting fusion, if
inconsistency occurs at some level, then all beliefs at the lower levels are discarded simultaneously.
In the second, called level skipping fusion, only the level at which the inconsistency occurs is
skipped. We present the formal semantics and axiomatic systems for these two strategies and
discuss some applications of the proposed logical systems. We also develop a tableau proof system
for the logics and prove the complexity result for the satisfiability and validity problems of these
logics.
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1. INTRODUCTION

Recently, attention has been focussed on the infoglut problem in information re-
trieval research due to the rapid growth of internet information. If a keyword is
input to a commonly-used search engine, it is not unusual to receive a list of thou-
sands of web pages; the real difficulty is not how to find information, but how to
locate useful information. Many software agents have been designed to solve the
infoglut problem while conducting searches. The agents search through the web
and try to find information matching the user’s need. However, not all internet
information sources are reliable. Some web sites are out-of-date, some news sites
provide incorrect information, while others even intentionally spread rumor or haz-
ardous information. Therefore, an important task for information search agents
is to merge information coming from different sources according to its degree of
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reliability.
In [Shoham 1993], an agent is characterized with mental attitudes, such as knowl-

edge, belief, obligation, and commitment. This view, in accordance with the inten-
tional stance proposed in [Dennett 1987], has been widely accepted as convenient
for the analysis and description of complex systems[Wooldridge and Jennings 1995].
From this viewpoint, each information provider can be considered as an agent and
the information provided by the agent corresponds to his belief. The information
fusion problem, therefore, is also to merge beliefs of different agents.

The philosophical analysis of these mental attitudes has motivated the develop-
ment of many non-classical logic systems[Gabbay and Guenthner 1984]. In par-
ticular, the analysis of informational attitudes, such as knowledge and belief, has
been a traditional concern of epistemology, an important and central branch of
philosophy. We needed a formalism more rigorous than natural language to an-
swer key epistemological questions such as “What is knowledge?” ”What can we
know?” and ”What are the characteristic properties of knowledge?”. The result
was the development of the so-called epistemic logic[Hintikka 1962]. This kind of
logic has attracted much attention of researchers from diverse fields such as arti-
ficial intelligence(AI), economics, linguistics, and theoretical computer science. In
particular, AI researchers and computer scientist have further developed some tech-
nically sophisticated formalisms and applied them to the analysis of distributed and
multi-agent systems[Fagin et al. 1996; Meyer and van der Hoek 1995].

Though the original epistemic logic in philosophy is mainly concerned with the
single-agent case, its application to AI and computer science places emphasis on
agent interaction, and this requires a multi-agent epistemic logic. One example of
such a logic is proposed by Fagin et al.[Fagin et al. 1996]. In their logic, the knowl-
edge of each agent is represented by a normal modal operator[Chellas 1980], so if no
interactions between agents occur, this is merely a multi-modal logic. However, the
most novel feature of their logic is the consideration of common knowledge and dis-
tributed knowledge among a group of agents. While common knowledge is defined
as information that everyone knows, everyone knows that everyone knows, everyone
knows that everyone knows that everyone knows, and so on, distributed knowl-
edge is information that can be deduced by pooling together everyone’s knowledge.
Consequently, it is distributed knowledge that is the main concern in the fusion
of knowledge among agents. However, “knowledge” is used in a broad sense in
[Fagin et al. 1996] and covers belief and information.1 Though proper knowledge
must be true, the belief of an agent may be wrong and may cause conflicts in the
beliefs that are to be merged. In this case, everything can be deduced from the
distributed beliefs due to the notorious omniscience property of epistemic logic; the
merged result will then be useless for further reasoning.

Instead of directly merging all beliefs of the agents together, there are many
sophisticated techniques for knowledge base merging[Baral et al. 1992; 1994; Baral
et al. 1991; Cholvy 1994; Cholvy and Hunter 1997; Konieczny 2000; Konieczny and
Pérez 1998; 1999; Lin 1994; 1996; Lin and Mendelzon 1999; Nebel 1994; Pradhan

1More precisely, the logic for belief is called doxastic logic. However, here we will use the three
terms knowledge, belief, and information interchangeably, so epistemic logic is assumed to cover
all these notions.
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et al. 1995; Subrahmanian 1994]. Most approaches treat belief fusion operators
as meta-level constructs, so for a given set of knowledge bases, fusion operators
will return the merged results. Some of the approaches propose concrete operators
that can be used directly in the fusion process, while others stipulate the desirable
properties of reasonable belief fusion operators by postulates. However, few of the
approaches have the capability to reason about the fusion process2. One of a few
exceptions is multi-source reasoning[Cholvy 1994].

Multi-source reasoning models the fusion process of multiple databases in a modal
logic. Its goal is to merge a set of databases according to a total ordering of the
set that is to be merged. Each database is a finite and satisfiable set of literals.
Two attitudes for merging are considered. According to the suspicious attitude, if
a database contains a literal that is inconsistent with those in the databases with
higher reliability, then the database is completely discarded from the merged result.
On the other hand, according to the trusting attitude, if a literal in a database is
inconsistent with those in the databases with higher reliability, only the literal is
discarded, and other literals in the database are still considered if they are consistent
with those in the databases of higher reliability.

Since multi-source reasoning is modelled in a modal logic framework, it is very
useful when integrated with epistemic logic. Its restriction is that each database
must be a set of literals; however, in the multi-agent epistemic logic, it is expected
that more complex compound formulas will be believed by agents. Therefore, we
have to extend the multi-sources reasoning to the more general case. To achieve
the purpose, the distributed knowledge operators in multi-agent epistemic logic can
be used. What we have to do is to adapt the multi-agent epistemic logic so that
the distributed knowledge among a group of agents with reliability ordering can
also be defined. However, since the set of facts believed by an agent is closed under
classical logical equivalence, whereas the trusting attitude of multi-source reasoning
adopts a syntax-dependent fusion, it cannot be modelled directly. For example, if p
and q are both believed by an agent and ¬p∨¬q is believed by another agent with
higher reliability, then using the trusting attitude, either p or q should be in the
merged result (assuming no other conflicts exist), however, it is obvious that the
belief of the first agent is equivalent to p∧ q and if it is expressed in this way, then
no belief of the first agent (except the obvious tautology) should be included in
the merged belief. Therefore, we only consider the merging of beliefs according to
the suspicious attitude; this approach is very cautious from the viewpoint of belief
fusion. However, we show that the syntax-dependent fusion can also be simulated
in our logic.

We consider two strategies for the cautious merging of beliefs. In the first, called
level cutting fusion, if inconsistency occurs at some level, then all beliefs at the lower
levels are discarded simultaneously. In the second, called level skipping fusion, only
the level at which the inconsistency occurs is skipped.

On one hand, level cutting fusion is inspired by threshold reasoning with un-
certain information. In uncertainty reasoning, it is usual that information with
certainty below a certain threshold is discarded. The threshold may be static or
dynamic. The inconsistency level is considered to be a dynamic threshold for such

2A more detail comparison of these approaches and ours is given in section 5.
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reasoning. Therefore, in situations in which the ordering between agents represents
a kind of certainty levels, once the threshold is set up due to the occurrence of the
inconsistency, all pieces of information with lower certainty should be discarded.
We provide examples to show the use of level cutting fusion in such situations.

On the other hand, level skipping fusion is motivated by the maximal consistent
subset combination. This kind of combination is one of the most straightforward
knowledge base merging techniques. Indeed, it is quite natural to select a maximal
consistent subset from an inconsistent set of logical formulas for restoring the con-
sistency of the merged knowledge base. However, as previously mentioned, most
maximal consistent subset combination approaches are syntax-dependent, whereas
our belief fusion logics are semantic-based. Therefore, we select a maximal consis-
tent subset of agents instead of formulas, though we can simulate the syntax-based
approach by assigning to each logical formula a particular agent.

We propose two logics for level cutting and level skipping strategies respectively.
Their syntax, semantics, complete axiomatic systems, and tableau proof systems
are all presented. Some examples in different realistic domains are used to illustrate
the potential applications of these logics. The complexity analysis of the tableau
proof systems shows that the logics have the same complexity with the normal
modal logic system KD and multi-agent epistemic logic Kn. Therefore, our logics
extend the expressive power of the multi-agent epistemic logic without increasing
computational complexity.

We integrate multi-source reasoning to enhance the reasoning capability of multi-
agent epistemic logic. However, we would also like to consider the extension of logics
using some of the more sophisticated fusion operators proposed in the literature. We
show a generic extension of our logics to accommodate these belief fusion operators.
This means that the belief fusion operators as a standard add-on of multi-agent
epistemic logic can be expected.

The rest of the paper is organized as follows. The logics for level cutting fusion
and level skipping fusion are introduced in section 2 and 3 respectively. The syn-
tax, semantics, and axiomatic systems of the logics are presented. Some possible
applications and realistic examples are also given to illustrate the use of the logics.
A tableau proof system for the proposed logics is presented in section 4 and the
complexity results are proven via an alternative formulation of the tableau calculus.
In section 5, we show the possibility of extending the basic framework to accom-
modate more sophisticated belief fusion operators and compare the proposed logics
with some existing works. Finally, we conclude and discuss some further research
directions in section 6.

1.1 Notational preliminary

In the following presentation, we extensively use the notions of ordering relations.
Let X be a set, then a binary relation ≥ over X is:

(1) reflexive if x ≥ x for all x ∈ X ;

(2) transitive if x ≥ y ∧ y ≥ z ⇒ x ≥ z for all x, y, z ∈ X ;

(3) anti-symmetric if x ≥ y ∧ y ≥ x⇒ x = y for all x, y ∈ X ;

(4) a pre-order if it is reflexive and transitive;

(5) a partial order if it is a pre-order satisfying anti-symmetry;
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(6) a total pre-order (or connected order) if it is a pre-order and x ≥ y ∨ y ≥ x for
all x, y ∈ X ;

(7) a total order if it is a total pre-order satisfying anti-symmetry.

We write x > y as the abbreviation of x ≥ y and y 6≥ x, and the binary relation
“>” is the strict version of ≥. For example, if “≥” is a total order, then “>” is a
strict total order. An element y is said to be an immediate >-successor of another
element x if x > y, and there does not exist any element z ∈ X such that x > z
and z > y. A total order (X,≥) contains a partial order (X,≥′) if x ≥′ y ⇒ x ≥ y
for all x, y ∈ X .

To encode the degrees of reliability of n agents, we use ordering relations over
any subset of {1, . . . , n}. Let T On denote the set of all possible total orders over
any non-empty subset of {1, . . . , n}, then we can associate with each total order in
T On a unique syntactic notation. Let X = {i1, i2, . . . , im} be a non-empty subset
of {1, . . . , n} and ≥ be a total order such that ij ≥ ik iff j ≤ k for all 1 ≤, j, k ≤ m,
then the syntactic notation for (X,≥) is the string

i1 > i2 > · · · > im.

In this paper, the capital letter O is used as meta-variables ranging over such
notations. Let O be the string i1 > i2 > · · · > im, then the set {i1, i2, . . . , im} is
called the domain of O and is denoted by δ(O). In this case, O > im+1 denotes
i1 > i2 > · · · > im > im+1 if im+1 6∈ δ(O). As the syntactic notation is unique
for each total order, we can also identify the notation with the total order itself,
so we can write O ∈ T On. Furthermore, the upper-case Greek letter Ω is used as
meta-variables ranging over nonempty subsets of T On.

Analogously, if (X,≥) is a partial order, then its syntactic notation is

{x > y | x, y ∈ X, y is an immediate >−successor of x}.

We use the capital letter Q as meta-variables ranging over such notations and also
identify it with the corresponding partial order. Let Q be a partial order over X ,
then T OQ denotes the set of all total orders over X containing Q.

We use some standard notations for binary relations in the following presentation.
If R ⊆ X×Y is a binary relation between X and Y , we write R(x, y) for (x, y) ∈ R
and R(x) for the subset {y ∈ Y | R(x, y)}. A binary relation R ⊆ X × Y is serial
if ∀x∃yR(x, y).

2. LOGIC FOR LEVEL CUTTING FUSION

In this section, we introduce a logic DBFc
n for distributed belief fusion using the

level cutting strategy, where n is the number of agents.

2.1 Syntax

Let Lc denote the language of DBFc
n. We first formally present the syntax of Lc.

Definition 1. The alphabet of Lc contains the following symbols:

(1) A countable set Φ0 = {p, q, r, . . .} of atomic propositions;

(2) The propositional constants ⊥ (falsum or falsity constant) and ⊤ (verum or
truth constant);
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(3) The binary Boolean connective ∨ (or), and unary Boolean operator ¬ (not);

(4) A set Ag = {1, 2, . . . , n} of agents;

(5) The modal operator-forming symbols “[” and “]”, set construction symbols “{”
and “}”, and the ordering symbol “>”;

(6) The left and right parentheses “(” and “)”, and the punctuation symbol “,”.

Definition 2. The well-formed formulas(wffs) of Lc are defined by the following
rules:

(1) if p ∈ Φ0, then p is a wff;

(2) ⊥ and ⊤ are wffs;

(3) if ϕ is a wff, then ¬ϕ is also a wff;

(4) if ϕ and ψ are wffs, then so too is ϕ ∨ ψ;

(5) if ϕ is a wff, then [G]ϕ and [O]ϕ are wffs for any nonempty G ⊆ Ag and
O ∈ T On.

As usual, other classical Boolean connectives ∧ (and), ⊃ (implication), and ≡
(equivalence) can be defined as abbreviations. Also, we write 〈G〉ϕ and 〈O〉ϕ as
abbreviations of ¬[G]¬ϕ and ¬[O]¬ϕ, respectively.

The intuitive meaning of [G]ϕ is “The group of agents G has distributed belief
ϕ”, whereas [O]ϕ means that ϕ is derivable from the merged beliefs of agents in
δ(O) according to the specific order O.

LetQ be a partial order on a subset of agents, then define [Q]ϕ as the abbreviation
of

∧

O∈T OQ
[O]ϕ. Therefore, the restriction of the modalities to total orders is not

essential since a partial order can be replaced by the set of total orders compatible
with it. The rationale behind the definition of [Q]ϕ is based on the consideration
of a partial order as a partial description of a total order3. In other words, two
agents are not comparable in the partial order simply because it is not known if
one is more reliable than the other.

2.2 Semantics

The semantics for DBFc
n is based on the possible world semantics for multi-agent

epistemic logic[Fagin et al. 1996].

Definition 3. A DBFc
n model for the language Lc is a structure

(W, (Ri)1≤i≤n, V ),

where

—W is a set of possible worlds,

—Ri ⊆W ×W is a serial binary relation over W for 1 ≤ i ≤ n,

—V : Φ0 → 2W is a truth assignment mapping each atomic proposition to the set
of worlds in which it is true.

3Note that the definition corresponds to skeptical reasoning in inheritance systems[Brewka 1991].
If we adopt credulous reasoning, i.e., define [Q]ϕ as ∨O∈T OQ

[O]ϕ, then it is possible that for
some ϕ, both [Q]ϕ and [Q]¬ϕ are true.
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From the binary relations Ri’s, we define two sets of derived relations. First, for
each nonempty G ⊆ Ag, we define

RG = ∩i∈GRi.

Second, for each O ∈ T On, the relation Rc
O is defined in an inductive way as:

Rc
O>i(w) =

{

Rc
O(w) if

⋂

j∈δ(O>i) Rj(w) = ∅,

Rc
O(w) ∩Ri(w) otherwise,

for any w ∈ W . The superscript c denotes level cutting fusion and can usually be
omitted when the context is clear.

Let O = i1 > i2 > · · · > im and define Gj = {i1, i2 . . . , ij} for 1 ≤ j ≤ m and
assume k is the largest j such that

⋂

i∈Gj
Ri(w) 6= ∅, then we have

RO(w) =
⋂

i∈Gk

Ri(w).

In other words, beliefs from agents after level k are completely discarded from
the merged result. Our rationale behind this is that if belief in level k + 1 is not
acceptable, then any belief in a less reliable level is also not acceptable. Therefore,
k plays the role of a dynamic threshold in uncertainty reasoning.

Informally, Ri(w) is the set of worlds that agent i considers possible under w
according to his belief, so RG(w) and RO(w) are the set of worlds which are con-
sidered possible under w, respectively, according to the direct fusion and the ordered
fusion of agents’ beliefs. The informal intuition is reflected in the definition of the
satisfaction relation.

Definition 4. Let M = (W, (Ri)1≤i≤n, V ) be a DBFc
n model and Φ be the set of

wffs of Lc, then the satisfaction relation |=M⊆ W × Φ is defined by the following
inductive rules(we use the infix notation for the relation and omit the subscript M
for convenience):

(1) w |= p iff w ∈ V (p) for any p ∈ Φ0,

(2) w 6|= ⊥ and w |= ⊤,

(3) w |= ¬ϕ iff w 6|= ϕ,

(4) w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ,

(5) w |= [G]ϕ iff for all u ∈ RG(w), u |= ϕ,

(6) w |= [O]ϕ iff for all u ∈ RO(w), u |= ϕ.

