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In this paper, we would like to present some logics with semantics based on rough set
theory and related notions. These logics are mainly divided into two classes. One is
the class of modal logics and the other is that of quantifier logics. For the former,
the approximation space is based on a set of possible worlds, whereas in the latter, we
consider the set of variable assignments as the universe of approximation. In addition to
surveying some well-known results about the links between logics and rough set notions,
we also develop some new applied logics inspired by rough set theory.
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1. Introduction

The rough set theory is invented by Pawlak3,4,5 to account for the definability of
a concept in terms of some elementary ones in an approximation space. It cap-
tures and formalizes the basic phenomenon of information granulation. The finer
the granulation is, the more concepts are definable in it. For those concepts not
definable in an approximation space, the lower and upper approximations for them
can be defined. These approximations construct a representation of the given con-
cept in the approximation space. Pawlak claims that knowledge is deep-seated in
the classificatory abilities of human beings and other species, so rough set theo-
ry is a framework for discussions about knowledge, in particular when imprecise
knowledge is of primary concern(4, p.2). Thus the theory is in particular effective
in extracting knowledge from data tables and it has been successfully and widely

∗The preliminary versions of the paper have appeared in Ref. 1,2.
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applied to domains such as intelligent data analysis (data mining and knowledge
discovery in database), decision making, machine learning, pattern recognition and
conflict analysis6,7,8,9,10. An important common feature of these applications is the
classification of objects and the representation of the classificatory knowledge in
rough set notions.

On the other hand, philosophers and logicians have spent centuries of time in
developing formal tools for the representation and reasoning of knowledge. The
results are various of classical and nonclassical logics 11. In particular, first order
logic12 and modal logics13 have been widely used as a formalism for knowledge
representation in artificial intelligence and an analysis tool in computer science14,15.

Since set theory and logic systems are strongly coupled in the development of
modern logic, it is expected that the rough set-based knowledge representation
framework and the logic-based one have close relationship. This expectation is ver-
ified almost from the very beginning stage of the invention of rough set theory. The
most well-known relationship between rough set theory and logics is the connection
of approximation space with possible world semantics for the modal epistemic logic
S5. The connection is so obvious that it is difficult to point out who is the first
one discovering it. However, undoubtedly, E. Or�lowska explores the connection in
full details and develop different knowledge representation logics in a sequence of
papers 16,17,18,19,20,21,22. There are of course other works along the same direction,
for example, those reported in 23,24,25,26. The relationship between more gener-
al rough set model and modal logics have also been examined in 27,28,29. As for
the first order logic, different logical systems incorporating rough quantifiers and
approximation operators have been developed 30,31,32,33,34,35,36,37,38. The common
semantic intuition behind these logics is to view the first order interpretation as an
approximation space. These results all show the cross fertilization between rough
set theory and logics, so it is worthwhile to investigate the further relationship be-
tween different generalizations of rough set models and logic systems. Based on
this background, the purpose of this paper is twofold. The first is to survey and
present the current results in a uniform way. The second is to fill some missing links
between the existing general rough set models and logical formalisms and develop
further some applied logics inspired by rough set theory.

In what follows, we will first review the rough set theory and some of its main
generalizations. Then the paradigms of possible worlds as approximation space
and variable assignments as approximation space are discussed respectively in the
following two sections. Finally, some concluding remarks are given.

2. Review of Rough Set Theory

2.1. Pawlak approximation space and generalizations

Let U be a set of objects (the universe)†and R be an equivalence relation on U ,

†In pawlak’s original definition, U is assumed to be finite
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then for any X ⊆ U , we can associate two subsets with X ,

RX = {x ∈ U | [x]R ⊆ X}

RX = {x ∈ U | [x]R ∩X �= ∅},
where [x]R denotes the equivalence class containing x. RX and RX are called the
R-lower and R-upper approximation of X respectively. From a practical viewpoint,
R can be considered as an indiscernibility relation, so for a given concept X , we
can only know that X contains at least all elements in RX and does not contain
any element outside RX . The pair (RX,RX) is called the rough approximation of
X and any such pair is called a rough set. The pair (U,R) defined as above is thus
called a Pawlak approximation space(PAS).

For a given approximation space (U,R), the equivalence classes of R and the
empty set are called the elementary sets , and the union of some elementary sets is
called a composed set . The composed sets are those definable in the space. Note
that both lower and upper approximations of a concept are composed sets, so they
can be seen as the definable approximations of the concept.

A direct generalization of the above-mentioned idea is to relax the constraints
on R. To allow R to be an arbitrary binary relation, we can get different useful
generalizations of the Pawlak rough set model. For example, the case where R is a
tolerance (reflexive and symmetry) relation has been considered in 39. To distinguish
the Pawlak approximation space and the generalized one, we will refer the latter as
relational approximation space(RAS). When (U,R) is an RAS, the lower and upper
approximations of a set X are modified as

RX = {x ∈ U | R(x) ⊆ X}

RX = {x ∈ U | R(x) ∩X �= ∅},
where R(x) = {y ∈ U | (x, y) ∈ R}.

Even further generalization of RAS is possible. The most well-known one is the
neighborhood systems proposed by Lin40. A neighborhood system(NS) is a pair
(U,N), where N : U → 22U

satisfies the following constraints:

1. ∅ �∈ N(x) for all x ∈ U ,

2. for all x ∈ U and X ⊆ Y ⊆ U , if X ∈ N(x), then Y ∈ N(x).

The universe U is open if U ∈ N(x) for all x ∈ U , or equivalently, N(x) �= ∅ for all
x ∈ U . The lower and upper approximations of a set X in an NS (U,N) is based
on the definition of interior and closure in topology41.

NX = {x ∈ U | ∃Y ∈ N(x), Y ⊆ X}

NX = {x ∈ U | ∀Y ∈ N(x), Y ∩X �= ∅}.
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Given an RAS (U,R), we can define an NS (U,N) by

N(x) = {S ⊆ U | R(x) ⊆ S},

so the latter is indeed a generalization of the former.

2.2. Probabilistic approximation space

For a PAS or RAS (U,R), and X ⊆ U , the accuracy of the approximation of X
is defined by3

ρ(X) =
|RX |
|RX | .

Furthermore, the rough membership function associated with X is defined by µX :
U → [0, 1]

µX(u) =
|X ∩R(u)|

|R(u)| .

This provides a numeric characterization of rough sets. Based on the definition of
rough membership function, a variable precision rough set model is proposed in
42,43. For 0 ≤ α < β ≤ 1, the α and β-approximation of X is defined by

RαX = {u ∈ U | µX(u) ≥ 1 − α}

RβX = {u ∈ U | µX(u) > 1 − β}.
Though the rough membership function and the accuracy of approximation are
well-defined for finite universe U , it uses the cardinality which may be not finite in
the infinite case. To cope with this situation, we extend the RAS to probabilistic
approximation space(PRAS). A PRAS is just a triple (U,R, Pr), where (U,R) is
still an RAS and Pr is a probability distribution on U . Then we can replace the
definition of accuracy and rough membership function by the following equations:

ρ(X) =
Pr(RX)
Pr(RX)

,

µX(u) =
Pr(X ∩R(u))
Pr(R(u))

.

For convenience, µX(u) = 1 if Pr(R(u)) = 0. When U is finite and Pr is a uniform
distribution, the definitions just reduced to the original ones.

2.3. Fuzzy approximation space

In the last subsection, we have considered the combination of probability and
rough set theory. It is also possible to combine fuzzy and rough set theory. First,
we can define a fuzzy relational approximation space(FRAS) as a pair (U,R), where
R is now a fuzzy binary relation on U , i.e., R : U × U → [0, 1]. Then, there are
essentially two approaches to incorporate the notion of fuzzy sets into rough set
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models44. The first one is to consider the lower and upper approximations of a
fuzzy concept in an ordinary RAS. The result is called a rough fuzzy set. Let (U,R)
be an RAS and F be a fuzzy subset of U , then RF,RF : U → [0, 1] are defined by

RF (u) = inf
v∈R(u)

F (v),

RF (u) = sup
v∈R(u)

F (v).

The other approach is to consider the approximations of a crisp or fuzzy concept
in an FRAS. The result is called a fuzzy rough set. Let (U,R) be a FRAS and F

be a fuzzy subset of U , then RF,RF : U → [0, 1] are defined by

RF (u) = inf
v∈U

R(u, v) →∗ F (v),

RF (u) = sup
v∈U

R(u, v) ∗ F (v),

where ∗ : [0, 1] × [0, 1] → [0, 1] is a t-norm and →∗: [0, 1] × [0, 1] → [0, 1] is the
S-implication with respect to ∗ defined by a→∗ b = 1 − (a ∗ (1− b)). In particular,
when F is a crisp subset of U , the above two equations are reduced to

RF (u) = inf
v �∈F

1 −R(u, v),

RF (u) = sup
v∈F

R(u, v).

2.4. Multiple relations approximation space

An example of PAS is derivable from data table based knowledge representation
systems (KRS). A KRS or data table is a pair S = (U,A), where U is a nonempty,
finite set (the universe) and A is a nonempty, finite set of primitive attributes.
Every a ∈ A is a total function a : U → Va, where Va denotes possible values of
a. An equivalence relation IND(B) is associated with every subset of attributes
B ⊆ A, and defined by

xIND(B)y ⇔ a(x) = a(y)∀a ∈ B.

IND(B) is called an indiscernibility relation. We will write IND(a) instead of
IND({a}) for all a ∈ A. Obviously, IND(B) =

⋂
a∈B IND(a). Since IND(B) is

an equivalence relation, we can define IND(B)-lower and IND(B)-upper approxi-
mation of X for any X ⊆ U .

The definitions are used in the analysis of dependency between attributes in a
data table. Let us say that attribute B2 depends on B1, denoted by B1 ⇒ B2,
iff IND(B1) ⊆ IND(B2), i.e., any two objects in U with same values in their
attributes B1 will have also same ones in B2. It is easily to show that B1 ⇒ B2 iff
B1X = X for all X that is an equivalence class of IND(B2).
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The data table example shows that there may be more than one indiscernibility
relations in an approximation space, so motivates the definition of multiple relations
approximation space(MRAS). An MRAS is a pair (U, {Ri | 1 ≤ i ≤ n}), where
each Ri is a binary relation. In an MRAS, each primitive relation Ri is a relation
expression, and if R and S are relational expressions, so are R ∩ S and R ∪∗ S,
where R ∩ S is the intersection of R and S and R ∪∗ S is the transitive closure of
the union of R and S for all relations R and S. The rough approximation in an
MRAS is the same as that in PAS or RAS except that it can now be defined with
respect to any relational expressions.