A set of wffs Σ is satisfied in a world w, written as w |= Σ if w |= ϕ for all ϕ ∈ Σ.
We write Σ |=M ϕ if for each possible world w in M , w |= Σ implies w |= ϕ and
Σ |=DBFc

n
ϕ if Σ |=M ϕ for each DBFc

n model M . Σ can be omitted when it is an
empty set, so a wff ϕ is valid in M , denoted by |=M ϕ, if ∅ |=M ϕ and |=DBFc

n
ϕ

denotes ∅ |=DBFc
n
ϕ. The subscript is also usually omitted if there is no possible

confusion.

2.3 Axiomatic system

In [Fagin et al. 1996], some variants of epistemic logic systems are presented. Using
the naming convention in [Chellas 1980], the most basic system with distributed
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(1) Axioms:
. P: all tautologies of the propositional calculus
. G1: ([G]ϕ ∧ [G](ϕ ⊃ ψ)) ⊃ [G]ψ
. G2: ¬[{i}]⊥
. G3: [G1]ϕ ⊃ [G2]ϕ if G1 ⊂ G2

. O1: ¬[δ(O > i)]⊥ ⊃ ([O > i]ϕ ≡ [δ(O > i)]ϕ)

. O2: [δ(O > i)]⊥ ⊃ ([O > i]ϕ ≡ [O]ϕ)

(2) Rules of Inference:
. R1(Modus ponens, MP):

ϕ ϕ ⊃ ψ
ψ

. R2(Generalization, Gen):

ϕ
[G]ϕ

Fig. 1. The axiomatic system for DBFc
n

belief is called KD
n , with n being the number of agents and D denoting the dis-

tributed belief operators. In this system, no properties except logical omniscience
are imposed on the agents’ beliefs. Nevertheless, we assume that the belief of each
individual agent is consistent even though the collective beliefs of several agents
may not be consistent. Our axiomatic system, then, is based on KDD

n where the
additional axiom D is added to KD

n to ensure the consistency of each agent’s belief.4

The axiomatic system for DBFc
n is presented in figure 1.

The axioms G1-G3 and rule R2 are those for KDD
n . G1 and rule R2 are properties

of knowledge for perfect reasoners. They are also the causes of the notorious logical
omniscience problem. However, it is appropriate to describe implicit information in
this way. G2 is the requirement that the belief of each individual agent is consistent.
G3 is a characteristic property of distributed knowledge. The larger the subgroup,
the more knowledge it possesses. In [Fagin et al. 1996], another axiom relating
distributed knowledge and individual ones is presented. That is,

D{i}ϕ ≡ Biϕ,

where D{i}ϕ and Biϕ correspond, respectively, to wffs [{i}]ϕ and [i]ϕ in our logic.
However, we do not need this axiom because [i]ϕ ≡ [{i}]ϕ can be derived from
G2, O1, and MP. We can therefore write [i] for both modalities [i] and [{i}]. The
two axioms O1 and O2 recursively define the merged belief in terms of distributed
belief. O1 is the case when

⋂

j∈δ(O>i) Ri(w) 6= ∅, whereas O2 is the opposite case.
The derivability in the system is defined as follows: A wff ϕ is derivable from the

system DBFc
n, or put simply, ϕ is a theorem of DBFc

n, if there is a finite sequence

4Though it is well accepted that KD45D
n is more appropriate for modelling of belief with positive

and negative introspection (axioms 4 and 5), we adopt the KDD
n system for emphasizing that the

agents may represent databases and their beliefs may be just the facts stored in the databases.
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ϕ1, . . . , ϕm such that ϕ = ϕm and every ϕi is an instance of an axiom schema or
obtained from earlier ϕj ’s by the application of an inference rule. It is written as
⊢DBFc

n
ϕ if ϕ is a theorem of DBFc

n. Let Σ ∪ {ϕ} be a subset of wffs, then ϕ is
derivable from Σ in the system DBFc

n , written as Σ ⊢DBFc
n
ϕ, if there is a finite

subset Σ′ of Σ such that ⊢DBFc
n

∧

Σ′ ⊃ ϕ. We will drop the subscript when no
confusion occurs.

Some basic theorems can be derived from the system DBFc
n.

Proposition 1. For any O = i1 > i2 > · · · > im and Gj = {i1, i2 . . . , ij}(1 ≤
j ≤ m), we have:

(1 ) ⊢ (¬[Gj ]⊥∧ [Gj+1]⊥) ⊃ ([O]ϕ ≡ [Gj ]ϕ), where the wff [Gj+1]⊥ is deleted from
the antecedent when j = m.

(2 ) ⊢ ([O]ϕ ∧ [O](ϕ ⊃ ψ)) ⊃ [O]ψ,

(3 ) ⊢ ¬[O]⊥,

(4 )
ϕ

[O]ϕ
.

Proof. The proof of all propositions and theorems can be found in the ap-
pendix.

Proposition 1.1 shows that any total order can be separated into a head and a tail
according to some consistency level, and the merged belief according to the ordering
is just the distributed belief of the agents from the head part. Proposition 1.2 and
1.4 show that merged belief inherits the properties of the distributed belief since the
former is equivalent to the latter for the head part of the ordering. Furthermore,
Proposition 1.3 shows that belief fusion keeps consistency.

We have the soundness and completeness results for the system DBFc
n.

Theorem 2.1. For any wff of DBFc
n, |= ϕ iff ⊢ ϕ.

2.4 Applications and Examples

The level cutting strategy is especially useful in situations where levels are of crucial
importance to reasoning. In particular, if we would like to accept only statements
above some threshold level and the threshold is determined by the consistency of
statement, then a level cutting strategy can be used. In this subsection, we show
several examples for the applications of DBFc

n in such situations.

2.4.1 Inconsistency handling in possibilistic logic. In the first example, we con-
sider knowledge bases consisting of possibilistic logic (PL) formulas. Each formula
of the knowledge base is attached with a certainty degree. When the knowledge base
is partially inconsistency, we determine its consistency level using the PL mecha-
nism. A deduction from the knowledge base is nontrivial if it uses only formulas
above the consistency level. We show that the level cutting strategy can formally
model this kind of nontrivial deduction in PL.

PL was originally proposed by Dubois and Prade for uncertainty reasoning[Dubois
et al. 1991; 1994; Dubois and Prade 1988]. The semantic basis of PL is the possibil-
ity theory developed by Zadeh from fuzzy set theory[Zadeh 1978]. Given a universe
W , a possibility distribution on W is a function π : W → [0, 1]. Obviously, π is a
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characteristic function of a fuzzy subset of W . Two measures on W can be derived
from π. They are called possibility and necessity measures and denoted by Π and
N , respectively. Formally, Π, N : 2W → [0, 1] are defined as

Π(A) = sup
w∈A

π(w),

N(A) = 1 − Π(A),

where A is the complement of A with respect to W .
A fragment for necessity-valued formulas in PL, called PL1, is introduced in

[Dubois et al. 1994]. Let L(Φ0) denote the classical propositional language formed
from the set of atomic propositions Φ0, then each wff of PL1 is of the form (ϕ, α),
where ϕ ∈ L(Φ0) and α ∈ (0, 1] is a real number. The number α is called the
valuation or weight of the formula. The notation (ϕ, α) expresses that ϕ is certain
at least to degree α. Formally, a model for PL1 is given by a possibility distribution
π on the set W of classical truth assignments for L(Φ0). For any ϕ ∈ L(Φ0), we can
define the truth set of ϕ as the set of truth assignments satisfying ϕ. By identifying
ϕ and its truth set, a PL1 model π satisfies (ϕ, α), denoted by π |= (ϕ, α), if
N(ϕ) ≥ α. Let S = {(ϕi, αi) : 1 ≤ i ≤ m} be a finite set of PL1 wffs, then
S |=PL1 (ϕ, α) if for each π, π |= (ϕi, αi) for all 1 ≤ i ≤ m implies π |= (ϕ, α). It is
shown that the consequence relation in PL1 can be determined completely by the
least specific model satisfying S. That is, if πS : W → [0, 1] is defined by

πS(w) = min{1 − αi | w |= ¬ϕ, 1 ≤ i ≤ m},

where min ∅ = 1, then S |=PL1 (ϕ, α) iff πS |= (ϕ, α).
A special feature of PL1 is its capability to cope with partial inconsistency. For

S defined as above, let S∗ denote the set of classical formulas {ϕ | 1 ≤ i ≤ m}. The
set S is then said to be partially inconsistent when S∗ is classically inconsistent. It
can be easily shown that S is partially inconsistent iff supw∈W πS(w) < 1. Thus
supw∈W πS(w) is called the consistency degree of S, denoted by Cons(S), and
1 − Cons(S) is called the inconsistency degree of S, denoted by Incons(S). When
S is partially inconsistent, it can be shown that S |=PL1 (⊥, Incons(S)), so for any
classical wff ϕ, (ϕ, Incons(S)) is a trivial logical consequence of S. On the contrary,
if S |=PL1 (ϕ, α) for some α > Incons(S), then ϕ is called a nontrivial consequence
of S.

To model the nontrivial deduction of PL1, we assume that the weights of PL1
wffs in a set S are drawn from a finite subset V = {α1, . . . , αn} of (0, 1]. Without
loss of generality, we can assume α1 > · · · > αn. For 1 ≤ i ≤ n, let us define Si as:

Si = {ϕ | (ϕ, αi) ∈ S}.

Assume that G is a subset of {1, 2, . . . , n}, then G is consistent for S if
⋃

i∈G Si is
classically consistent, otherwise, it is inconsistent for S. A subset G is a maximal
consistent agent group for S if G is consistent for S and for any i 6∈ G, G ∪ {i} is
inconsistent for S. Let MCAGS denote the class of all maximal consistent agent
groups for S, then we can associate with S a set ΣS of wffs in Lc as:

ΣS =

n
⋃

i=1

{[i]ϕ | ϕ ∈ Si} ∪ {¬[G]⊥ | G ∈MCAGS}.
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The nontrivial deduction can then modelled in the logic DBFc
n in the following

way.

Proposition 2. Let S be a set of PL1 wff and each Si be classically consistent,
then for any ϕ ∈ L(Φ0), ϕ is a nontrivial consequence of S iff ΣS ⊢DBFc

n
[1 > 2 >

· · · > n]ϕ.

We illustrate this application with an example from [Dubois and Prade 1991].

Example 1. [Dubois and Prade 1991] Let us consider a knowledge base S con-
sisting of the following PL1 facts:

. if Léa is a student, then it is rather certain that she is young,

. if Léa is young, then it is fairly certain that she is single,

. if Léa is a student and is a mother, then it is almost certain that she is not
single,

. Léa is a student.

Let p1=“Léa is a student”, p2=“Léa is young”, p3=“Léa is single”, and p4=“Léa
is a mother”, then our premise ΣS is the following set:

{[1]p1, [2](p1 ∧ p4 ⊃ ¬p3), [3](p2 ⊃ p3), [4](p1 ⊃ p2),¬[{1, 2, 3, 4}]⊥}.

Therefore, we can derive

ΣS ⊢DBFc
4

[1 > 2 > 3 > 4](p2 ∧ p3).

However, if we add to S another fact “Léa is a mother”, then ΣS becomes the set

{[1]p1, [1]p4, [2](p1 ∧ p4 ⊃ ¬p3), [3](p2 ⊃ p3), [4](p1 ⊃ p2),

¬[{1, 2, 3}]⊥,¬[{1, 2, 4}]⊥,¬[{1, 3, 4}]⊥,¬[{2, 3, 4}]⊥},

so we can now derive

⊢DBFc
4
ψΣ ⊃ [1 > 2 > 3 > 4](¬p2 ∧ ¬p3).

According to [Dubois and Prade 1991](p. 233), this means that:

In the terminology of epistemic entrenchment, less entrenched pieces
of information are inhibited, only a consistent subbase of strongly en-
trenched pieces of information remains undisputable.

2

2.4.2 Inductive Acceptance. Scientific induction is the process of generating,
evaluating, and accepting hypotheses based on evidence. In [Hempel 1965], three
phases in the scientific test of a given hypothesis are described. The first phase is
to conduct experiments or observations and obtain the observation reports. The
second phase consists in ascertaining whether the observation reports confirm, dis-
confirm, or are irrelevant to the hypothesis. The final phase consists of either
acceptance or rejection of the hypothesis based on the strength of the confirming
or disconfirming evidence. In particular, it is pointed that([Hempel 1965], p. 41):
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The third phase · · · would require the establishment of general “rule of
acceptance”. Roughly speaking, these rules would state how well a given
hypothesis has to be confirmed by the accepted observation reports to be
scientifically acceptable itself; i.e., the rules would formulate criteria for
the acceptance or rejection of a hypothesis by reference to the kind and
amount of confirming or disconfirming evidence for it embodied in the
totality of accepted observation reports.

A direct rule of acceptance is to give a threshold for the strength of confirmation
and any hypothesis with a degree of confirmation more than the threshold can
be accepted[Kyburg 1961]. However, the rule cannot ensure the set of accepted
sentences is consistent due to the notorious “lottery paradox”[Kyburg 1961]. The
main aspect of lottery paradox is “a set of statements, each of which is as probable
as you please, that are jointly inconsistent”[Kyburg 1961]. While there have been
a lot of works in the discussion of this aspect, we emphasize another aspect of the
lottery paradox—the acceptance of statements is a kind of threshold reasoning.
In other words, a statement under the level of acceptance is rejected even if it is
consistent with those at higher levels. This kind of reasoning is, exactly, deduction
based on level cutting strategy.

Example 2. Suppose that there are a large number (say N) of people buying the
lottery tickets; then according to experience, the following statements are confirmed
with different strengths:

. There are some people who will win.

. A particular people will lose.

. A particular people will win.

Let pi denotes “the i-th people will win”, then the degrees of confirmation of the
three statements above are listed in table I.

Table I. Degrees of confirmation for statements in the lottery paradox
statement degree of confirmation
∨

N

i=1
pi very high

¬pi(1 ≤ i ≤ N) fairly high
pi(1 ≤ i ≤ N) very low

According to this table, we can construct a set of wffs Σ as follows:

{[1]

N
∨

i=1

pi} ∪ {[2]¬pi | 1 ≤ i ≤ N} ∪ {[3]pi | 1 ≤ i ≤ N} ∪ {¬[{1, 3}]⊥}

Note that ¬[{1, 3}]⊥ is added into Σ because the beliefs of agent 1 and 3 (i.e.,
∨N

i=1 pi and pi(1 ≤ i ≤ N)) are consistent. Consequently, we have Σ ⊢ [1 >

2 > 3]
∨N

i=1 pi; we do not however have Σ ⊢ [1 > 2 > 3]pi for any pi, though
Σ ⊢ ¬[{1, 3}]⊥. This is due to the fact that levels play the role of thresholds in
the reasoning. When inconsistency occurs at level 2, the threshold of acceptance
is set to level 1, so even though the statements at level 3 are completely consistent
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with those at level 1, they cannot be accepted. Indeed, the result is intuitively
reasonable. Though we accept the fact that someone will win, it is very unlikely
that all persons will win. 2

2.4.3 Information security in multilevel systems. Information security is con-
cerned with whether the disclosure of information is authorized, whereas the ob-
jective of multilevel information security is to protect information that is classified
with respect to a multilevel hierarchy. Two main tasks are essential for the in-
formation security in multilevel systems: authorization and authentication. With
authorization, an agent can obtain permission to access information, and by au-
thentication, the agent safe-guarding the information can decide whether an agent
requesting access right has permission. In a distributed computing environment,
the authorization center is, in general, independent of the information center, so it
is necessary for the information center to decide whether the request of an agent
can be granted. In the next example, we show that level cutting fusion can help
reduce the probability of security breach.

Example 3. In the following simplification of a realistic scenario, we assume the
existence of n agents with different levels, an authorization center, and an infor-
mation center in which multilevel secrecy is resident. Authorization is achieved by
the distribution of a key to the agents who are permitted to access the information.
As the pieces of information change with time, the authorization center may decide
to change and redistribute the key. Depending on the classification levels of the
information at the time when the key is distributed, the authorization center will
dynamically decide to which level of agents information access is permitted. How-
ever, since the authorization center is independent of the information center, the
latter does not know the decision of the former, so all the information center can
do is to decide whether grant the access request of an agent by checking his/her
key. The scenario is illustrated by figure 2.

Let qkey denote “the key is key”, where key is the correct key value, and pi

denote the access request of the agent i. Assume that the levels of the n agent is
ordered by 1 > 2 > · · · > n, and at some time, the authorization center distributes
the correct key value to level l, then normally, the information center should receive
the following set of wffs for an access request:

Σ = {[i](qkey ∧ pi) | 1 ≤ i ≤ l} ∪ {[i]¬qkey | l + 1 ≤ i ≤ n}.