2.5. Multiple domains approximation space

Rough set theory based on data table has a strong relationship with Dempster-
Shafer evidence theory45, and this has been investigated by different researchers46,47,48.
Wong, Wang, and Yao have developed the rough set model based on interval
structure49,50. An interval structure is analogous to a rough set on an evidential
structure—the basic construct underlying Dempster-Shafer theory. An evidential
structure is a triple (U, V,R), where U and V are two universes and R ⊆ U × V

is a compatibility relation between U and V . It is also assumed that for any
u ∈ U , there exists a v ∈ V with (u, v) ∈ R, and vice versa. A compatibility
relation can also be expressed as a multi-valued mapping from U to 2V such that
R(u) = {v ∈ V | (u, v) ∈ R}. Then an interval structure is a pair of mapping
R,R : 2V → 2U such that for any X ⊆ V ,

RX = {u ∈ U | R(u) ⊆ X}

RX = {u ∈ U | R(u) ∩X �= ∅}.
The interval structure based on the idea of approximating a concept in V by

the definable ones in U , so in this way, an evidential structure can be viewed as
a two-domain approximation space. In general, we can consider more than two
different domains and there may not exist compatibility relation between some
domains. The existence of a compatibility relation between two domains means
they are communicable, so a connection structure on the set {1, 2, . . . , n} is a binary
relation C ⊆ {1, 2, . . . , n} × {1, 2, . . . , n}. Now, a multiple domains approximation
space(MDAS) based on a connection structure C is a pair ({Ui | 1 ≤ i ≤ n}, {Rij |
(i, j) ∈ C}), where Ui’s are different universes and Rij is a binary relation from Ui
to Uj . For each Rij , we can define Rij , Rij : 2Uj → 2Ui as

RijXj = {u ∈ Ui | R(u) ⊆ Xj}

RijXj = {u ∈ Ui | R(u) ∩Xj �= ∅}.
The MDAS will be used to define a new applied logic for reasoning about knowledge
and communication. Note that when n = 1 and C is just the reflexive structure,
then an MDAS is reduced to an RAS.
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3. Possible Worlds as the Universe

In the last section, we have reviewed the basic rough set theory and some of
its generalizations with emphasis on the notion of approximation space. However,
except in the data table example to motivate the development of MRAS, we do not
specify what the universe is. In this section, we will view the universe as a set of
possible worlds and see what the result is. The notion of possible worlds may be
traced back to the Leibniz times. It is first used in the semantic account of modern
modal logic by Rudolf Carnap (though he use the term state-description instead of
possible world), and finally lead to the now widely-accepted notion of possible world
models by S.A. Kripke, Jaakko Hintikka and Stig Kanger independently(see 51 for a
historical sketch). Essentially, a possible world may be interpreted as a time point,
a state of a running computer program, or anything like this in which the truth
values of the well-formed formulas(wff) in a logical language can be evaluated.

In this section, we restrict the attention to propositional language, i.e., no quan-
tifiers are involved. In the following subsections, some modal logics will be consid-
ered. For each logic, we will first define its syntax, in particular, its wffs, then the
possible world semantics of the logic will be given, and finally the link between the
semantics and the corresponding rough set model be examined.

3.1. Normal modal logic systems and RAS

The alphabet of propositional modal logic(PML) consists of a set of proposition-
al symbols, PV , and the logical symbols ¬(negation), ∧(and), ∨(or), ⊃(material
implication), �(necessity modal operator), and �(possibility modal operator).

The set of wffs of PML is the smallest set containing PV and satisfying the
following conditions:

• if ϕ is a wff, then ¬ϕ,�ϕ,�ϕ are wffs,

• if ϕ and ψ are wffs, then ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⊃ ψ are wffs.

As usual, let ϕ ≡ ψ be an abbreviation for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ), � for any tautology
p ∨ ¬p, and ⊥ for any contradiction p ∧ ¬p. A Kripke model for PML is a triple
M = (W,R, V ), where W is a set of possible worlds, R is a binary relation on W ,
called an accessibility relation, and V : W × PV → {0, 1} is a truth assignment
evaluating the truth value of each propositional symbol in each world. The function
V can be extended to all wffs recursively in the following way:

1. V (w,¬ϕ) = 1 − V (w,ϕ)

2. V (w,ϕ ∧ ψ) = min(V (w,ϕ), V (w,ψ))

3. V (w,ϕ ∨ ψ) = max(V (w,ϕ), V (w,ψ))

4. V (w,ϕ ⊃ ψ) = max(1 − V (w,ϕ), V (w,ψ))

5. V (w,�ϕ) = inf{V (u, ϕ) | (w, u) ∈ R}
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6. V (w,�ϕ) = sup{V (u, ϕ) | (w, u) ∈ R}
For each model M and wff ϕ, we can denote {w | V (w,ϕ) = 1} by |ϕ|M . For
brevity, we usually drop the subscript M , and call |ϕ| the truth set of ϕ (in M).

Obviously, (W,R) is an RAS, and for each wff ϕ, |ϕ| is a subset of W and denote
some concept in the RAS, so we can consider the rough approximation of |ϕ| in the
RAS. A direct but interesting relationship between PML and rough set theory is
then established in the following proposition.
Theorem 1 1. R|ϕ| = |�ϕ|

2. R|ϕ| = |�ϕ|
A set containing the wffs true in all Kripke models is called a normal modal

logic system. The least normal modal logic system is named K in 13. The above
result shows that RAS provides a semantic account to the system K. An axiomatic
system for K consists of the following axioms and inference rules:

1. Axioms

(a) All instances of propositional tautologies

(b) �ϕ ≡ ¬�¬ϕ
(c) K: �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)

2. Inference rules:

(a) Modus ponens: A,A⊃B
B

(b) N: A
�A

The axioms (b), (c) and the rule (b) correspond to the following properties of rough
set theory,

1. duality: RX = −R−X ,

2. R(X ∪ Y ) ⊆ (RX ∪RY ),

3. RW = W ,

so these three properties completely characterize those of rough approximations in
an RAS.

3.2. Epistemic logic and PAS

When more constraints are imposed on the relation R of a Kripke model, we
get stronger systems than K. In particular, an epistemic model is a Kripke model
(W,R, V ) such that R is an equivalence relation. According to the semantics, the
intuitive reading of the wff “�ϕ” is “the agent knows ϕ”. The system containing the
wffs true in all epistemic models is called S5. The system S5 has been shown to be
useful in the analysis of knowledge in philosophy, economics, artificial intelligence
and distributed systems52,53.
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An axiomatic system for S5 is that for K with the addition of the following
three axioms:

T: �ϕ ⊃ ϕ

4: �ϕ ⊃ ��ϕ

5: ��ϕ ⊃ �ϕ

Obviously, if (W,R, V ) is an epistemic model, then (W,R) is a PAS, so according
to proposition 1, these three axioms correspond to the well-known properties of
Pawlak rough set theory.

1. RX ⊆ X ⊆ RX

2. RX = RRX

3. RX = RRX

3.3. Local reasoning and NS

Though S5 is an useful model for reasoning about knowledge of an ideal agent,
it suffers from the logical omniscience problem in practice. This means that in
the systems from K to S5, if an agent knows ϕ, then she also knows all logical
consequence of ϕ, however, people in the real world may be not so powerful in
reasoning about her own knowledge, so there is a big difference between an ideal
agent and a real one. Some modifications of the system S5 have been proposed
to address different aspects of the logical omniscience problem52. In particular,
an important aspect of the logical omniscience problem is that in S5, if an agent
has inconsistent beliefs, then her beliefs will crash (i.e. she will believe anything),
however, in the real situation, an agent may hold inconsistent beliefs but still not
believe all things. An approach that takes this aspect into consideration is called
local reasoning. The idea of local reasoning is based on viewing an agent as a
society of minds, each with its own knowledge, so a local-reasoning model is a triple
(W,C, V ), where W and V are as above, and C : W → 22W

with C(w) nonempty
for all w ∈ W . Each element in C(w) represent a frame of the agent’s mind in w,
so the evaluation of the wffs �ϕ and �ϕ is modified to

V (w,�ϕ) = sup
S∈C(w)

inf
u∈S

V (u, ϕ),

V (w,�ϕ) = V (w,¬�¬ϕ).

A local-reasoning model is called serial if we require ∅ �∈ C(w) for each w ∈ W .
Now, we have the following result.

Theorem 2 1. If M = (W,C, V ) is a serial local-reasoning model, then we can
find an NS (W,N) with W open such that |�ϕ| = N |ϕ| and |�ϕ| = N |ϕ|.
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2. If (W,N) is an NS with W open and V : W × PV → {0, 1} is a truth
assignment, then we can find a serial local-reasoning model M = (W,C, V )
such that |�ϕ| = N |ϕ| and |�ϕ| = N |ϕ|.

An axiomatic system for serial local-reasoning models consists of the proposi-
tional tautologies, the modus ponens rule, the duality axiom, the rule N , and the
following axiom and inference rule:

1. D: ¬�⊥,

2. RM: ϕ⊃ψ
�ϕ⊃�ψ ,

so the following is the characterization of rough approximations in NS with open
universe:

1. duality: NX = −N −X ,

2. N∅ = ∅,

3. NW = W ,

4. monotonicity: X ⊆ Y implies NX ⊆ NY .

3.4. Probabilistic epistemic logic and PRAS

Though modal logics are widely used in reasoning about knowledge, it is inade-
quate in the representation of numeric uncertainty. In many application areas, it is
usually important to be able to reason about the probability of certain events as well
as agents’ knowledge. To cope with the problem, different systems of probabilistic
logic have been proposed 54,55,56,57,58,59. Here, we consider a logic for reasoning
about epistemic probability, called probabilistic epistemic logic (PEL), and its se-
mantic basis in PRAS.

The syntax of PEL is an extension of PML with a class of probability modal
operators (> r) for all r ∈ [0, 1]. The formation rules for PEL include, in addition
to those for PML, the following

• if ϕ is a wff, then (> r)ϕ is a wff, for all r ∈ [0, 1].

Furthermore, the following abbreviations are used

1. (≤ r)ϕ = ¬(> r)ϕ,

2. (< r)ϕ = (> 1 − r)¬ϕ,

3. (≥ r)ϕ = ¬(> 1 − r)¬ϕ,

4. (= r)ϕ = (≤ r)ϕ ∧ (≥ r)ϕ.
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The syntax is the same as that of PFD introduced in 59.
The intended meaning of the wff “(> r)ϕ” is “the probability of ϕ is greater

than r”, so a model for PEL is a quadruple (W,R,Pr, V ), where (W,R, V ) is just a
Kripke model and Pr is a probability distribution on W . The valuation function V
is extended to all wffs as in the PML case except the addition of the following rule:

V (w, (> r)ϕ) = 1 ⇔ Pr(|ϕ| ∩R(w))
Pr(R(w))

> r,

if Pr(R(w)) > 0, otherwise V (w, (> r)ϕ) = 1. Though the syntax of PEL is like
that of PFD, the semantics is based on the one proposed by R.J. Aumann in the
proof of his well-known “impossibility theorem of agreeing to disagree”60, so a PEL
model will be called an Aumann model.