The security breach may occur when some agent from level l + 1 to n is malicious
and obtains accidently the key. On the existence of malicious unauthorized agents,
the set Σ will become

Σ = {[i](qkey ∧ pi) | 1 ≤ i ≤ l} ∪ {[i]¬qkey | i ∈ G+} ∪ {[i](qkey ∧ pi) | i ∈ G−},

where G− is the set of agents that are malicious and obtains the key accidently
and G+ = {l+ 1, · · · , n} −G−. Since the form of wffs received by the information
center is rather limited, we can assume that the information center can perform the
following closed-world reasoning:

if 6⊢ [G]⊥, then add ⊢ ¬[G]⊥;
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Fig. 2. A scenario for information security

so we do not bother to add the kind of wffs ¬[G]⊥ into the knowledge base for any
subset G of agents.

Let us now consider what the information center can do when there is a possibility
of security breach. On one hand, it can process the access request of each agent
independently. That is, it will grant the access request of an agent i if Σ ⊢ [i](qkey ∧
pi). If the probability that an unauthorized agent is malicious and obtains the key
accidently is α, then the probability of security breach is

1 − (1 − α)n−l.

On the other hand, using level cutting fusion, the information center can do
better. In other words, it will grant the access request of an agent i only if Σ ⊢DBFc

n

[1 > 2 > · · · > n]pi. Since Σ ⊢DBFc
n

[1 > 2 > · · · > n]pi for some i > l only when
l + 1 ∈ G−, the probability of security breach reduces from 1 − (1 − α)n−l to α.
The point is that the agent at level l + 1 will help block the security intrusion of
other agents if it is a verity agent. 2

3. LOGIC FOR LEVEL SKIPPING FUSION

Though the level cutting strategy is useful in practice, it is sometimes too cautious
from the perspective of information fusion. A less cautious strategy is to skip
only the agent causing inconsistency and continue to consider the next level. This
strategy corresponds to the suspicious attitude of multi-source reasoning and has
been used in belief revision by Nebel[Nebel 1994]. To model the belief fusion using
this strategy, we introduce the logic DBFs

n for level skipping distributed belief fusion
in this section.

ACM Transactions on Computational Logic, Vol. 6, No. 1, January 2005.



138 · Churn-Jung Liau

3.1 Syntax

Let Ls denote the language of DBFs
n with syntax formally defined as:

Definition 5. The alphabet of Ls is same as that of Lc, and the wffs of Ls are
defined by rules 1-4 for that of Lc and the following fifth rule.

. 5. if ϕ is a wff, so are [Ω]ϕ for any nonempty Ω ⊆ T On.

When Ω is a singleton {O}, we write [O]ϕ instead of [{O}]ϕ. If Ω = {O1, . . . , Om}
is such that |δ(Oi)| = 1 for all i’s, then [Ω] is the distributed belief operator among
ordinary agents. Therefore, the language is more general than that of DBFc

n.

3.2 Semantics

For the semantics, a DBFs
n model is same as a DBFc

n model, so given a model
(W, (Ri)1≤i≤n, V ), we can define Rs

O inductively.

Rs
O>i(w) =

{

Rs
O(w) if Rs

O(w) ∩Ri(w) = ∅,
Rs

O(w) ∩Ri(w) otherwise,

for any w ∈ W . As in the case of Rc
O, the superscript s denotes the level skipping

strategy and can be omitted when the context is clear. We can also define

RΩ =
⋂

O∈Ω

RO.

Then, the satisfaction relation between the possible worlds and wffs of Ls must
satisfy clauses 1-4 of definition 4 and the following fifth clause.

. 5. w |= [Ω]ϕ iff for all u ∈ RΩ(w), u |= ϕ.

According to the definition, [O > i]ϕ will be equivalent to the distributed fusion
of [O]ϕ and [i]ϕ when the belief of i is consistent with the merged belief of O.
To axiomatize reasoning under the strategy, we can view O as a virtual agent and
consider the distributed belief between O and i. However, to get a bit more general,
we also consider the distributed belief among a group of arbitrary virtual agents.
This is why we include wffs of the form [Ω]ϕ in Ls.

3.3 Axiomatic system

Given the language and semantics, the valid wffs of DBFs
n are captured by the

axiomatic system in figure 3.
The axioms V1-V3 and rule R2′ correspond to G1-G3 and R2 for distributed

belief for virtual agents instead of ordinary agents. Nevertheless, since an ordinary
agent is a special case of the virtual agent, these axioms in fact also cover G1-
G3 and R2. O1′ and O2′ are axioms for describing the level skipping strategy and
correspond exactly to the inductive definition of RO>i, where Ω in these two axioms
denote any subset (empty or not) of T On. We can still have the soundness and
completeness theorem.

Theorem 3.1. For any wff of DBFs
n, |= ϕ iff ⊢ ϕ.

Since operator [O] is a special case of [Ω], propositions 1.2 and 1.4 hold trivially for
DBFs

n. The proposition 1.3 can be easily proved using V2, O1′ and O2′. However,
it is unclear whether a counterpart of proposition 1.1 can be given.
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(1) Axioms:
. P: all tautologies of the propositional calculus
. V1: ([Ω]ϕ ∧ [Ω](ϕ ⊃ ψ)) ⊃ [Ω]ψ
. V2: ¬[i]⊥
. V3: [Ω1]ϕ ⊃ [Ω2]ϕ if Ω1 ⊂ Ω2

. O1′: ¬[{O, i}]⊥ ⊃ ([Ω ∪ {O > i}]ϕ ≡ [Ω ∪ {O, i}]ϕ)

. O2′: [{O, i}]⊥ ⊃ ([Ω ∪ {O > i}]ϕ ≡ [Ω ∪ {O}]ϕ)

(2) Rules of Inference:
. R1(Modus ponens, MP):

ϕ ϕ ⊃ ψ
ψ

. R2′(Generalization, Gen):

ϕ
[Ω]ϕ

Fig. 3. The axiomatic system for DBFs
n

3.4 Applications and Examples

In this section, we discuss some applications of the logic DBFs
n.

3.4.1 Multi-agent epistemic reasoning. In [Fagin et al. 1996], it is argued that
multi-agent epistemic logic has many applications in such diverse fields as eco-
nomics, linguistics, AI, and theoretical computer science. However, the distributed
knowledge operator in multi-agent epistemic logic suffers from an inconsistency
problem. That is, the distributed belief of a group of agents with conflicting be-
liefs may crash. The fusion operators proposed in our logic are used to circumvent
this problem in the original epistemic logic framework. Let us now look at some
examples of integrated reasoning about the multi-agent beliefs and their fusion.

Example 4. If a set of premises Σ = {¬[{1, 2}]⊥ ∨ ¬[{1, 3}]⊥, [1](p ⊃ q), [2]p,
[3]¬q} is given for three agents, then it can be derived that

Σ ⊢DBFs
3

[1 > 2 > 3]((p ∧ q) ∨ (¬p ∧ ¬q))

and

Σ ⊢DBFc
3

[1 > 2 > 3](p ⊃ q).

The wff ¬[{1, 2}]⊥∨¬[{1, 3}]⊥ says that if the beliefs of agents 1 and 2 are incom-
patible, then those of 1 and 3 are compatible, so the level skipping strategy will
either accept the belief of agent 2 or ignore it and consequently accept that of agent
3. This example shows that we can reason with the compatibility of the agents’
beliefs in the uniform framework of epistemic reasoning and information fusion. 2

The next example shows that the belief about belief may play a role in the fusion
process.
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Example 5. Assume there are two agents whose beliefs are described by the
following set:

Σ = {[1]¬[{1, 2}]⊥, [1]p, [1][1]p, [1][2]q

[2][{1, 2}]⊥, [2]q, [2][2]q, [2][1]p}

It can then be shown that [1 > 2]p ∧ [2 > 1]q, [1][1 > 2](p ∧ q) ∧ [1][2 > 1](p ∧ q),
and [2][1 > 2]p ∧ [2][2 > 1]q are derivable from Σ in both DBFs

2 and DBFc
2. Thus

the belief of agent 1 is incorrect because he wrongly believes that he is consistent
with agent 2, while agent 2 in fact disagrees with him on the consistency between
them. 2

Sometimes, it is possible to infer individual agent beliefs from their merged beliefs.
The next example shows a very simple case.

Example 6. Assume it is known that two premises [1 > 2]p and [2 > 1]¬p hold,
then we have the following derivation in DBFs

2:

1.¬[{1, 2}]⊥ ⊃ ([1 > 2]p ⊃ [{1, 2}]p) O1′

2.¬[{1, 2}]⊥ ⊃ ([2 > 1]¬p ⊃ [{1, 2}]¬p) O1′

3.([1 > 2]p ∧ [2 > 1]¬p) ⊃ (¬[{1, 2}]⊥ ⊃ ([{1, 2}]p ∧ [{1, 2}]¬p)) 1, 2, P,MP
4.([1 > 2]p ∧ [2 > 1]¬p) ⊃ (¬[{1, 2}]⊥ ⊃ [{1, 2}]⊥) 3, P,G1,MP,Gen
5.([1 > 2]p ∧ [2 > 1]¬p) ⊃ [{1, 2}]⊥ 4, P
6.[{1, 2}]⊥ ⊃ ([1 > 2]p ⊃ [1]p) O2′,MP
7.[{1, 2}]⊥ ⊃ ([2 > 1]¬p ⊃ [2]¬p) O2′,MP
8.([1 > 2]p ∧ [2 > 1]¬p) ⊃ ([1]p ∧ [2]¬p) 6, 7, P,MP

When there are more than two agents, the situation becomes more complicated.
However, it is still possible to derive some individual or partially merged beliefs
from the totally merged ones. 2

3.4.2 Preferred subtheory. In the last two decades, non-monotonic reasoning
has become an important research area in artificial intelligence and knowledge rep-
resentation. Many mechanisms for non-monotonic reasoning have been developed
and prove very useful in some practical applications. In this section, we show that
the logic for level skipping fusion can simulate a kind of non-monotonic reasoning
mechanism proposed in [Brewka 1991].

Definition 6 [Brewka 1991].

(1) A level default theory T is a tuple (T1, · · · , Tk), where each Ti is a set of classical
logic formulas.

(2) Let T = (T1, · · · , Tk) be a level default theory, then S = S1 ∪ · · · ∪ Sk is a
preferred subtheory of T iff for all i(1 ≤ i ≤ k), S1 ∪ · · · ∪ Si is a maximal
consistent subset of T1 ∪ · · · ∪ Ti.

Note that preferred subtheories of a level default theory is syntax-dependent. For
example, if T1 = {p, q} and T2 = {¬p∨¬q}, then {p,¬p∨¬q} and {q,¬p∨¬q} are
both preferred subtheories of (T1, T2). However, if T ′

1 = {p∧ q}, then neither is the
preferred subtheory of (T ′

1, T2), even though T1 and T ′
1 are semantically equivalent.

On the other hand, our logical framework is semantics-based, so it is essentially
incompatible with the preferred subtheory approach. However, it turns out that
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reasoning with a preferred subtheory can be simulated in the level skipping fusion
logic if the syntax-dependence is preserved in the translation of a level default
theory into our logic language. In the following formulation, we assume that each
formula ϕ ∈ T1 ∪ · · · ∪ Tk is classically consistent.

The simulation steps are as follows.

(1) Let ni = |Ti| for 1 ≤ i ≤ k and let n =
∑k

i=1 ni. Also let n0 = 0.

(2) Let ϕij denote the jth formula in Ti for 1 ≤ i ≤ k and 1 ≤ j ≤ ni.

(3) Define a two-place function f such that for 1 ≤ i ≤ k and 1 ≤ j ≤ ni

f(i, j) = n1 + · · · + ni−1 + j.

(4) Note that f is 1-1 and onto for the range {1, 2, · · · , n}, so we can define two
inverse functions g1 and g2 by

g1(m) = i; g2(m) = j

if f(i, j) = m.

(5) A subset G ⊆ {1, 2, · · · , n} is a maximal consistent agent group if {ϕij | f(i, j) ∈
G} is consistent and for any G′ ⊃ G, {ϕij | f(i, j) ∈ G′} is inconsistent. Let
MCAGn denote the set of all maximal consistent agent groups.

(6) Let ΣT = {[m]ϕij | 1 ≤ i ≤ k, 1 ≤ j ≤ ni, f(i, j) = m} ∪ {¬[G]⊥ | G ∈
MCAGn}.

(7) Define a strict partial ordering Q over {1, 2, · · · , n} by

x > y ⇔ g1(x) < g1(y).

Note that the translation preserves the syntax structure of the original theory. For
example, if T1 = {p, q}, then it is translated into two modal formulas {[1]p, [2]q};
however, if T1 = {p ∧ q}, then it is simply translated into {[1](p∧ q)}. This results
in the following proposition.

Proposition 3.

(1 ) Let S be a preferred subtheory of T , then there exists a total ordering O ∈ T OQ

such that S |= ϕ iff ΣT ⊢DBFs
n

[O]ϕ for any classical logic formula ϕ.

(2 ) Let O ∈ T OQ be a total ordering over {1, 2, · · · , n}, then there exists a preferred
subtheory S of T such that S |= ϕ iff ΣT ⊢DBFs

n
[O]ϕ for any classical logic

formula ϕ.

Example 7. Let us consider a slightly modified version of the meeting example
presented in [Brewka 1991]. In that example, the following level default theory is
given:

T1 = {Cold,Vacation ⊃ ¬R1,Cold ⊃ ¬R2,Cold ⊃ Sick}
T2 = {R2, R2 ⊃ (Sick ⊃ ¬R1)}
T3 = {R1, R1 ⊃ Meeting}.

Then S = T1 ∪ T3 ∪ {R2 ⊃ (Sick ⊃ ¬R1)} is a preferred subtheory of (T1, T2, T3)
and it can be seen that S |= Meeting. By our simulation steps, there are 8 agents
and the translated theory ΣT is

{[1]Cold, [2](Vacation ⊃ ¬R1), · · · , [8](R1 ⊃ Meeting)}∪{¬[G]⊥ | G ∈MCAG8}
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Since {1, 2, 3, 4, 6, 7, 8} ∈MCAG8, it can be shown that ΣT ⊢DBFs
n

[1 > · · · > 8]ϕ ≡
[{1, 2, 3, 4, 6, 7, 8}]ϕ for all wff ϕ. using the definition of ΣT , we have ΣT ⊢DBFs

n

[{7, 8}]Meeting, so ΣT ⊢DBFs
n

[1 > · · · > 8]Meeting holds. 2

One of the earliest approaches to knowledge merging is to manipulate the maxi-
mal consistent subsets of the union of component databases. In [Baral et al. 1992;
1994; Baral et al. 1991], knowledge bases with integrity constraints are combined by
a meta-level combination operator to form a new knowledge base. While in [Baral
et al. 1994; Baral et al. 1991], logic programs and default logic theories that have
different semantics than the classical logic are considered, the basic mechanism for
combining first-order theories in [Baral et al. 1992] can be considered a special case
of reasoning with a preferred subtheory. In [Baral et al. 1992], a combination oper-
ator C maps a set of knowledge bases {T1, · · · , Tk} and a set of integrity constraints
IC into a new knowledge base C(T1, · · · , Tk, IC) that can be roughly considered as
the disjunction of maximally consistent subsets of T1 ∪T2 ∪ · · · ∪Tk with respect to
IC. More precisely, let T = (IC, T1 ∪ · · · ∪ Tk) be a level default theory and PFT

is the set of preferred subtheories of T , then

C(T1, · · · , Tk, IC) =
∨

S∈PFT

∧

S.

Therefore, by proposition 3, we have the following result.

Corollary 1. Let T = (IC, T1 ∪ · · · ∪ Tk) be a level default theory and the
partial ordering Q be defined as in the simulation step 7, then for all classical logic
formula ϕ,

ΣT ⊢DBFs
n

[Q]ϕ⇔ C(T1, · · · , Tk, IC) |= ϕ.

3.4.3 Diagnostic reasoning. Diagnosis is one of the most important areas in
which knowledge-based systems are applied. It is a process of finding faults or
defects in the observed data and the background knowledge of the diagnosed sys-
tem. Two familiar examples of diagnosis are the medical diagnosis of a patient’s
disease from his symptoms and the fault detection of an electrical device from its
abnormal behaviors. A review of diagnostic systems based on symbolic reason-
ing methodology is presented in [Lucas 1997]. There are several formal theories
of diagnosis. One of the popular diagnostic reasoning methods is the consistency-
based diagnosis proposed in [Reiter 1987]. According to [Lucas 1997], this is a
kind of diagnosis based on the knowledge of deviation from normal structure and
behavior(DNSB diagnosis). The logical specification of such knowledge is a triple
S = (SD,COMPS,OB), where

(1) SD is a finite set of classical logic formulas, called the system description, which
specifies the normal structure and behavior of the system,

(2) COMPS is a set of individual constants, denoting the components of the sys-
tem, and

(3) OB is another finite set of classical logic formulas, denoting observations.