Obviously, the (W,R,Pr) part of an Aumann model is a PRAS, and we have
the following result.
Theorem 3 1. |(> r)ϕ| = R1−r|ϕ|

2. |(≥ r)ϕ| = R1−r|ϕ|
Though a complete axiomatic system has been provided for PFD in 59, we do not

have one for PEL yet. What is lacking is a characteristic axiom to guarantee that
the probability values in all worlds have a common prior. That is, for all w, u ∈ W ,
if R(w) = R(u), then V (w, (> r)ϕ) = V (u, (> r)ϕ) for all r ∈ [0, 1] and wffs ϕ.
This statement, involved with the inter-world relationship, seems inexpressible in
the language of PEL. Though this disadvantage, PEL is a faithful formalization
of Aumann’s idea, so it can formulate the “impossibility theorem of agreeing to
disagree” when the multiagent logic is considered.

3.5. Many-valued modal logic and FRAS

Many-valued logics and modal logics represent two main traditions in the reason-
ing with incomplete information. The former handles the degree of truth, whereas
the latter concerns uncertainty, so the combination of these two kinds of logic-
s would provide more powerful tools for management of incomplete information.
There have been different attempts in the merging of finitely many-valued and
modal logics61,62,63,64 and development of fuzzy modal logics65,66,67,68, and recent-
ly, uniform methods for making modal logic fuzzy are also proposed69. These logics
consider the fuzzification of either the valuation function or the accessibility relation
in the Kripke model (or both). Here, we consider one similar to that introduced in
68.

The syntax of many-valued modal logic of this type is still the same as PML.
However, the model is now a fuzzy Kripke model, defined by (W,R, V ), where W
is a set of possible worlds, R : W ×W → [0, 1] is a fuzzy binary relation on W , and
V : W × PV → [0, 1] is a fuzzy truth valuation of propositional symbols. Then, V
can be extended to all wffs in the following way:

1. V (w,¬ϕ) = 1 − V (w,ϕ)
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2. V (w,ϕ ∧ ψ) = V (w,ϕ) ∗ V (w,ψ))

3. V (w,ϕ ∨ ψ) = V (w,ϕ) ⊕ V (w,ψ))

4. V (w,ϕ ⊃ ψ) = V (w,ϕ) →∗ V (w,ψ)

5. V (w,�ϕ) = infu∈W R(w, u) →∗ V (u, ϕ)

6. V (w,�ϕ) = supu∈W V (u, ϕ) ∗R(w, u)

where ∗ is a t-norm, ⊕ is the dual co-t-norm, defined by a⊕ b = 1− (1−a)∗ (1− b),
and →∗ is the corresponding S-implication. For each fuzzy Kripke model M and
wff ϕ, |ϕ|M is now a fuzzy subset of W , with the membership function is defined
by

µ|ϕ|M (w) = V (w,ϕ)

for all w ∈W .
Theorem 4 Let M = (W,R, V ) be a fuzzy Kripke model, then

|�ϕ|M = R|ϕ|M ,

|�ϕ|M = R|ϕ|M .
Thus, (|�ϕ|M , |�ϕ|M ) is a fuzzy rough set. Moreover, if R is a crisp relation, then
(|�ϕ|M , |�ϕ|M ) is also a rough fuzzy set.

While the proof theory of finitely many-valued modal logics seems more well-
studied, the axiomatization of fuzzy modal logics remains largely unexplored. Re-
cently, Hájek66 provides a complete axiomatization of fuzzy S5 system where the
accessibility relation is the universal relation(i.e., ∀w, uR(w, u) = 1), and Godo and
Rodŕiguez65 give a complete axiomatic system for the extension of Hájek’s logic
with another modality corresponding to a fuzzy similarity relation. The latter is
in particular interesting in the proof of completeness since they make use of the
translation of modal formulas into first order logic instead of the ordinary canonical
model construction method.

3.6. Graded modal logics and FRAS

In the last subsection, we consider many-valued modal logic with fuzzy Krip-
ke model. The syntax of that logic is essentially the same as PML, however the
truth values are [0, 1] instead of {0, 1}. An alternative method to incorporate fuzzy
reasoning into modal logics is to enhance the syntax of the logical language while
remain it two-valued. This results in a kind of polymodal logics, called graded
modal logics. Graded modal logics have been shown to be useful in modeling pos-
sibilistic or similarity-based reasoning 70,71,72,73,74,75,76,77,78. Here, we consider the
quantitative modal logic(QML) introduced in 70.

The logical symbols of QML consists of those of PML except that � and �

are replaced by four classes of quantitative modal operators, [c], [c]+, 〈c〉, 〈c〉+ for
c ∈ [0, 1] and the formation rules of wffs for QML include
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• if ϕ is a wff, then [c]ϕ, [c]+ϕ, 〈c〉ϕ, 〈c〉+ϕ are all wffs,

instead of that for �ϕ and �ϕ.
As for the semantics, a QML model is a triple (W,R, V ), where W and R are as

in fuzzy Kripke model, but V : W ×PV → {0, 1} is a two-valued valuation. For the
extension of V to all QML wffs, it follows the same rules as in PML for the classical
logical symbols, and for the graded modal wffs, it is defined by the following four
rules:

5. V (w, [c]ϕ) = 1 iff infu�∈|ϕ|(1 −R(w, u)) ≥ c

6. V (w, [c]+ϕ) = 1 iff infu�∈|ϕ|(1 −R(w, u)) > c

7. V (w, 〈c〉ϕ) = 1 iff supu∈|ϕ|R(w, u) ≥ c

8. V (w, 〈c〉+ϕ) = 1 iff supu∈|ϕ|R(w, u) > c.

The semantics is based on possibility theory79. For example, the intuitive meaning
of [c]ϕ is “the necessity measure of ϕ is at least c”. Because we can associate with
each world w a possibility distribution πw such that πw(u) = R(w, u) for all u ∈ W ,
the term infu�∈|ϕ|(1 − R(w, u)) is just Nw(ϕ), where Nw is the necessity measure
induced from πw.

Recall that if F is a fuzzy set of W, the α-cut and strict α cut of F are defined
by Fα = {w | F (w) ≥ α} and F+

α = {w | F (w) > α} respectively. Then the the
relationship between QML and FRAS is as follows.
Theorem 5 If (W,R, V ) is a QML model, then

|[c]ϕ| = (R|ϕ|)c
|[c]+ϕ| = (R|ϕ|)+c
|〈c〉ϕ| = (R|ϕ|)c

|〈c〉+ϕ| = (R|ϕ|)+c .

3.7. Multi-agent epistemic logics and MRAS

Though we have shown that RAS is underlying the semantics of PML, it is only
a logic for single-agent epistemic reasoning. To model the real environment, a logic
for multi-agent epistemic reasoning is usually needed. The application of multi-
agent epistemic logics to the analysis of distributed systems has been provided in
52. The thorough study of the notions of common and distributed knowledge is also
carried out there.

The relationship between rough set theory and the semantics of multi-agent epis-
temic logics has been explored in23,24. Interestingly, a logic for data analysis(DAL)
proposed by L. Fariñas del Cerro and E. Or�lowska22, when interpreted in terms
of epistemic reasoning terminology, has also strong analogy with those developed
in 52. Since DAL is originally proposed according to the rough set semantics, this
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shows that rough set theory indeed provides a semantic foundation for multi-agent
epistemic reasoning.

Syntactically, the alphabet of DAL consists of a set of propositional symbols
PV , a finite set of relational symbols {r1, r2, . . . , rn}, the classical logical symbols
¬,∨,∧ and ⊃, the relational forming operations ∪∗ and ∩, and two modal operators
[·] and 〈·〉. The set ER of relational expressions is the smallest set containing
{r1, r2, . . . , rn} and satisfying that if r, s ∈ ER, then s ∪∗ s, s ∩ s ∈ ER. The set of
wffs is the smallest set containing PV , and satisfying the following conditions:

• if ϕ is a wff and R ∈ ER, then ¬ϕ, [r]ϕ, 〈r〉ϕ are wffs,

• if ϕ and ψ are wffs, then ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⊃ ψ are wffs.

Intuitively, each primitive symbol ri(1 ≤ i ≤ n) corresponds to an agent, and
[ri]ϕ is interpreted as “agent i knows ϕ”. For any subsetG ⊆ {1, 2, . . . , n}, [∩i∈Gri]ϕ
and [∪∗

i∈Gri]ϕ are interpreted as the distributed and common knowledge of agents
in the group G respectively. More specifically, the wffs [ri]ϕ, [∩i∈Gri]ϕ, [∪∗

i∈Gri]ϕ
correspond exactly to Kiϕ,DGϕ,CGϕ in the logic Kn of 52. In this sense, DAL
is also more expressive than Kn since in Kn a wff like [r1 ∩ (r2 ∪∗ r3)]ϕ is not
expressible, though there is no essential difficulty to extend the expressive power of
Kn to cover such cases.

A DAL model is (W, {Ri | 1 ≤ i ≤ n}, V ), where W and V are as in Kripke
model, and each Ri is a binary relation on W . To extend V to all wffs, we must first
decide the denotation of all expressions in ER. Let m : ER → [W ×W → {0, 1}]
is the denotation function assigning to each expression in ER a binary relation on
W , defined by

m(ri) = Ri(1 ≤ i ≤ n),

m(r ∩ s) = m(r) ∩m(s),

m(r ∪∗ s) = m(r) ∪∗ m(s).

Then V can be extended to all wffs by the classical rules for PML and the following
two

5. V (w, [r]ϕ) = inf{V (u, ϕ) | (w, u) ∈ m(r)},

6. V (w, 〈r〉ϕ) = sup{V (u, ϕ) | (w, u) ∈ m(r)}.

For a DAL model (W, {Ri | 1 ≤ i ≤ n}, V ), the first two components (W, {Ri |
1 ≤ i ≤ n}) clearly form an MRAS, and we have
Theorem 6

|[r]ϕ| = m(r)|ϕ|

|〈r〉ϕ| = m(r)|ϕ|.
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3.8. Epistemic communication logic and MDAS

In the preceding sections, we survey existing modal logics and their links with d-
ifferent approximation spaces. In this section, we would like to develop new applied
logic with semantics based on MDAS. The application domain is in the multi-agent
environment. Assume there is a finite set of agents, each with her own knowl-
edge base and some agents can communicate with each other. For simplicity, we
assume that the communication structure of the agents are fixed in advance, i.e.,
the communication channels are static during the time periods we are concerning.
Moreover, we consider a multilingual environment in which each agent may have
different vocabulary of themselves.

To model the reasoning about knowledge and communication under such envi-
ronment, we first assume a set of agents A = {1, 2, . . . , n} and a communication
structure CS ⊆ A × A is a reflexive binary relation on A. Now, the alphabet of
epistemic communication logic (ECL) consists of n sets of propositional symbols
PVi(1 ≤ i ≤ n), the classical logical connectives, and the modal operators �ij and
�ij for (i, j) ∈ CS. The set of wffs of ECL is LCS = ∪1≤i≤nLi, where each Li is
the smallest set containing PVi, closed under classical connectives, and satisfying
that

• if ϕ ∈ Lj and (i, j) ∈ CS, then �ijϕ,�ijϕ ∈ Li.