Each formula in SD is typically in the form:

¬ab(c) ⊃ ϕ(c)
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which means that if a component c is not abnormal (i.e., not faulty), then it should
satisfy some behavior specification ϕ. For each D ⊆ COMPS, we can form a
hypothesis

HD = {ab(c) | c ∈ D} ∪ {¬ab(c) | c ∈ COMPS\D}.

The hypothesis indicates that the components inD are faulty and those not inD are
normal. A set D ⊆ COMPS is called a diagnosis of the system S if SD∪HD ∪OB
is classically consistent. In Reiter’s original formulation[Reiter 1987], the problem
of diagnostic reasoning is to find diagnoses minimal with respect to set inclusion.

Though minimality is an important criterion in diagnostic reasoning, it is not
unique. Sometimes, the reliability of different components may provide clues in the
diagnostic process. In particular, when several diagnoses exist, we may have to do
more tests to find the real fault, and the part of the system that will be tested first
strongly depends on the reliability of the components. In general, it is reasonable
to first test the less reliable components. Furthermore, when a system is complex,
it is also helpful to hierarchically partition the system into subsystems and consider
each subsystem as a component in the diagnostic reasoning process.

To model such diagnostic reasoning in DBFs
n logic, we associate agent 1 with the

system description SD and the observation OB and each component in COMPS
or each subsystem to an agent in {2, · · · , n}. Therefore, the system S can be
formulated in DBFs

n by a set ΣS including the following wffs:

(1) [1]ϕ if ϕ is a system description or an observed fact,

(2) [i]¬ab(c) if agent i is associated with an atomic component c,

(3) [i](¬ab(c1) ∧ · · · ∧ ¬ab(ck)) if i is associated with a subsystem consisting of the
components c1, · · · , ck, and

(4) ¬[G]⊥ if G is a maximal consistent agent group, i.e., [G]⊥ is not derivable from
the preceding three kinds of wffs.

Let σ : {2, · · · , n} → {2, · · · , n} be a bijective function and O denote the total
ordering 1 > σ(2) > · · · > σ(n), then the set

D = {c ∈ COMPS | ΣS 6⊢DBFs
n

[O]¬ab(c)}

constructs a diagnosis of the system S. We will say that the ordering O respects
the reliability of the components if for any c and c′ ∈ COMPS such that c is
more reliable than c′, the agent associated with c precedes that associated with c′

in O. If we have enough reliability information of the components, the number of
possible diagnoses will reduce when only orderings respecting the reliability of the
components are considered for the diagnostic reasoning.

Example 8 Flat diagnosis. Let us consider the diagnosis of a digital circuit shown
in figure 4. This circuit has been extensively used in the literature[Reiter 1987].
The atomic components of the circuit consist of two “exclusive-or” gates X1 and
X2, two “and” gates A1 and A2, and one “or” gate R1. The system description SD
contains the following classical logic formulas5:

¬ab(X1) ⊃ out(X1) ≡ (in1(X1) ⊕ in2(X1))

5The formula p ⊕ q denotes the abbreviation of (p ∧ ¬q) ∨ (¬p ∧ q).
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Fig. 4. A full adder

¬ab(X2) ⊃ out(X2) ≡ (in(A2) ⊕ out(X1))

¬ab(A1) ⊃ out(A1) ≡ (in1(X1) ∧ in2(X1))

¬ab(A2) ⊃ out(A2) ≡ (in(A2) ∧ out(X1))

¬ab(R1) ⊃ out(R1) ≡ (out(A1) ∨ out(A2))

and the observation OB contains

in1(X1),¬in2(X1), in(A2),¬out(X2),¬out(R1).

Let S be the system (SD,COMPS,OB), then we have six agents, where agent 2, 3,
4, 5, 6 corresponds to component X1, X2, A1, A2, and R1, respectively. Therefore,
the DBFs

n theory for this system is

ΣS = {[1]ϕ | ϕ ∈ SD ∪OB} ∪ {[2]¬ab(X1), [3]¬ab(X2),
[4]¬ab(A1), [5]¬ab(A2), [6]¬ab(R1)} ∪ Σ0

where Σ0 = {¬[{1, 2, 3, 4, 5}]⊥,¬[{1, 2, 3, 4, 6}]⊥,¬[{1, 4, 5, 6}]⊥,¬[{2, 3, 4, 5, 6}]⊥}.
The set Σ0 arises from maximal groups of agents whose joint beliefs are consistent.
For example, ¬[{1, 2, 3, 4, 5}]⊥ is in Σ0 because the system description and observed
facts are (classically) consistent with the set {¬ab(X1),¬ab(X2),¬ab(A1),¬ab(A2)}.
In a practical implementation, we do not need to generate the set Σ0 for the sake
of efficiency. Instead, we adopt a kind of lazy evaluation procedure to test if [G]⊥
is derivable from ΣS\Σ0 for a group of agents G.

Suppose that the “exclusive-or” gates are in general more reliable than other
components, then by considering the ordering O1 = 1 > 2 > 3 > 4 > 5 > 6 and
O2 = 1 > 2 > 3 > 4 > 6 > 5, we have

ΣS ⊢DBFs
n

[O1](¬ab(X1) ∧ ¬ab(X2) ∧ ¬ab(A1) ∧ ¬ab(A2))

and

ΣS ⊢DBFs
n

[O2](¬ab(X1) ∧ ¬ab(X2) ∧ ¬ab(A1) ∧ ¬ab(R1)).

This corresponds to two diagnoses {R1} and {A2} and excludes the diagnosis
{X1, X2} that is possible in Reiter’s original formulation. 2
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Example 9 Hierarchical diagnosis. Though the circuit in figure 4 is not too com-
plex, we can still use it to illustrate the notion of hierarchical diagnosis. The dotted
lines in figure 4 divide the system into two subsystems C1 and C2. Each system is
now considered as a compound component, so we can consider three agents with
the following set of beliefs:

ΣS = {[1]ϕ | ϕ ∈ SD ∪OB} ∪ {[2](¬ab(X1) ∧ ¬ab(X2)),

[3](¬ab(A1) ∧ ¬ab(A2) ∧ ¬ab(R1))} ∪ {¬[{1, 2}]⊥,¬[{1, 3}]⊥,¬[{2, 3}]⊥}.

If we assume that the subsystem C1 is more reliable than C2, then we have

ΣS ⊢DBFs
n

[1 > 2 > 3](¬ab(X1) ∧ ¬ab(X2)).

This corresponds to the diagnosis {C2}. Once the diagnosis is given, we can generate
further test data directly for subsystem C2; for example, the second input of A2 is
connected to an external signal source. By observing the output of the test data,
we can again carry out the same diagnostic reasoning for the subsystem. 2

4. PROOF THEORY

While we have presented semantics and axiomatic systems for modal logics of multi-
agent belief fusion, we would like to address some computational issues of the
proposed logics. Though axiomatic systems provide an elegant characterization of
our logic, it is less practical from a computational viewpoint. It is in general hard
to find a proof for a given formula in an automatic way because with the use of the
modus ponens rule, we have to look for a proof of ψ and ψ ⊃ ϕ for the proof of ϕ.
However, since ψ may be an arbitrary formula without any relation to the target
formula ϕ, the search has to be exhaustive.

Other calculi, such as resolution, Gentzen’s sequent calculus, and tableau meth-
ods, have been proposed for the purpose of automated theorem proving. The sub-
formula property of these methods makes it possible to find a proof by managing
only the formula and its subformula. Among them, the tableau method (or its
variant, Gentzen’s sequent calculus) has received much attention in the automation
of modal logic theorem prover recently. While resolution is the commonly-used
proof method in classical logic, it is less attractive in the modal logic realm due to
the requirement that formulas must be converted into normal form before applying
resolution-style rules. The advantage of the tableau method is its strong connec-
tion with the semantics as each tableau rule reflects the semantic intuition behind
a logical connective or operator.

The pioneering proof methods for modal logic were developed by Fitting[Fitting
1983], in which the systems of prefixed tableaux are presented. A system of prefixed
tableaux makes explicit reference to the possible worlds in the Kripke model. We
can consider the prefixed tableau method an instance of the general methodology
of labelled deductive systems proposed in[Gabbay 1996]. Instead of representing
possible worlds as prefixes that describe paths in the model from the initial world
as in Fitting’s systems, Baldoni et al.[Baldoni et al. 1998] develop a tableau calcu-
lus for multimodal logics by giving each new possible world an atomic name and
representing explicitly the accessibility relationships among them. Following the
method in [Baldoni et al. 1998], we also present the tableau calculus for our logic
in that way.
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α−formula (conjunction)
α α1 α2

ϕ ∧ ψ ϕ ψ
¬(ϕ ∨ ψ) ¬ϕ ¬ψ
¬(ϕ ⊃ ψ) ϕ ¬ψ

β−formula (disjunction)
β β1 β2

ϕ ∨ ψ ϕ ψ
¬(ϕ ∧ ψ) ¬ϕ ¬ψ
ϕ ⊃ ψ ¬ϕ ψ

ν−formula (necessity)
νG νG

0

[G]ϕ ϕ
¬〈G〉ϕ ¬ϕ

π−formula (possibility)
πG πG

0

〈G〉ϕ ϕ
¬[G]ϕ ¬ϕ

Fig. 5. The uniform notation for modal logic formulas

To avoid repetition of some structurally similar rules, a uniform notation invented
by Smullyan[Smullyan 1968] and extended in [Fitting 1983] has been adopted ex-
tensively in the tableau methods for modal logics. The uniform notation specifies
the decomposition of a formula into its components and is shown in figure 5.

The rationale behind the tableau proof method is to find a counter-model for the
negation of a wff. If this is impossible, then the original wff is valid. Therefore, to
test the validity of a wff ϕ, let w be a prefix denoting an arbitrary possible world,
then a tableau proof tree will be started with the prefixed formula w : ¬ϕ as its
root. There are two kinds of formulas in a tableau proof tree. One is the kind
of prefixed formulas in the form w : ϕ, where w is a prefix and ϕ is a wff in our
logic. The other is the kind of accessibility relation formula wρGw

′, where w and
w′ are prefixes and ρG is a binary relation symbol for a nonempty subset of agents
G[Baldoni et al. 1998]. These two kinds of formulas are called tableau formulas.

A tableau rule is applicable when some branch of the proof tree contains the
premises of some rule, and the conclusions of the rule are added to the end of the
branch after the application of the rule. The set of tableau rules is presented in
figure 6. In the presentation, we follow the convention of [Baldoni et al. 1998] by
using ϕ and ψ as metavariables over arbitrary wffs and w,w′ as metavariables over
prefixes. Also, i, G, and O are respectively taken as metavariables for agents, sets
of agents, and total orders over agents. Recall that we identify the singleton {i}
with i. Also, when the rules are applied, a prefix is new if it has never appeared in
the branch, otherwise, it is called an old prefix.

These rules are divided into three groups. First, there are two kinds of classical
rules. The extension rules add the conclusions to the end of a branch directly, and
the added nodes are organized as a branch and attached to the end of the original
branch. The forking rules add the conclusions as the children of the end node of
the original branch. In the propositional case, all forking rules have exactly two
conclusions, so one is the left child and the other is the right child, and the proof
tree is binary.

Second, the modal rules can be seen as a special instance of those for inclusion
modal logics and incestual modal logics in [Baldoni 1998]. In particular, the rule
D is due to the serial accessibility relation for each individual agent, and can be
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(1) Classical rules:
(a) Extension rules(α-rule and ¬¬-rule):

w : α w : ¬¬ϕ
w : α1 w : ϕ
w : α2

(b) Forking rule(β-rule):

w : β
w : β1 w : β2

(2) Modal rules:
(a) ν-rule and π-rule:

w : νG w : πG

wρGw
′ wρGw

′

w′ : νG
0 w′ : πG

0

where in the π-rule, w′ is new
(b) Rule D:

w is old
wρiw

′

where w′ is new.
(c) ρ-rule: if ∅ 6= G2 ⊂ G1, then

wρG1
w′

wρG2
w′

(3) DBFc
n rule:

w : [O > i]ϕ w : ¬[O > i]ϕ
w : [δ(O > i)]⊥ w : ¬[δ(O > i)]⊥ w : [δ(O > i)]⊥ w : ¬[δ(O > i)]⊥

w : [O]ϕ w : [δ(O > i)]ϕ w : ¬[O]ϕ w : ¬[δ(O > i)]ϕ

(4) DBFs
n rule:

w : [Ω ∪ {O > i}]ϕ w : ¬[Ω ∪ {O > i}]ϕ
w : [{O, i}]⊥ w : ¬[{O, i}]⊥ w : [{O, i}]⊥ w : ¬[{O, i}]⊥
w : [Ω ∪ {O}]ϕ w : [Ω ∪ {O, i}]ϕ w : ¬[Ω ∪ {O}]ϕ w : ¬[Ω ∪ {O, i}]ϕ

Fig. 6. The tableau rules for DBFC
n and DBFS

n

characterized by a special incestual axiom. However, it must be noted that the
unrestricted application of rule D may cause non-termination of the proof search
process since we can always introduce a new ρi-successor for any prefix currently
available in the branch. Therefore, we require that the following conditions must
be satisfied before the rule D can be applied to an available prefix w:

(1) there are some necessity formulas νi such that w : νi has appeared previously,
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and

(2) there does not exist any prefix w′ and subset of agents G such that i ∈ G and
wρGw

′ has been in the branch.

In other words, for each available prefix w and agent i, rule D is applied at most
once, and only when the prefix appears in the front of some ν formulas.

As for other modal rules, they are only applicable to distributed belief operators.
Since a modal operator [G] can be seen as a special kind of [Ω] operator, it exists in
both logics DBFc

n and DBFs
n. Therefore, the modal rules, as well as classical rules,

are common to DBFc
n and DBFs

n.
On the other hand, the DBFc

n rule and DBFs
n rule, as the names suggest, are

specific to the respective logics. These rules are direct translations of the axioms
O1, O2, O1′, and O2′. By repeatedly applying these rules, all modal operators can
be ultimately reduced to the distributed belief operators in the form [G], so the
modal rules can then be applied.

A branch in a tableau is closed if it contains w : ⊥, w : ¬⊤, or both w : ϕ and
w : ¬ϕ for some prefix w and wff ϕ. A branch not closed is called an open branch.
A tableau is closed if all its branches are closed. Note that, in ordinary modal
tableaux, we have to find an open branch in every newly accessed possible world
for the construction of a counter-model. However, by using prefixed wffs, an open
branch in our modal tableaux corresponds to a bunch of open branches in ordinary
modal tableaux.

A wff ϕ is tableau provable in DBFc
n(resp. DBFs

n), denoted by ‖−DBFc
n
ϕ(resp.

‖−DBFs
n
ϕ), if there is a closed tableau with w : ¬ϕ as its root, using the set of

classical, modal, and DBFc
n(resp. DBFs

n) rules. Such a closed tableau is said to be
a proof of ϕ. Then we have:

Theorem 4.1. Let L denote DBFc
n or DBFs

n and ϕ be a wff in the logic L, then
‖−Lϕ iff |=L ϕ.

Though ρ rule is of crucial importance for the completeness of the tableau cal-
culus, it may generate too many redundant accessibility relation formulas not used
in the later proof. To circumvent the problem, we can remove the ρ rule if the ν
rule is replaced by the following generalized ν rule:

w : νG

wρG′w′

w′ : νG
0

where G ⊆ G′. This rule is derived by the successive application of ρ rule and ν rule.
The main advantage of this rule is that we do not have to generate accessibility
relation formulas wρGw

′ from wρG′w′ for all G ⊆ G′. An accessibility relation
formula wρGw

′ is used implicitly in the generalized ν rule only when some νG-type
formulas are available in the premises. Since in the original tableau rules, only the
premises of ν rule contain an accessibility relation formula, the generalized ν rule
is sufficient for the completeness of the tableau calculus. Therefore, we have the
following corollary.

Corollary 2. A wff ϕ is tableau provable by applications of classical rules,
generalized ν rule, π rule, rule D, and DBFc

n (resp. DBFs
n) rule iff |=DBFc

n
ϕ (resp.
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|=DBFs
n
ϕ).

Sometimes, we use a derived rule, called macro DBFs
n rule, to shorten the height

of a tableau tree. The rule is described as follows. Let O = i1 > i2 > · · · > ik, and
G be any subset of δ(O) such that i1 ∈ G and Gj = (G ∩ {i1, · · · , ij−1}) ∪ {ij} for
1 < j ≤ k. Define ΣO

G as the following set of wffs

{¬[G]⊥} ∪ {[Gj ]⊥ | ij 6∈ G}.