The wffs �iiϕ and �iiϕ are abbreviated as �iϕ and �iϕ respectively.
Intuitively, (i, j) ∈ CS means that there is some communication channel from j

to i and �ijϕ denotes that the message ϕ (encoded in j’s language) is communicated
to i. In particular, �iiϕ = �iϕ means that i knows ϕ by herself. Thus, we can
represent both the a prior knowledge and acquired information of an agent in the
same time.

Formally, an ECL model is defined as a triple

({Wi | 1 ≤ i ≤ n}, {Rij | (i, j) ∈ CS}, {Vi | 1 ≤ i ≤ n})

, where

• Wi’s are pairwisely disjoint sets of possible worlds,

• Rij ⊆Wi ×Wj is a binary relation between Wi and Wj , for (i, j) ∈ CS, and

• Vi : Wi × PVi → {0, 1} is a truth assignment of PVi in Wi, for 1 ≤ i ≤ n.

Each Vi can be extended to a mapping from Wi×Li to {0, 1} in the following way:

5. V (wi,�ijϕj) = inf{V (wj , ϕj) | (wi, wj) ∈ Rij},

6. V (wi,�ijϕj) = sup{V (wj , ϕj) | (wi, wj) ∈ Rij},

in addition to the rules 1. - 4. for classical connectives in PML.
Then, it can be seen that the set |ϕ| = {wi ∈ Wi | V (wi, ϕ) = 1} is a subset of

Wi if ϕ ∈ Li for all 1 ≤ i ≤ n, and since ({Wi | 1 ≤ i ≤ n}, {Rij | (i, j) ∈ CS}) is
also an MDAS, we have
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Theorem 7

|�ijϕ| = Rij |ϕ|,

|�ijϕ| = Rij |ϕ|.
Of course, the logic is only a preliminary proposal, so it still has some problems.

First, it also suffers from the logical omniscience problem, thus if the information ϕ
is communicated to agent i by j, so are all logical consequence of ϕ in j’s language.
Second, the current logic allows agents to use different languages, so the interaction
between a prior knowledge and acquired information is limited. For example, from
�iϕ and �ij(ϕ ⊃ ψ), we can not infer �iψ even ψ ∈ Li, though the inference seems
intuitively reasonable. Further development of the logic and its improvement will
be reported in a forthcoming paper.

Finally, though to our best knowledge, the logic ECL is an innovation, there
have been also some attempts in developing the logic of communication 80,81,82,83.

4. Variable Assignments as the Universe

The analogy between quantifiers and modal operators has been noticed by Mon-
tague in 196084, and recently, the relationship is further investigated in detail85.
This suggests that the links between modal logics and rough set theory can also
be carried through the quantification logics. In this section, we will examine the
results of applying rough set notions to quantifiers.

4.1. First-order logic from the perspective of PAS

We start with the examination of first-order logic(FOL) from the perspective of
rough set theory. The notations used for FOL here are mostly drawn from 86.

The alphabet of a first-order language consists of

• logical symbols: ¬,∧,∨,⊃, ∀, ∃,

• individual variables: a countably infinite set V AR = {x0, x1, x2, . . .},

• function symbols: a countable set FS = {f0, f1, f2, . . .}, where each fi has an
arity, denoted by τ(fi), if τ(fi) = 0, then fi is also called a constant symbol

• predicate symbols: a countable set PS = {P0, P1, P2, . . .}, where each Pi has
an arity, denoted by τ(Pi), if τ(Pi) = 0, then Pi is also called a propositional
symbol

The set of terms is the smallest set containing V AR and satisfying that if f ∈
FS with τ(f) = n and t1, . . . , tn are terms, then ft1 . . . tn is a term. If P is a
predicate symbol with τ(P ) = n and t1, . . . , tn are terms, then Pt1 . . . tn is an
atomic formula. The set of wffs of FOL is the smallest set containing all atomic
formulas and satisfying the following conditions:
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• if ϕ is a wff and x ∈ V AR, then ¬ϕ, ∀xϕ, ∃xϕ are wffs,

• if ϕ and ψ are wffs, then ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⊃ ψ are wffs.

In a wff of the form ∀xϕ or ∃xϕ, the variable x is said to be bound by the quantifier
∀ (or ∃), so it is called a bound variable (in the wff). A variable not bound in a
wff is called a free variable in it. A wff not containing free variables is also called a
sentence.

The semantics of FOL is based on first-order structure. An FOL structure is a
pair (D, I), where D is a nonempty set, called the domain of the structure, and I

is an interpretation function which assigns functions and relations on D to symbols
in FS and PS as follows:

1. for each f ∈ FS with τ(f) = n, I(f) : Dn → D is an n-ary function, in
particular, if n = 0, then I(f) is just an element of D,

2. for each P ∈ FS with τ(P ) = n, I(P ) : Dn → {0, 1} is an n-ary relation, in
particular, if n = 0, then I(P ) = 0 or 1.

Given an FOL language and structure, a variable assignment is any function
v : V AR → D from the set of variables to the domain of the structure. The set of
all such functions is denoted by U = [V AR → D]. Now, for each variable x ∈ V AR,
we can define an equivalence relation =x on U by

u =x v ⇔ (∀y �= x.u(y) = v(y)),

for all u, v ∈ U . Thus (U,=x) is a PAS for any x ∈ V AR. The relation =x has
been used in the investigation of the relationship between quantifiers and modal
operators in 85.