Then the macro DBFs
n rule is

w : [Ω ∪ {O}]ϕ w : ¬[Ω ∪ {O}]ϕ
w : [Ω ∪G]ϕ · · · · · · w : ¬[Ω ∪G]ϕ · · · · · ·

{w : ψ | ψ ∈ ΣO
G} · · · · · · {w : ψ | ψ ∈ ΣO

G} · · · · · ·

In other words, when the macro DBFs
n rule is applied to a branch containing [Ω ∪

{O}]ϕ (resp. ¬[Ω∪{O}]ϕ), generate a child for each subset G of δ(O) that contains
the first element of O, and add to the end of the branch the set ΣO

G and the wff
[Ω ∪ G]ϕ(resp. ¬[Ω ∪ G]ϕ). The following proposition shows the soundness of the
macro DBFs

n rule.

Proposition 4. The macro DBFs
n rule is derivable in the tableau calculus for

DBFs
n.

Example 10. Let us give a tableau proof for example 4. This shows that

ϕ = (¬[{1, 2}]⊥∨¬[{1, 3}]⊥)∧[1](p ⊃ q)∧[2]p∧[3]¬q ⊃ [1 > 2 > 3]((p∧q)∨(¬p∧¬q))

is tableau provable. The proof is given in figure 7. By using the macro DBFs
n rule,

the tableau tree is no longer binary. Indeed, the proof in figure 7 is split into four
branches below the double lines due to the occurrence of ¬[1 > 2 > 3]((p∧q)∨(¬p∧
¬q)), where δ(1 > 2 > 3) has four subsets containing 1. The first three branches
are shown in figure 7(a), whereas the last branch is shown in figure 7(b). Before
splitting occurs, we apply α rule to the wffs repeatedly. For the first three branches,
the πG and νG rules are needed to obtain the desired refutation. However, for the
last branch, only β rule is needed. Note that we in fact use the generalized νG

rule instead of the ρ rule. Therefore, since wρ{1,2,3}w
′, w : [1](p ⊃ q), w : [2]p, and

w : [3]q appear in the first branch, we can add w′ : p ⊃ q, w′ : p, and w′ : q to that
branch; since the accessibility relation formula appearing on the second branch is
wρ{1,2}w

′, we cannot have w′ : q in that branch. 2

4.1 Complexity results

An alternative formulation of the tableau method has been used in [Halpern and
Moses 1992] to prove that there is a PSPACE algorithm for deciding satisfiability of
formulas in multi-agent epistemic logic Kn. The sub-formula property of the tableau
method plays a crucial role in the proof. Without using prefixes, the tableau in
[Halpern and Moses 1992] is embedded in a pre-tableau: a tree with nodes labelled
by sets of wffs, and some edges labelled by agents. Roughly speaking, a label in
the nodes of the pre-tableau is a set of wffs with the same prefix in a branch of our
prefixed tableau.
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w : ¬((¬[{1, 2}]⊥∨ ¬[{1, 3}]⊥) ∧ [1](p ⊃ q) ∧ [2]p ∧ [3]¬q
⊃ [1 > 2 > 3]((p ∧ q) ∨ (¬p ∧ ¬q)))
w : (¬[{1, 2}]⊥∨ ¬[{1, 3}]⊥) ∧ [1](p ⊃ q) ∧ [2]p ∧ [3]¬q
w : ¬[1 > 2 > 3]((p ∧ q) ∨ (¬p ∧ ¬q))
w : ¬[{1, 2}]⊥∨ ¬[{1, 3}]⊥
w : [1](p ⊃ q)
w : [2]p
w : [3]¬q

w : ¬[{1, 2, 3}]⊥ w : ¬[{1, 2}]⊥
w : ¬[{1, 2, 3}]((p∧ q) ∨ (¬p ∧ ¬q)) w : [{1, 2, 3}]⊥
wρ{1,2,3}w

′ w : ¬[{1, 2}]((p ∧ q) ∨ (¬p ∧ ¬q))
w′ : ¬⊥ wρ{1,2}w

′

w′ : p ⊃ q w′ : ¬((p ∧ q) ∨ (¬p ∧ ¬q))
w′ : p w′ : ¬(p ∧ q)
w′ : ¬q w′ : ¬(¬p ∧ ¬q)
w′ : ¬p w′ : q w′ : p ⊃ q
× × w′ : p

w′ : ¬p w′ : ¬q
× w′ : ¬p w′ : q

× ×

(a) The first two branches of the tableau

...

...

w : ¬[{1, 3}]⊥ w : [{1, 2}]⊥
w : [{1, 2}]⊥ w : [{1, 3}]⊥
w : ¬{1, 3}]((p ∧ q) ∨ (¬p ∧ ¬q)) w : ¬[1]⊥
wρ{1,3}w

′ w : ¬[{1}]((p ∧ q) ∨ (¬p ∧ ¬q))
w′ : ¬((p ∧ q) ∨ (¬p ∧ ¬q)) w : ¬[{1, 2}]⊥ w : ¬[{1, 3}]⊥
w′ : ¬(p ∧ q) × ×
w′ : ¬(¬p ∧ ¬q)
w′ : p ⊃ q
w′ : ¬q
w′ : ¬p w′ : q
w′ : ¬¬p w′ : ¬¬q ×
w′ : p w′ : q
× ×

(b) The last two branches of the tableau

Fig. 7. A tableau proof for the wff in Example 4.
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It is shown that the Kn tableau construction procedure for a wff ϕ can construct
a pre-tableau with a depth polynomial in the size of ϕ. Furthermore, each formula
appearing in the nodes of the pre-tableau is a sub-formula of ϕ. More precisely, let
Sub(ϕ) denote the set of sub-formulas of ϕ and Sub+(ϕ) = Sub(ϕ) ∪ {¬ψ | ψ ∈
Sub(ϕ)}, then each node of the pre-tableau is labelled by a subset of Sub+(ϕ). Let
m be the size of ϕ, then the label of each node can be represented by a length 2m
bit-string since it is a subset of Sub+(ϕ). Therefore, if we search through the pre-
tableau in a depth-first way(DFS), then the total space needed is the multiplication
of the depth of the pre-tableau and the O(m) space used to store the bit-string and
some book-keeping information.

The proof in [Halpern and Moses 1992] can be easily modified to prove the
PSPACE upper bound for our logics. The key point is the definition of sub-formula.
Due to the DBFc

n and DBFs
n rules, the set Sub+(ϕ) must be expanded to include

more wffs. Let O ∈ T On and Ω ⊆ T On, then define

Sub(O) = {i1 > i2 > · · · > ik | i1, i2, · · · , ik ∈ δ(O)}

as the set of all sub-orderings of O and

Sub(Ω) = {Ω′ | Ω′ ⊆
⋃

O∈Ω

Sub(O)}.

For a DBFc
n wff ϕ, define

Subc(ϕ) = Sub(ϕ) ∪ {[O′]ψ | [O]ψ ∈ Sub(ϕ), O′ ∈ Sub(O)}

∪{[G]ψ, [G]⊥ | [O]ψ ∈ Sub(ϕ), G ⊆ δ(O)}

and for a DBFs
n wff ϕ, define

Subs(ϕ) = Sub(ϕ) ∪ {[Ω′]ψ, [Ω′]⊥ | [Ω]ψ ∈ Sub(ϕ),Ω′ ∈ Sub(Ω)}.

The sets Sub+c (ϕ) and Sub+s (ϕ) can then defined in the same way as Sub+c (ϕ) =
Subc(ϕ) ∪ {¬ψ | ψ ∈ Subc(ϕ)} and Sub+s (ϕ) = Subs(ϕ) ∪ {¬ψ | ψ ∈ Subs(ϕ)}. Let
c0 = |T On|, c1 = c0 +2n+1 and c2 = 2c0 , then |Sub+c (ϕ)| is bounded by 2(c1 +1)m
and |Sub+s (ϕ)| is bounded by 2(2c2 + 1)m, where m = |Sub(ϕ)| is proportional to
the size of ϕ. Note that though c0, c1, and c2 may be very large numbers, they are
essentially constants independent of the size of ϕ. Furthermore, the bound is quite
loose, but it is enough for the present purpose.

The bound on |Sub+c (ϕ)| and |Sub+s (ϕ)| guarantee that the pre-tableau con-
structed for ϕ in DBFc

n or DBFs
n has a height at most O(m2) by using exactly the

same proof as that in [Halpern and Moses 1992]. Since the nodes in the pre-tableau
for ϕ are labelled with subsets of Sub+c (ϕ) or Sub+s (ϕ), the label of each node can
be represented by a length O(m) bit-string again. Therefore, by using DFS, the
total space needed for deciding the satisfiability of ϕ is O(m3). This shows that
the satisfiability problem for DBFc

n and DBFs
n is in PSPACE.

Since both DBFc
n and DBFs

n are extensions of the multi-agent epistemic logic
KDD

n , which in turn is an extension of the normal modal logic KD[Chellas 1980], and
it has been shown that the satisfiability problem for KD is PSPACE-complete[Ladner
1977], we can know that the satisfiability problem for DBFc

n and DBFs
n is PSPACE-

hard. Therefore, we have:
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Theorem 4.2. The satisfiability problem for DBFc
n and DBFs

n is PSPACE-
complete.

Using this theorem, the validity problem for DBFc
n and DBFs

n is co-PSPACE-
complete. However, since PSPACE is deterministic complexity class, co-PSPACE is
identical to PSPACE, so the validity problem for DBFc

n and DBFs
n is also PSPACE-

complete.

5. EXTENSIONS AND RELATED WORK

5.1 A generic extension

While we adopt a modal logic approach to belief fusion, there have also been a lot of
work done on knowledge merging using meta-level operators. The main approaches
include the following:

(1) Combination based on maximal consistency[Baral et al. 1992; 1994; Baral et al.
1991; Benferhat and Garcia 1998].

(2) Combination by meta-information[Pradhan et al. 1995; Subrahmanian 1994].

(3) Merging by majority[Lin 1994; 1996; Lin and Mendelzon 1999].

(4) Arbitration[Liberatore and Schaerf 1995; Revesz 1993; 1997].

(5) General merging[Konieczny 2000; Konieczny and Pérez 1998; 1999].

(6) Belief revision and update[Alchourrón et al. 1985; Katsuno and Medelzon
1991a; 1991b].

In the meta-level approach, a merging operator is generally used to combine a
set of knowledge bases T1, T2, · · · , Tn, where each knowledge base is a theory in
some logical langauge. The main difference between our approach and the meta-
level approach is that the belief fusion operators are incorporated into the object
language in our logic, so we can reason with the merged results and also about the
fusion process. These meta-level fusion operators can be divided into syntax-based
or semantics-based types. A general scheme for semantics-based knowledge merging
operators is shown in figure 8.

While we have shown in section 3 that some syntax-dependent combination op-
erators based on maximal consistency[Baral et al. 1992; 1994; Baral et al. 1991] can
be simulated in our logic, our logics need to be extended to accommodate other
more sophisticated semantics-based knowledge merging operators. We now describe
a generic approach for such an extension.

To accommodate such kind of merging operators in the modal logic framework,
we use an extended language Le. The well-formed formulas are defined according
to the five rules for Lc or Ls as well as the following rule:

. 6. If G ⊆ {1, 2, · · · , n} and ϕ is a wff, then [Γ(G,κ)]ϕ is also a wff, where κ is
the sequence of parameters for a merging operator to be included in the language.

For the semantics, a model for Le is still a triple (W, (Ri)1≤i≤n, V ) as defined in
the semantics of DBFc

n and DBFs
n except that the seriality requirement of Ri is

dropped out. For any subset G = {i1, · · · , ik} and w ∈ W , define

≻w
G,κ = Ord(Ri1 (w), · · · ,Rik

(w), κ)
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Input:. A set of knowledge bases T1, T2, · · · , Tn in some logical language and
some extra sequence of parameters, e.g., some weights, κ.

Output:. A merged knowledge base Γ(T1, · · · , Tn,κ) in the same logical lan-
guage.

Steps:. (1) For 1 ≤ i ≤ n, let Mi denote the set of all interpretations satisfying
Ti, that is, Mi = Mod(Ti).

(2) A ordering ≻ over the interpretations of the logical language is determined
from all Mi’s and κ. In other words, there is a function Ord such that

≻ = Ord(M1, · · · ,Mn,κ).

(3) A selection function γ will select a set of interpretations M from all Mi’s
according to the ordering ≻, i.e.

M = γ(M1, · · · ,Mn,≻).

(4) The resultant merged theory is

Γ(T1, · · · , Tn,κ) = {ϕ | ∀I ∈ M, I |= ϕ}.

Fig. 8. A general scheme for semantics-based fusion

and

RG,κ(w) = γ(Ri1 (w), · · · ,Rik
(w), ≻w

G,κ).

The satisfaction of the wff [Γ(G,κ)]ϕ in a world w is obtained immediately by

w |= [Γ(G,κ)]ϕ iff for all u ∈ RG,κ(w), u |= ϕ

and the definition of validity is as in the case of DBFc
n and DBFs

n.
While the semantics-based fusion operators merge knowledge bases, our extended

logic merges beliefs of different agents, so there is some connection between these
two formalisms. Let T = {T1, · · · , Tn} be a set of knowledge bases in a propositional
logic language, then ΣT is defined as the following set of wffs in Le:

ΣT = {[i]ϕ | 1 ≤ i ≤ n, ϕ ∈ Ti}.

Proposition 5. Let T = {T1, · · · , Tn} be a set of knowledge bases in a proposi-
tional logic language, then for any semantics-based merging operator Γ with extra
parameters κ, there exists an Le model M = (W, (Ri)1≤i≤n, V ) and w ∈ W such
that w |=M ΣT and for any propositional formula ϕ,

w |=M [Γ({1, · · · , n},κ)]ϕ iff Γ(T1, · · · , Tn,κ) |= ϕ.

A direct corollary of the proposition is:

Corollary 3. If ΣT |= [Γ(G,κ)]ϕ, then Γ(T1, · · · , Tn,κ) |= ϕ.

Admittedly, the syntactic and semantic extension of the modal logic framework for
the semantics-based merging operators is quite general and preliminary. For each
individual merging operator, more details must be worked out in some specific way.
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In particular, the axiomatic and proof systems for each specific logic may be quite
different. Also, the converse of corollary 3 may not hold for general cases, however,
it would be interesting to know whether it indeed holds for some specific merging
operators. This will be left for further research and we believe that the general
methodology proposed in this paper will be helpful for such development.

5.2 Related works

The most similar previous work is multi-agent epistemic logic[Fagin et al. 1996]
and multi-source reasoning[Cholvy 1994]. On the one hand, it is clear that DBFc

n

and DBFs
n extend the multi-agent epistemic logic KDD

n . On the other hand, in
multi-source reasoning, fusion modalities are only applicable to literals (i.e., atomic
formulas or their negations), whereas our fusion modalities may be applied to any
complicated wffs. Therefore, our logics add expressive power to both multi-agent
epistemic logic and multi-source reasoning.

Modal logic for representing inconsistent beliefs is another research area related
to both epistemic logic and belief fusion. In [Meyer and van der Hoek 1998], an epis-
temic default logic is proposed for the representation of inconsistent beliefs caused
by default reasoning. The logic is based on S5P developed in [Meyer and van der
Hoek 1991; 1992; 1993] for modelling the monotonic part of default reasoning that
deals with plausible assumptions. The basic modalities of S5P consist of an S5
epistemic operator K and a number of K45 belief operators Pi(1 ≤ i ≤ n). A
wff Piϕ means that ϕ is a plausible working belief according to some context or
default rules. Since conflict between default rules is not unusual, it is possible that
Piϕ∧Pj¬ϕ holds. Though Pi corresponds to an application context of some default
rules, it can also be seen as the belief operator of some agent, so in this regard, the
logic is like a multi-agent epistemic logic with an S5-based epistemic operator as
its authority. However, instead of reasoning about the merging of different working
beliefs in the logic directly, a downward reflection approach is adopted in [Meyer
and van der Hoek 1998]. Since Pi operators are only applied to objective wffs in
[Meyer and van der Hoek 1998], the downward reflection function maps a set of
S5P wffs (especially wffs of the form Piϕ) into a set of non-modal formulas. Some
downward reflection mechanisms are employed to resolve the inconsistency between
working beliefs of different contexts. The mechanism based on the explicit ordering
of frames is essentially similar to our logics. The main difference is that we take
the orderings as modal operators and reason about the fusion results directly in the
object language, while the downward reflection approach considers the fusion in a
meta-level.

A dynamic doxastic logic for belief revision is proposed in [Segerberg 1995] and
further developed in [Segerberg 2001]. By using the notations of [Segerberg 1995],
the doxastic operator B and two kinds of dynamic modal operators [+ϕ] and [−ϕ]
for propositional wff ϕ are taken as the basic constructs of the language. The
operators [+ϕ] and [−ϕ] correspond, respectively, to the expansion and contraction
operators in AGM theory. Thus the revision operator [◦ϕ] is defined as [−(¬ϕ)][+ϕ]
according to the so-called Levi’s identity[Alchourrón et al. 1985]. However, what
can be represented in that logic is the belief revision of a single agent by some
new information, whereas in our logic, we are interested in the representation and
reasoning of the fusion of multi-agent beliefs.
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In our presentation, we assume an agent’s belief states are represented as a subset
of possible worlds, i.e., Ri(w) is the belief state of agent i in world w. However,
some more fine-grained representations have been proposed, such as total pre-orders
over the set of possible worlds [Boutilier 1993; Darwiche and Pearl 1997; Lehmann
1995; Segerberg 1995], ordinal conditional functions [Boutilier 1995; Spohn 1988;
Williams 1994], possibility distributions[Benferhat et al. 1997; Dubois and Prade
1992; 2000], belief functions[Smets 2000] and pedigreed belief states[II and Shoham
2001; II and Lehmann 2000]. Perhaps, the most popular representation among them
is an ordering of the possible worlds. While a set of possible worlds can be seen as
the minimal worlds with respect to a given ordering, it is claimed that the fusion of
two orderings is more general than the revision of an ordering by a set of possible
worlds[II and Shoham 2001]. To fully utilize the semantic power of an ordering, the
syntax of our logics should be further enriched to cover the conditional connectives.
Such development of logical systems incorporating the fusion operators based on
fine-grained representations of belief states should be a very interesting research
direction.

6. CONCLUSIONS AND FURTHER RESEARCH

The main contribution of our work is the integration of belief fusion operators into
the multi-agent epistemic logic. We propose two basic logical systems for reasoning
about the cautiously merged beliefs of multiple agents. The two systems correspond
to two different strategies for discarding information sources. In level cutting fusion,
if an information source is discarded, then all those less reliable are also discarded
without further examination. On the other hand, in the level skipping strategy, only
the level under conflict is skipped, and the next level will be considered independent
of those discarded before it.

We present the syntax, semantics, axiomatic systems, and tableau proof systems
for our logics. We show that our logics extend the expressive power of the multi-
agent epistemic logic without increasing its complexity. Finally, we demonstrate
a generic extension of our logics for incorporating more sophisticated belief fusion
operators proposed in knowledge base merging. While most of the knowledge base
merging research takes the fusion process as a meta-level operator, our approach
incorporates it into the object logic directly. Therefore, it is possible to integrate
the belief fusion operators into the multi-agent epistemic logic. The advantage of
using epistemic logic is its capability to reason with not only the beliefs about the
objective world but also the beliefs about beliefs.

In our discussion of the belief fusion logic, we did not distinguish between belief
and information. However, in a genuine agent systems, an agent’s belief may be
different than the information he sends to or receives from other agents. Thus,
in general, we should have a set of modal operators [j]i such that [j]iϕ means
that agent i receives the information ϕ from j. In particular, [i]iϕ may represent
the observation of agent i himself, which should be the most reliable information
source for i. Then agent i may form his belief by fusing the information he received
from different agents according to the degrees of trust he has on other agents.
The fusion may be represented by the operators [O]i. If we consider [j]iϕ as the
communication of message ϕ from j to i, then we have a general framework for
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reasoning about an agent’s belief and communication. In such a framework, we can
discuss problems like deception of agent. For example, [O]iϕ∧[i]j¬ϕ may mean that
agent i deceives agent j by telling j the negation of what i believes. In [Demolombe
and Liau 2001], an application of our basic systems to reasoning about beliefs and
trusts of multiple agents has been proposed along this direction. However, more
work remains to be done for real applications. These applications may also take
advantage of some fundamental work on multi-agent belief revision[Dragoni 1992;
Dragoni and Giorgini 2001; Dragoni et al. 1997; Galliers 1992; Kfir-Dahav and
Tennenholtz 1996].

In this paper, we consider the reliability ordering over agents, so the belief of one
agent is either completely discarded or completely accepted. A possible extension
is to partially accept the belief of one agent in the fusion process. For example,
we can trust agent 1 about topic A and trust agent 2 about topic B, then in the
merged belief, we can selectively discard the belief of agent 1 about topic B and
the belief of agent 2 about topic A. This kind of extension will require reliability
orderings over pairs of agent and information. A logic for partially accepting some
of what one agent says has been proposed in [Liau 2003].

In a recent paper, it was shown that multi-source reasoning can be applied to
deontic logic under conflicting regulations[Cholvy and Cuppens 1999]. Essentially,
conflicting regulations are merged according to their priorities in a way analogous to
the fusion of information. However, inherited from the restriction of multi-sources
reasoning, it is also required that each regulation to be merged must be a set of
deontic literals. Now, by the systems developed here, it is expected that the general
forms of regulations can also be merged.

A real difficulty in the application of our logic to model the database merging
reasoning is the representational problem of the databases. In some examples of
sections 2 and 3, we suggest to find all maximal consistent agent groups in ad-
vance and add the wff

∧

G∈MCAG ¬[G]⊥ to the representation. This is rather time-
consuming work. In practice, we can omit this part and check the consistency of
some agent groups when it is necessary during the course of proof. Even further, we
can consider the implementation of the logic with some non-monotonic reasoning
techniques[Antoniou 1997] so that only the explicit information in the knowledge
base has to be represented. This will be investigated in the further research.

A. PROOF OF THE PROPOSITIONS AND THEOREMS

A.1 Proof of Proposition 1

(1) By induction on m = |δ(O)|:

. m = 1: this is trivial since we identify [i1]ϕ and [{i1}]ϕ in our language.

. assume this result holds for all m ≤ k.

. m = k + 1: there are two cases:

. j = m: ⊢ ¬[Gj ]⊥ ⊃ ([O]ϕ ≡ [Gj ]ϕ) is just an instance of axiom O1,

. j < m: let O be written as O′ > im where O′ = i1 > . . . > ik, then this proof
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is as follows:

1.¬[Gj ]⊥ ∧ [Gj+1]⊥ ⊃ [Gm]⊥ G3,m ≥ j + 1
2.[Gm]⊥ ⊃ ([O]ϕ ≡ [O′]ϕ) O2
3.¬[Gj ]⊥ ∧ [Gj+1]⊥ ⊃ ([O]ϕ ≡ [O′]ϕ) 1, 2, P,MP
4.¬[Gj ]⊥ ∧ [Gj+1]⊥ ⊃ ([O′]ϕ ≡ [Gj ]ϕ) ind. hyp.
5.¬[Gj ]⊥ ∧ [Gj+1]⊥ ⊃ ([O]ϕ ≡ [Gj ]ϕ) 3, 4, P,MP

(2) By induction on |δ(O)|: if |δ(O)| = 1, this is an instance of G1. Assume this
holds for modal operator [O], let us consider the proof for [O > i]. Let p and
G denote [δ(O > i)]⊥ and δ(O > i), respectively

1.[O > i]ϕ ⊃ (¬p ⊃ [G]ϕ) O1
2.[O > i](ϕ ⊃ ψ) ⊃ (¬p ⊃ [G](ϕ ⊃ ψ)) O1
3.[O > i]ϕ ⊃ (p ⊃ [O]ϕ) O2
4.[O > i](ϕ ⊃ ψ) ⊃ (p ⊃ [O](ϕ ⊃ ψ)) O2
5.[O > i]ϕ ∧ [O > i](ϕ ⊃ ψ) ⊃ (¬p ⊃ [G]ψ) 1, 2, G1, P,MP
6.[O > i]ϕ ∧ [O > i](ϕ ⊃ ψ) ⊃ (p ⊃ [O]ψ) 3, 4, ind. hyp., P,MP
7.[O > i]ϕ ∧ [O > i](ϕ ⊃ ψ) ⊃ (¬p ⊃ [O > i]ψ) 5, O1, P,MP
8.[O > i]ϕ ∧ [O > i](ϕ ⊃ ψ) ⊃ (p ⊃ [O > i]ψ) 6, O2, P,MP
9.[O > i]ϕ ∧ [O > i](ϕ ⊃ ψ) ⊃ [O > i]ψ 7, 8, P,MP

(3) By induction on |δ(O)|: if |δ(O)| = 1, this is an instance of G2. Assume we
have ⊢ ¬[O]⊥, then the proof of ⊢ ¬[O > i]⊥ is as follows:

1.¬[δ(O > i)]⊥ ⊃ ([O > i]⊥ ⊃ [δ(O > i)]⊥) O1
2.[δ(O > i)]⊥ ⊃ ([O > i]⊥ ⊃ [O]⊥) O2
3.[O > i]⊥ ⊃ [δ(O > i)]⊥ 1, P,MP
4.[O > i]⊥ ⊃ ([δ(O > i)]⊥ ⊃ [O]⊥) 2, P,MP
5.[O > i]⊥ ⊃ [O]⊥ 3, 4, P,MP
6.¬[O]⊥ ind. hyp.
7.¬[O > i]⊥ 5, 6, P,MP

(4) By induction on |δ(O)|: if |δ(O)| = 1, this is an instance of Gen rule. Assume
it is the case for modal operator [O], let us consider the proof for [O > i]

1.ϕ Assumption
2.[O]ϕ Ind. Hyp.
3.[δ(O > i)]ϕ Gen
4.[O > i]ϕ ≡ ([δ(O > i)]ϕ ∨ [O]ϕ) O1, O2, P,MP
5.[O > i]ϕ 2, 3, 4, P,MP

A.2 Proof of Theorem 2.1

The proof of the theorem is based on that for S5D
n in [Fagin et al. 1996; Fagin et al.

1992]. As usual, the verification of the soundness part is a routine checking, so
we focus on the completeness part. Let L denote a logical system. A wff ϕ is L-
inconsistent if its negation ¬ϕ can be proved in L. Otherwise, ϕ is L-consistent. A
set Σ of wffs is said to be L-inconsistent if there is a finite subset {ϕ1, . . . , ϕk} ⊆ Σ
such that the wff ϕ1 ∧ · · · ∧ ϕk is L-inconsistent; otherwise, Σ is L-consistent. A
maximal L-consistent set of wffs (L-MCS) is a consistent set χ of wffs such that
whenever ψ is a wff not in χ, then χ ∪ {ψ} is L-inconsistent.
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On the other hand, ϕ is L-satisfiable iff there exists a L model M and a possible
world w such that w |=M ϕ, otherwise ϕ is L-unsatisfiable. Sometimes the prefix
L will be omitted without confusion. To prove the completeness, we will show that
every DBFc

n-consistent wff is DBFc
n-satisfiable.

Let I = T On ∪ 2{1,2...,n}−{∅} be the set of all modal operators for the language
DBFc

n. A pseudo DBFc
n structure is a tuple (W, (R∗

I)I∈I , V ) where W and V are
defined as in DBFc

n models and each R∗
I is a binary relation on W . Furthermore,it

is required that R∗
{i} is a serial relation for each 1 ≤ i ≤ n. The satisfaction

clauses for DBFc
n wffs in pseudo structures are defined as usual, so for example,

we have w |= [O]ϕ iff for u ∈ R∗
O(w), u |= ϕ. What make difference is that in a

pseudo structures, each R∗
I is considered as an independent relation instead of the

intersection of other individual ones. A pseudo structure M∗ is called a pseudo
model if all wffs provable in DBFc

n are valid in M∗. A DBFc
n wff ϕ is pseudo

satisfiable if there exists a pseudo model M∗ and a possible world w such that
w |=M∗ ϕ.

The following two results will be proved:

Lemma 1. (1 ) If ϕ is DBFc
n-consistent, then ϕ is pseudo DBFc

n-satisfiable.

(2 ) If ϕ is pseudo DBFc
n-satisfiable, then it is DBFc

n-satisfiable.

The first result is proved by a standard canonical model construction procedure.
A canonical pseudo structure M∗ = (W, (RI)

∗
I∈I , V ) is defined as follows

—W = {wχ | χ is a DBFc
n-MCS}, in other words, each possible world corresponds

precisely to a DBFc
n-MCS.

—R∗
I(wχ1

, wχ2
) iff χ1/I ⊆ χ2 for all I ∈ I, where χ1/I = {ϕ | [I]ϕ ∈ χ1}.

—V : Φ0 → 2W is defined by V (p) = {wχ | p ∈ χ}.

The most important result for such construction is the truth lemma.

Lemma 2 Truth lemma. For any wff ϕ and DBFc
n-MCS χ, we have wχ |=M∗

ϕ iff ϕ ∈ χ.

Proof. By induction on the structure of the wff, the only interesting case is
the wff of the form [I]ψ for some I ∈ I. By definition, wχ |=M∗ [I]ψ iff for all
wχ′ ∈ R∗

I(wχ), wχ′ |=M∗ ψ iff for all χ/I ⊆ χ′, ψ ∈ χ′ (by induction hypothesis) iff
χ/I ∪{¬ψ} is inconsistent iff [I]ψ ∈ χ when [I] is a normal modal operator[Chellas
1980]. However, by the axioms P and G1, rules MP and Gen, and propositions 1.2
and 1.4, both kinds of modal operators [O] and [G] are normal ones.

Since every DBFc
n-MCS contains all wffs provable in DBFc

n, by the truth lemma,
all provable wffs are valid in M∗. Furthermore, by axiom G2, each R∗

{i} is serial
for 1 ≤ i ≤ n. Thus M∗ is indeed a pseudo model. If ϕ is DBFc

n-consistent, then
there exists an MCS χ containing ϕ, so by the truth lemma, wχ |=M∗ ϕ, i.e., ϕ is
pseudo DBFc

n-satisfiable. This proves the first part of lemma 1.
Note that if |I| = m, then a pseudo model is in fact a model for the multi-

agent epistemic logic Km[Fagin et al. 1996]. The logic Km has m modal operators
corresponding to the knowledge or belief of m independent agents. Admittedly, m
may be a very large number, however, it does not matter for the current purpose.
What is important is that it can be shown that without loss of generality, we can
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assume a pseudo model is tree-like. The detail definition of a tree-like model and
the proof that each pseudo model can be “unwound” into a tree-like one verifying
the same set of valid wffs are rather technical and can be found in ([Fagin et al.
1992],pp.354) and ([Fagin et al. 1996],Exercise 3.30). What is needed here is the
property that in a tree-like model, if I 6= J , then R∗

I ∩R∗
J = ∅.

Thus, from now on, we can assume that if ϕ is DBFc
n-consistent, then ϕ is

pseudo DBFc
n-satisfiable in a tree-like model M∗ = (W, (R∗

I)I∈I , V ). The next
step is to construct a DBFc

n model M = (W, (Ri)1≤i≤n, V ) from M∗ by defining
Ri =

⋃

i∈G R∗
G. Note that Ri is serial since Ri ⊇ R∗

{i} which is serial by the
definition of pseudo models. From the definition, we can prove the following lemma.

Lemma 3. For any w ∈ W and wff ϕ, w |=M∗ ϕ iff w |=M ϕ.

Proof. By induction on the structure of ϕ, the basis and classical cases are
easy since both models have the same truth assignment function V . For the modal
cases, if ϕ = [G]ψ, then w |=M [G]ψ iff for all u ∈

⋂

i∈G Ri(w), u |=M ψ iff for all
u ∈

⋃

G′⊇G R∗
G′(w), u |=M∗ ψ (by the definition of Ri, the tree-likeness of M∗, and

the induction hypothesis) iff w |=M∗

∧

G′⊇G[G′]ψ (by definition of satisfaction in
pseudo model M∗) iff w |=M∗ [G]ψ (since axiom G3 is valid in M∗).

If ϕ = [O]ψ, then since proposition 1.1 is valid in both M∗ (by definition of
pseudo models) and M (by soundness), and by the case for modal operators [G],
we can find a j such that w satisfies the wff ¬[Gj ]⊥ ∧ [Gj+1]⊥ (or just ¬[Gj ]⊥ in
case of j = |δ(O)|) in both M and M∗, so it can be shown that w |=M [O]ψ iff
w |=M [Gj ]ψ iff w |=M∗ [Gj ]ψ iff w |=M∗ [O]ψ.

This finishes the proof for the second part of lemma 1 and by combining the two
parts, we have proved the completeness theorem for DBFc

n.

A.3 Proof of Proposition 2

Let k denote the largest integer such that αk > Incons(Σ), then Gk = {1, 2, . . . , k}
is a subset of some maximal consistent agent group for S and Gk+1 = {1, 2, . . . , k+
1} is inconsistent for S, so by the definition of ΣS , we have ΣS ⊢DBFc

n
¬[Gk]⊥ ∧

[Gk+1]⊥. (In the case of k = n, Gk+1 is omitted.) Since ϕ is a nontrivial conse-
quence of S, it is a classical logical consequence of

⋃

i∈Gk
Si, we have ΣS ⊢DBFc

n

[Gk]ϕ. Therefore, by proposition 1.1, we have ΣS ⊢DBFc
n

[1 > 2 > · · · > n]ϕ.

A.4 Proof of Theorem 3.1

This proof is analogous to that for theorem 2.1. The difference is that we do not
have a counterpart for proposition 1.1 in the system DBFs

n. First, a pseudo DBFs
n

structure is analogously defined as a tuple (W, (RΩ)∅6=Ω⊆T On
, V ) and it is required

that R{i} is serial for all 1 ≤ i ≤ n. Then a pseudo DBFs
n model is a pseudo DBFs

n

structure in which all wffs provable in DBFs
n are valid.

We still have to prove the following lemma.

Lemma 4.

(1 ) If ϕ is DBFs
n-consistent, then ϕ is pseudo DBFs

n-satisfiable.

(2 ) If ϕ is pseudo DBFs
n-satisfiable, then it is DBFs

n-satisfiable.
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The first part of the lemma is proved exactly in the same way as in lemma 1. It
can also be obtained that if ϕ is DBFs

n-consistent, then ϕ is pseudo DBFs
n-satisfiable

in a tree-like model M∗ = (W, (R∗
Ω)∅6=Ω⊆T On

, V ).
However, the proof of the second part is somewhat different. Let us define the

level of a modal operator Ω as l(Ω) = maxO∈Ω |δ(O)| and the length of Ω as ♯(Ω) =
the number of elements O in Ω such that |δ(O)| = l(Ω). Then we define a function
Ag∗ : W × (2T On − {∅}) → (2{1,2,...,n} − ∅) from the model M∗ by

Ag∗(w,Ω) =















⋃

O∈ΩAg
∗(w, {O}) if |Ω| > 1,

Ag∗(w, {O}) ∪ {i} if Ω = {O > i} and w |=M∗ ¬[{O, i}]⊥,
Ag∗(w, {O}) if Ω = {O > i} and w |=M∗ [{O, i}]⊥,
{i} if Ω = {i},

Note that since Ag∗(w,Ω) is a subset of agents, it can also be used as a modal
operator for level 1. We can now construct a DBFs

n model M = (W, (Ri)1≤i≤n, V )
from M∗ such that Ri =

⋃

l(Ω)=1,i∈Ω R∗
Ω.

Lemma 5.

(1 ) For all w ∈ W , modal operators Ω, and wffs ϕ, we have w |=M∗ [Ω]ϕ ≡
[Ag∗(w,Ω)]ϕ.

(2 ) RΩ(w) =
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧ Ag∗(w,Ω) ⊆ Ω′} for all w ∈ W and modal

operators Ω, where RΩ is defined in section 4.

Proof. (1) By induction on the level of Ω:
. The basis case l(Ω) = 1: then by definition, Ag∗(w,Ω) = Ω, so the result
holds trivially.
. Assume the result holds for all Ω such that l(Ω) ≤ k,
. l(Ω) = k + 1: by induction on the length of Ω:
. ♯(Ω) = 1: let Ω = {O > i} ∪ Ω1, where l(Ω1) ≤ k, then Ag∗(w,Ω) =
Ag∗(w, {O > i})∪Ag∗(w,Ω1) = Ag∗(w, {O})∪Ag∗(w,Ω1)∪{i} = Ag∗(w,Ω2)
if w |=M∗ ¬[{O, i}]⊥ and = Ag∗(w, {O})∪Ag∗(w,Ω1) = Ag∗(w,Ω3) if w |=M∗

[{O, i}]⊥, where Ω2 = {O, i} ∪ Ω1 and Ω3 = {O} ∪ Ω1. Since l(Ω2) = l(Ω3) =
k, then by induction hypothesis, we have w |=M∗ [Ωi]ϕ ≡ [Ag∗(w,Ωi)]ϕ for
i = 2, 3, so by axioms O1′ and O2′ (recall that all axioms are valid in a pseudo
model), w |=M∗ [Ω]ϕ ≡ [Ag∗(w,Ω)]ϕ no matter whether w |=M∗ [{O, i}]⊥ or
not.
. Assume the result holds for all Ω such that ♯(Ω) ≤ t:
. ♯(Ω) = t + 1: the induction step is completely the same as in the basis case
except that l(Ω2) = l(Ω3) = k + 1 but ♯(Ω2) = ♯(Ω3) = t.

(2) By induction on l(Ω):
. l(Ω) = 1: then Ag∗(w,Ω) = Ω and by definition in section 4

RΩ(w) =
⋂

i∈Ω

Ri(w)

=
⋂

i∈Ω

⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧ i ∈ Ω′}

=
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧ Ω ⊆ Ω′}

=
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧Ag∗(w,Ω) ⊆ Ω′}
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. Assume the result holds for l(Ω) ≤ k.

. l(Ω) = k + 1: there are two cases

. |Ω| = 1: let Ω = {O > i}, then by definition in section 4, we have

RΩ(w) = RO>i(w) =

{

RO(w) if RO(w) ∩Ri(w) = ∅,
RO(w) ∩Ri(w) otherwise,

where by the induction hypothesis and the definitions of Ag∗ and Ri(w),

RO(w) =
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧Ag∗(w, {O}) ⊆ Ω′}

RO(w) ∩Ri(w) =
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧Ag∗(w, {O, i}) ⊆ Ω′}.

On the other hand, by the result of first part, let Ω1 = Ag∗(w, {O, i}), then
w |=M∗ [{O, i}]⊥ iff w |=M∗ [Ω1]⊥ iff w |=M∗ [Ω′]⊥ for all Ω′ such that l(Ω′) = 1
and Ω1 ⊆ Ω′ (by axiom V3) iff R∗

Ω′(w) = ∅ for all such Ω′ iff RO(w)∩Ri(w) = ∅.
Thus, by the definition of Ag∗,

Ag∗(w,Ω) =

{

Ag∗(w, {O}) ifRO(w) ∩Ri(w) = ∅
Ag∗(w, {O, i}) otherwise

and the result follows immediately.
. |Ω| > 1: by definition

RΩ(w) =
⋂

O∈Ω

RO(w)

=
⋂

O∈Ω

⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧Ag∗(w, {O}) ⊆ Ω′}

=
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧

⋃

O∈Ω

Ag∗(w, {O}) ⊆ Ω′}

=
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧Ag∗(w,Ω) ⊆ Ω′}

Finally, we can prove the counterpart of lemma 3 for DBFs
n

Lemma 6. For any w ∈ W and wff ϕ, w |=M∗ ϕ iff w |=M ϕ.

Proof. By induction on the structure of ϕ, the only interesting case is ϕ = [Ω]ψ,

w |=M∗ [Ω]ψ ⇔ w |=M∗ [Ag∗(w,Ω)]ψ (lemma 5.1)

⇔ w |=M∗ [Ω′]ψ for all Ω′ such that l(Ω′) = 1 and Ag∗(w,Ω) ⊆ Ω′ (V3)

⇔ u |=M∗ ψ, ∀u ∈
⋃

{R∗
Ω′(w) | l(Ω′) = 1 ∧Ag∗(w,Ω) ⊆ Ω′}

⇔ u |=M ψ, ∀u ∈ RΩ(w) (induction hypothesis and lemma 5.2)

⇔ w |=M [Ω]ψ

This completes the proof of the second part of lemma 4 and the completeness
theorem for DBFs

n.
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A.5 Proof of Proposition 3

(1) Let S = S1∪· · ·∪Sk, then extend the partial ordering Q such that for all x, y ∈
{1, 2, · · · , n}, if ϕij1 ∈ Si and ϕij2 6∈ Si, where i = g1(x) = g1(y), g2(x) = j1
and g2(y) = j2, then x > y in the extended ordering. In other words, agents
corresponding to those formulas in S have precedence over those not. Let O be
any total ordering containing such extended partial ordering, then O ∈ T OQ.
By the definition of the preferred subtheory, we have ΣT ⊢DBFs

n
[O]ϕ ≡ [GS ]ϕ,

where GS = {f(i, j) | ϕij ∈ S}. From the definition of ΣT , it follows that
ΣT ⊢DBFs

n
[GS ]ϕ iff S |= ϕ for any classical formula ϕ.

(2) Let us denote ϕij by ϕm if f(i, j) = m and without loss of generality, we can
assume that O = 1 > 2 > · · · > n, then we can define S1 = {ϕ1} and

Si+1 =

{

Si ∪ {ϕi+1} if Si ∪ {ϕi+1} isconsistent,
Si otherwise

Let S = Sn and G = {m | ϕm ∈ S}, then it is obvious that ΣT ⊢DBFs
n

[O]ϕ ≡
[G]ϕ. Since O respects the preference between different Tis, it can be seen that
S is a preferred subtheory of T by the construction. By the definition of ΣT ,
ΣT ⊢DBFs

n
[G]ϕ iff S |= ϕ for any classical formula ϕ.

A.6 Proof of Theorem 4.1

The proof of this theorem is based on that for inclusion modal logic in [Baldoni
1998]. We first recall some notations. Let S denote a set of tableau formulas (i.e.,
prefix formulas of the form w : ϕ or accessibility relation formulas of the form
wρGw

′) and P be the set of prefixes appearing in S. For a given DBFc
n or DBFs

n

model M = (W, (Ri)1≤i≤n, V ), a prefix assignment is a mapping I : P → W from
the set of prefixes to the set of possible worlds. The satisfaction relation between
prefix assignments and tableau formulas with respect to the model M is defined by

(1) I ||=M wρGw
′ iff (I(w), I(w′)) ∈ ∩i∈GRi

(2) I ||=M w : ϕ iff I(w) |=M ϕ.

A set S is satisfiable if there exists some prefix assignment I such that I satisfies
all tableau formulas in S. A branch of a tableau is satisfiable if the set of tableau
formulas on it is satisfiable and a tableau is satisfiable if some of its branch is
satisfiable. The following lemma shows that all the tableau rules preserve the
satisfiability of a tableau.

Lemma 7. Let T be a satisfiable tableau and T ′ be the resultant tableau after the
application of one tableau rule in figure 6, then T ′ is also satisfiable.

Proof. : The satisfiability of T means that some of its branches are satisfiable.
If T ′ is obtained by applying some tableau rule to branches other than those that
are satisfiable, then the satisfiable branch remains unchanged, so T ′ is satisfiable
trivially. Therefore, we can assume that the rule is applied to a satisfiable branch.
Let S be the set of tableau formulas on that branch and I be a prefix assignment
satisfying the tableau formulas in S with respect to a model M , then the result
follows from the following simple facts.
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(1) Assume that the applied rule is one of the classical rules, ν rule, ρ rule, DBFc
n

rule, or DBFs
n rule, then it can be shown that if I satisfies the premises of these

rules, then I also satisfies at least one branch of the conclusions. This can be
easily proven by the semantics of the logic and the definition of the satisfaction
of tableau formulas.

(2) Assume that the applied rule is the π rule. If I ||=M w : νG, then by definition,
I(w) |=M νG, which by the semantics, implies that there exists some possible
world u such that (I(w), u) ∈ ∩i∈GRi and u |=M νG

0 . Let I ′ be agree with I
in all prefixed appearing in S and I ′(w′) = u, then I ′ satisfies all formulas in
the extended branch S ∪ {wρGw

′} ∪ {w′ : νG
0 } with respect to M , so T ′ is still

satisfiable.

(3) If the rule D is applied, then by the seriality of the model M and the occur-
rence of w in S, there exists some possible world u such that (I(w), u) ∈ Ri.
Therefore, the extended branch S ∪{wρiw

′} is satisfied by I ′ defined as above.

The soundness of the tableau calculus then follows immediately from lemma 7.

Lemma 8. Let L denote DBFc
n or DBFs

n and ϕ be a wff in L, then ‖−Lϕ implies
|=L ϕ.

Proof. First, it is noted that a closed tableau is not satisfiable. If 6|=L ϕ, then
there exists an L model M = (W, (Ri)1≤i≤n, V ) and u ∈ W such that u |=M ¬ϕ,
so the initial tableau that consists of only the root node w : ¬ϕ is satisfiable by the
prefix assignment I with I(w) = u. Since ϕ is tableau provable in L, a closed tableau
will result from that initial tableau by repeated application of the tableau rules.
However, by the preceding lemma, any tableaux obtained in this way, including the
closed one, should also be satisfiable. This is a contradiction, so 6|=L ϕ is impossible
if ϕ is tableau provable in L.

To prove the completeness of the tableau calculus, we assume that the tableau
starting with the formula w : ¬ϕ is not closed, so there is at least an open branch
on which no more rules can be applied. The open branch may be finite or infinite.
Let S denote the tableau formulas appearing on this open branch. We first show
that the set S contains “enough information” for constructing a counter-model of
ϕ.

Definition A.1. A set S of tableau formulas is said to be downward saturated
if it satisfies the following conditions:

(1 ) there does not exists any atomic wff p and prefix w such that w : p ∈ S and
w : ¬p ∈ S;

(2 ) if ¬¬ψ ∈ S, then ψ ∈ S;

(3 ) if w : α ∈ S, then w : α1 ∈ S and w : α2 ∈ S;

(4 ) if w : β ∈ S, then w : β1 ∈ S or w : β2 ∈ S;

(5 ) if w : νG ∈ S, then w′ : νG
0 ∈ S for all w′ such that wρGw

′ ∈ S;

(6 ) if w : πG ∈ S, then w′ : νG
0 ∈ S for some w′ such that wρGw

′ ∈ S;
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(7 ) for each w, if there exists νi such that w : νi ∈ S, then there exists G and w′

such that i ∈ G and wρGw
′ ∈ S;

(8 ) if wρG1
w′ ∈ S, then wρG2

w′ ∈ S for all G2 ⊆ G1.

Definition A.2. A downward saturated set S of tableau formulas is DBFc
n-

saturated if it in addition satisfies the following two conditions:

(1 ) if w : [O > i]ψ ∈ S, then both w : [δ(O > i)]⊥ and w : [O]ψ ∈ S or both
w : ¬[δ(O > i)]⊥ and w : [δ(O > i)]ψ ∈ S

(2 ) if w : ¬[O > i]ψ ∈ S, then both w : [δ(O > i)]⊥ and w : ¬[O]ψ ∈ S or both
w : ¬[δ(O > i)]⊥ and w : ¬[δ(O > i)]ψ ∈ S

Definition A.3. A downward saturated set S of tableau formulas is DBFs
n-

saturated if it in addition satisfies the following two conditions:

(1 ) if w : [Ω ∪ {O > i}]ψ ∈ S, then both w : [{O, i}]⊥ and w : [Ω ∪ {O}]ψ ∈ S or
both w : ¬[{O, i}]⊥ and w : [Ω ∪ {O, i}]ψ ∈ S

(2 ) if w : ¬[Ω ∪ {O > i}]ψ ∈ S, then both w : [{O, i}]⊥ and w : ¬[Ω ∪ {O}]ψ ∈ S
or both w : ¬[{O, i}]⊥ and w : ¬[Ω ∪ {O, i}]ψ ∈ S

From these definitions, we immediately have the following lemma.

Lemma 9. Let L denote DBFc
n or DBFc

n, and S be the set of all tableau formulas
appearing on an open branch of the L-tableau proof construction for ϕ, then S is
L-saturated.

The saturated sets of tableau formulas will play the role of the MCSs in the proof
of the completeness of the axiomatic systems, so the canonical model construction
is based on these saturated sets. In the construction, the prefixes occurring in a
saturated set S are essentially the possible worlds of the canonical model. However,
since the application of rule D is restricted, some possible worlds may not have Ri-
successors. To circumvent the problem, we introduce some dummy worlds. First,
a prefix w occurring in S is called an i-dead end if there does not exist any G such
that i ∈ G and wρGw

′ for some w′ occurring in S. For each 1 ≤ i ≤ n, if w is an
i-dead end in S, then a new dummy world dw,i is introduced. Let P denote the
set of prefixes occurring in S and D denote the set of dummy worlds introduced in
this way, then the canonical model is

MS = (W, (Ri)1≤i≤n, V )

where

—W = P ∪D

—For each i, Ri is defined by the following three conditions:
—if w,w′ ∈ P , then Ri(w,w

′) iff there is some G such that i ∈ G and wρGw
′ ∈ S

—if w ∈ P and d ∈ D, then Ri(w, d) iff d = dw,i,
—if d, d′ ∈ D, then Ri(d, d

′) iff d = d′

—V : Φ0 → 2W is defined by V (p) = {w ∈ P | w : p ∈ S}

Note that each Ri is serial in the canonical model. Furthermore, let us define
RG = ∩i∈GRi for any subset of agents G, then the following result can be derived:
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Lemma 10. For all prefixes w,w′ ∈ P, wρGw
′ ∈ S iff RG(w,w′).

Proof. . (⇒): If wρGw
′ ∈ S, then by the first condition for the construction

of accessibility relations, Ri(w,w
′) holds for all i ∈ G, so RG(w,w′) holds, too.

. (⇐): If Ri(w,w
′) holds for all i ∈ G, then by construction, there exists Gi such

that i ∈ Gi and wρGi
w′ ∈ S for each i ∈ G. There are two possible ways by which

the prefix w′ is introduced into S, i.e., by applications of the π rule or the D rule.
In both cases, there is an accessibility relation formula wρG′w′ that is introduced
into S at the same time. Then by the applicability condition of the ρ rule, Gi ⊆ G′

for all i ∈ G, so G ⊆ G′. Therefore, by the saturation of S, wρGw
′ ∈ S since

wρG′w′ has been introduced into S.

The truth lemma for the canonical model construction is as follows:

Lemma 11. Let L denote DBFc
n or DBFc

n, and S be the set of all tableau formu-
las appearing on an open branch of the L-tableau proof construction, then for any
wff ϕ in the logic L, w : ϕ ∈ S implies w |=MS

ϕ.

Proof. As usual, the lemma can be proven by induction on the complexity of
the wff.

The basis cases: if w : p ∈ S, then by the construction of V , w |=MS
p and if

w : ¬p ∈ S, then by the saturation of S, w : p 6∈ S, so by the construction of V ,
w |=MS

¬p.
The inductive step is considered case by case.

(1) The classical cases: if w : ¬¬ψ ∈ S, w : α ∈ S, or w : β ∈ S, then it can be
easily proven in the usual way.

(2) The π case: if w : πG ∈ S, then by the saturation of S, there exists a prefix w′

such that w′ : πG
0 ∈ S and wρGw

′ ∈ S. By lemma 10, RG(w,w′), and by the
inductive assumption, w′ |=MS

πG
0 , so w |=MS

πG according to the semantics.

(3) The ν case: This is a more complicated case. We first note that if i 6= j
and w is both i-dead end and j-dead end, then dw,i 6= dw,j . Therefore, by
the definition of RG, if |G| > 1, then for all w ∈ P and d ∈ D, ¬RG(w, d)
holds. Furthermore, if w is not an i-dead end, then ¬Ri(w, d) holds for all
d ∈ D. Assume w : νG ∈ S for some G such that |G| > 1, then for all w′

such that RG(w,w′), we have wρGw
′ ∈ S by lemma 10, so by the saturation

of S, w′ : νG
0 ∈ S. Due to the inductive assumption, this means that for all

w′, if RG(w,w′), then w′ |=MS
νG
0 , so w |=MS

νG by the semantics. For the
case of w : νi ∈ S, if w is not an i-dead end, then the proof is exactly as
above. However, if w is an i-dead end, then by the saturation condition 7, it is
impossible that there is any νi such that w : νi ∈ S, so the ν case is done.

(4) The O case: there are two subcases depending on w : [O]ψ ∈ S or w : ¬[O]ψ ∈
S. We will prove the first subcase and the second can be proven analogously.
The proof is based on another induction on the cardinality of δ(O). If |δ(O)| =
1, then the result has been proven in the ν case. Assume the result holds for
all O such that |δ(O)| ≤ k and let O > i bea total order such that |δ(O)| = k.
Due to the DBFc

n saturation of S, if w : [O > i]ψ ∈ S, then either w : [δ(O >
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i)]⊥, w : [O]ψ ∈ S or w : ¬[δ(O > i)]⊥, w : [δ(O > i)]ψ ∈ S. For the former
case, w |=MS

[δ(O > i)]⊥ by the ν case and w |=MS
[O]ψ by the inductive

assumption. By the semantics, this means that ∩j∈δ(O>i)Rj(w) = ∅ and for all
w′ ∈ RO(w), w′ |=MS

ψ. Therefore, w |=MS
[O > i]ψ, since RO>i(w) = RO(w)

if ∩j∈δ(O>i)Rj(w) = ∅. For the latter case, w |=MS
¬[δ(O > i)]⊥ by the π

case, so it follows ∩j∈δ(O>i)Rj(w) 6= ∅. This implies RO>i(w) = Rδ(O>i)(w),
so w |=MS

[O > i]ψ since w |=MS
[δ(O > i)]ψ by the ν case.

(5) The Ω case: there are also two subcases depending on w : [Ω]ψ ∈ S or w :
¬[Ω]ψ ∈ S. We still prove only the first subcase. The proof is based on an
induction on the lexicographical ordering >lex over the pairs (l(Ω), ♯(Ω)) of
levels and lengths of Ω. For the basis case, if l(Ω) = 1, then Ω is simply a
subset of agents, so the result holds by the ν case. Let Ω′ = Ω ∪ {O > i} be a
subset of total orders such that |δ(O > i)| = l(Ω), then it can be shown that

(l(Ω′), ♯(Ω′)) >lex (l(Ω ∪ {O, i}), ♯(Ω ∪ {O, i})),

(l(Ω′), ♯(Ω′)) >lex (l(Ω ∪ {O}), ♯(Ω ∪ {O})),

(l(Ω′), ♯(Ω′)) >lex (l({O, i}), ♯({O, i})).

By the inductive assumption and DBFs
n saturation of S, if w : [Ω′]ψ ∈ S,

then either w |=MS
[{O, i}]⊥ and w |=MS

[Ω ∪ {O}]ψ or w |=MS
¬[{O, i}]⊥

and w |=MS
[Ω ∪ {O, i}]ψ. The former case implies RO(w) ∩ Ri(w) = ∅, so

RΩ′(w) = RΩ(w) ∩ RO>i(w) = RΩ(w) ∩ RO(w). Therefore, w |=MS
[Ω ∪

{O}]ψ implies w |=MS
[Ω′]ψ. For the latter case, w |=MS

¬[{O, i}]⊥ implies
RO(w)∩Ri(w) 6= ∅, so RΩ′(w) = RΩ(w)∩RO>i(w) = RΩ(w)∩RO(w)∩Ri(w).
Therefore, w |=MS

[Ω ∪ {O, i}]ψ implies w |=MS
[Ω′]ψ.

We can now finish the proof of the completeness theorem by using the truth
lemma.

Lemma 12. Let L denote DBFc
n or DBFs

n and ϕ be a wff in L, then 6‖−Lϕ implies
6|=L ϕ.

Proof. 6‖−Lϕ means that there is an open branch in the L tableau tree starting
with the root w : ¬ϕ. Let S be the set of all tableau formulas appearing on the
branch, then w : ¬ϕ ∈ S since it is the root of the tree. By the truth lemma,
w 6|=MS

ϕ, so 6|=L ϕ since the canonical model MS is an L model.

Theorem 4.1 then follows immediately from the combination of lemma 8 and
lemma 12.

A.7 Proof of Proposition 4

The macro DBFs
n rule can be derived by repeat applications of the DBFs

n rules.
The point is that some intermediate formulas, such as [{O, i}]⊥ and ¬[{O, i}]⊥,
are omitted in the conclusions of the macro DBFs

n rule. The formal derivation can
be done by induction on the |δ(O)|.

(1) The base case: if |δ(O)| = 1, the result holds trivially.
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Fig. 9. Repeated application of DBFs
n rules for the derivation of macro DBFs

n rules

(2) The inductive assumption: assume the macro DBFs
n rule is derivable when

|δ(O)| = k.

(3) The inductive step: assume |δ(O)| = k and consider the ordering O > i. For
each subset G of δ(O)∪{i} containing the first element of O, we have two cases:
(a) i ∈ G: then G = G′ ∪ {i} where G′ ⊆ δ(O). By the inductive assumption,

we can have a branch in the right subtree of figure 9 that contains the results
of applying the macro DBFs

n rule to w : ¬[{O, i}]⊥ and w : [Ω ∪ {O, i}]ϕ
for the subset G′. That is,

Σ12 = {w : ¬[G]⊥} ∪ {w : ψ | ψ ∈ ΣO
G′}

Σ22 = {w : [Ω ∪G]ϕ} ∪ {w : ψ | ψ ∈ ΣO
G′}.

Therefore,

{w : [Ω ∪G]ϕ} ∪ {w : ψ | ψ ∈ ΣO>i
G } ⊆ Σ12 ∪ Σ22.

(b) i 6∈ G, so G ⊆ δ(O). By inductive assumption (see the left subtree of
figure 9), we can show that

Σ11 = {w : [G ∪ {i}]⊥} ∪ {w : ψ | ψ ∈ ΣO
G}

Σ21 = {w : [Ω ∪G]ϕ} ∪ {w : ψ | ψ ∈ ΣO
G}

and

{w : [Ω ∪G]ϕ} ∪ {w : ψ | ψ ∈ ΣO>i
G } ⊆ Σ11 ∪ Σ21.

A.8 Proof of Theorem 4.2

First, we prove the following lemma.

Lemma 13. The satisfiability problem for DBFc
n and DBFs

n is PSPACE-hard.
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Proof. The proof can be achieved by reducing the satisfiability problem for
propositional modal logic KD to that for DBFc

n and DBFs
n. Let Φ0 be the set

of atomic propositions, then the set of well-formed formulas(wff) for KD is the
least set containing Φ0 and closed under Boolean connectives and the unary modal
operator 2. For the semantics, a KD model is a triple (W,R, V ), where W is a set
of possible worlds, R is a serial binary relation over W , and V is atruth assignment,
and the main clause for the satisfaction are:

—w |= 2ϕ iff for all u ∈ R(w), u |= ϕ.

Obviously, we can translate wffs of KD into those of DBFc
n or DBFs

n. The transla-
tion τ is defined by

(1) τ(p) = p if p ∈ Φ0,

(2) τ(¬ϕ) = ¬τ(ϕ) and τ(ϕ ∨ ψ) = τ(ϕ) ∨ τ(ψ),

(3) τ(2ϕ) = [1]τ(ϕ).

By the semantics, we have |=KD ϕ iff |=DBFc
n
τ(ϕ) iff |=DBFs

n
τ(ϕ) for any wff ϕ of

KD. Therefore, the PSPACE-hardness of the satisfiability problem for DBFc
n and

DBFs
n follows immediately from the PSPACE-completeness of KD, which has been

shown in [Ladner 1977].

Second, we prove that the satisfiability problem for DBFc
n and DBFs

n is in
PSPACE.

Lemma 14. There is an algorithm for deciding satisfiability of DBFc
n and DBFs

n

wffs that needs polynomial space.

Proof. The algorithm is a slightly modified version of the Kn tableau construc-
tion procedure in [Halpern and Moses 1992] and is presented in figure 10. The main
modification is to add the applications of DBFc

n or DBFs
n rules to step 2(a) and

the application of rule D to step 2(c) in that procedure. A set Σ of wff is called
blatantly inconsistent if for some formula ψ, both ψ and ¬ψ is in Σ or ⊥ ∈ Σ. We
assume an arbitrary enumeration of the wffs is given, so in step 2(a), we can find
the least witness to the fact that a set of wffs is not closed under all of classical and
DBFc

n (or DBFs
n) rules.

Then all proofs that the algorithm for deciding the satisfiability of Kn wffs need
polynomial space can be carried out in the cases of DBFc

n and DBFs
n by our defini-

tions of Sub+c (ϕ) and Sub+s (ϕ) (possibly with the difference of a constant factor).
The main results are summarized as follows:

Lemma 15.

(1 ) For all wffs of size m, the DBFc
n or DBFs

n pre-tableau construction procedure
terminates and the final tree constructed in the procedure has height at most
O(m2).

(2 ) A wff ϕ is DBFc
n(or DBFs

n) satisfiable iff the DBFc
n(or DBFs

n) pre-tableau
construction for ϕ returns “ϕ is satisfiable”.

(3 ) The DBFc
n or DBFs

n pre-tableau construction procedure needs O(m3) space by
using of depth-first search.
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(1) Construct a tree consisting of a single node s0(the “root”), with L(s0) = {ϕ0}.

(2) Repeat until none of (a)-(d) below applies:
(a) If s is a leaf of the tree, L(s) is not blatantly inconsistent, L(s) is not

closed under all of α, ¬¬, β, and DBFc
n (or DBFs

n) rules, and ψ is the least
witness to this fact, then:
i. if ψ is of the form ¬¬ψ′, then create a child s′ of s and set L(s′) =

L(s) ∪ {ψ′},
ii. if ψ is an α formula, then create a child s′ of s and set L(s′) = L(s) ∪

{α1, α2},
iii. if ψ is a β formula, then create two children s1 and s2 of s and set

L(si) = L(s) ∪ {βi}, i = 1, 2,
iv. if ψ is of the form [O > i]ψ (resp. ¬[O > i]ψ) in DBFc

n, then create
two children s1 and s2 of s and set

L(s1) = L(s) ∪ {[δ(O > i)]⊥, [O]ψ (resp ¬[O]ψ)}

L(s2) = L(s) ∪ {¬[δ(O > i)]⊥, [δ(O > i)]ψ (resp ¬[δ(O > i)]ψ)}

v. if ψ is of the form [Ω ∪ {O > i}]ψ (resp. ¬[Ω ∪ {O > i}]ψ) in DBFs
n,

then create two children s1 and s2 of s and set

L(s1) = L(s) ∪ {[{O, i}]⊥, [Ω ∪ {O}]ψ (resp ¬[Ω ∪ {O}]ψ)}

L(s2) = L(s) ∪ {¬[{O, i}]⊥, [Ω ∪ {O, i}]ψ (resp ¬[Ω ∪ {O, i}]ψ)}

(b) If s is a leaf of the tree, L(s) is not blatantly inconsistent, and L(s) is closed
under all classical and DBFc

n (or DBFs
n) rules, then for each πG formula in

L(s), create a G successor node s′ for s and set

L(s′) = {πG
0 } ∪ {ψ | [G′]ψ ∈ L(s), G′ ⊆ G}

(c) If s is a leaf of the tree, L(s) is not blatantly inconsistent, L(s) is closed
under all classical and DBFc

n (or DBFs
n) rules, and there exists [i]ψ ∈ L(s)

and does not exist any πG formula in L(s) such that i ∈ G, then create an
i successor node s′ for s and set

L(s′) = {ψ | [i]ψ ∈ L(s)}

(d) If s is not marked “satisfiable”, then mark s satisfiable if either
i. L(s) is not closed under all of classical and DBFc

n (or DBFs
n) rules and

s′ is marked “satisfiable” for some child s′ of s,
ii. L(s) is closed under all of classical and DBFc

n (or DBFs
n) rules, there

are no πG formulas or formulas of the form [i]ψ ∈ L(s), and L(s) is
not blatantly inconsistent, or

iii. L(s) is closed under all of classical and DBFc
n (or DBFs

n) rules, s has
successors, and all of them are marked “satisfiable”.

(3) If the root of the tree is marked “satisfiable”, then return “ϕ0 is satisfiable”;
otherwise return “ϕ0 is unsatisfiable”.

Fig. 10. The DBFc
n or DBFs

n pre-tableau construction for ϕ0
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Fig. 11. The pre-tableau for (¬[1]p ∧ ¬[2]p) ∧ [1 > 2]p

Example 11. We present a simple example to illustrate the pre-tableau construc-
tion procedure. Let us consider the formula

ϕ0 = (¬[1]p ∧ ¬[2]p) ∧ [1 > 2]p

then our procedure will construct a tree in figure 11. In that tree, L(s0) = {ϕ0},

L(s1) = L(s0) ∪ {¬[1]p ∧ ¬[2]p), [1 > 2]p}

L(s2) = L(s1) ∪ {¬[1]p,¬[2]p}

L(s31) = L(s2) ∪ {[{1, 2}]⊥, [1]p}

which is blatantly inconsistent,

L(s32) = L(s2) ∪ {¬[{1, 2}]⊥, [{1, 2}]p}

which has three successor nodes labelling respectively by {1}, {1, 2}, and {2},

L(s41) = {¬p}, L(s42) = {¬⊥, p}, L(s43) = {¬p}

which are all closed under classical and DBFc
n (or DBFs

n) rules. According to (d).ii,
the three nodes s41, s42, and s43 should be marked “satisfiable”. Then by (d).iii,
s32 is marked “satisfiable” and by (d).i, all of nodes from s0 to s2 are marked
“satisfiable”. Therefore, the procedure returns “ϕ0 is satisfiable”. 2

A.9 Proof of Proposition 5

Let I denote the set of all propositional interpretations over Φ0 and assign to each
interpretation I ∈ I a possible world wI , then M = (W, (Ri)1≤i≤n, V ) is such that

—W = {w0} ∪ {wI | I ∈ I},

—Ri(w,w
′) iff w = w0 and w′ ∈ {wI | I ∈Mod(Ti)},

ACM Transactions on Computational Logic, Vol. 6, No. 1, January 2005.



A Modal Logic Framework for Multi-agent Belief Fusion · 171

—V (p) = {wI | I(p) = 1, I ∈ I} for all p ∈ Φ0.

Then by the semantics of Le, w |=M ΣT and

R{1,···,n},κ(w0) = {wI | I ∈ M}

since Ri(w0) = {wI | I ∈ Mi} for all 1 ≤ i ≤ n.
Therefore, for any propositional formula ϕ,

w0 |=M [Γ({1, · · · , n},κ)]ϕ iff Γ(T1, · · · , Tn,κ) |= ϕ.
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