The meaning of a wff is then a subset of U , that is, the set of variable assign-
ments satisfying the wff. To define the meaning function, we first extend a variable
assignment to a term assignment inductively. Let v ∈ U , then for any term t, if
t = x ∈ V AR, then v(t) = v(x), if t = ft1 . . . tn, then v(t) = I(f)(v(t1), . . . , v(tn)).
Now, for a given structure M = (D, I), we can define the denotation of a wff ϕ,
|ϕ|M ⊆ U inductively as follows (we drop the subscript M in the definition):

1. |Pt1 . . . tn| = {v ∈ U | I(P )(v(t1), . . . , v(tn)) = 1}
2. |¬ϕ| = U − |ϕ|
3. |ϕ ∧ ψ| = |ϕ| ∩ |ψ|
4. |ϕ ∨ ψ| = |ϕ| ∪ |ψ|
5. |ϕ ⊃ ψ| = (U − |ϕ|) ∪ |ψ|
6. |∀xϕ| = =x|ϕ|
7. |∃xϕ| = =x|ϕ|
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Thus, the meaning of the wff ∀xϕ (resp. ∃xϕ) is the lower (resp. upper) approxi-
mation of that of ϕ in the PAS (U,=x). A wff ϕ is said to be true in a structure
M if |ϕ|M = U , and it is valid if it is true in all structures.

4.2. Rough quantifiers and MRAS

We have seen that the quantified wffs can be given a rough set interpretation
based on the equivalence relation =x defined in the space of all variable assignments.
Let us now examine the relation =x more closely. If ∼= D×D, then ∼ is obviously
an equivalence relation on the domain D. The definition of =x is in fact equivalent
to the following

u =x v ⇔ u(x) ∼ v(x) ∧ (∀y �= x.u(y) = v(y)),

so =x is only defined with respect to a special binary relation on D. A generalization
of this is to consider any binary relation on D. Let R be a binary relation on D

and x ∈ V AR, then we can define a binary relation Rx on U = [V AR → D] by

uRxv ⇔ (u(x), v(x)) ∈ R ∧ (∀y �= x.u(y) = v(y)).

The idea has been exploited (at least implicitly) in 35,31,32,33,34,30 for the develop-
ment of rough quantifiers. Here, we present a logic of rough quantifiers more general
than that in 35 based on this idea.

The alphabet for the logic of rough quantifiers (LRQ) is that of FOL without
the quantifier symbols ∀ and ∃, but with

• a finite set of primitive quantifiers Q0 = {q1, . . . , qn, u, e}, where u and e

denote the universal and null quantifiers respectively, and

• two binary operations ∩ and ∪∗ for forming quantifier expressions.

The definition of terms remains unchanged and the set of quantifier expressions
Q is the smallest set containing Q0 and satisfying that if q, r ∈ Q, then q∩r, q∪∗ r ∈
Q. The set of wffs of LRQ is the smallest set containing all atomic formulas and
satisfying the following condition:

• if ϕ is a wff, q ∈ Q, and x ∈ V AR, then qxϕ, qxϕ are wffs,

and the formation rules for propositional connectives.
For the semantics of LRQ, an LRQ structure is a triple (D, I,E), where (D, I)

is an FOL structure and E assigns binary relations on D to quantifier symbols
in Q0 such that E(u) = D × D and E(e) = {(a, a) | a ∈ D}. The assignment
E is extended to all quantifier expressions in Q by E(q ∩ r) = E(q) ∩ E(r) and
E(q ∪∗ r) = E(q) ∪∗ E(r). Then the denotation of the quantified wffs are defined
by

|qxϕ| = E(q)x|ϕ|,
|qxϕ| = E(q)x|ϕ|.
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According to the semantics, the wffs uxϕ and uxϕ correspond exactly to ∀xϕ and
∃xϕ in FOL respectively.

The LRQ proposed here is obviously more expressive than that in 35 since we
allow more than one rough quantifiers in our language. However, there is another
subtle difference between these two logics. This lies on the distinction of free and
bound variables. In FOL, the value of a bound variable does not influence the
denotation of the wff. In other words, if v is in |∀xϕ|, then so are any variable
assignments different from v only in the value of x. In particular, if ϕ is a sentence
in FOL, then |ϕ| is either the universe U or the empty set. On the other hand, if ϕ
contains some free variables, then |ϕ| may be a proper subset of U . However, our
rough quantifiers totally eliminate the difference between free and bound variables.
The variable occurring in the wff qxϕ may be free in the sense of FOL. Thus, for
example, while ux(uxϕ) ≡ uxϕ is valid, it is not so for general quantifier expressions.
In fact, the wffs exϕ and exϕ are equivalent to ϕ, so x is a free variable in them in
the sense of FOL.

On the other hand, the rough quantifiers ∀̃ and ∃̃ introduced in 35 can be defined
in our LRQ as follows:

∀̃xϕ = uxq1xϕ,

∃̃xϕ = uxq1xϕ,

for some fixed q1 ∈ Q0. So the variable x in ∀̃xϕ and ∃̃xϕ is indeed bound in the
sense of FOL.

Whether the peculiarity of LRQ quantifiers is an advantage remains to be seen,
however it indeed provides much flexibility in the representation of imprecise knowl-
edge. In fact, LRQ also encompass another kind of approximation logics presented
in 34,37,38,87,36. For example, in the rough logic of 34, there are wffs of the form Lϕ

as well as those of FOL. This kind of wff can be represented in LRQ as qx1 . . . qxnϕ

for some fixed quantifier expression q if {x1, . . . , xn} is the set of free variables
occurring in ϕ.

The transition of the semantics from FOL to LRQ have an analogy on modal
logic historically, that is, the development of Carnap’s semantics to Kripke’s one.
In the Carnap’s semantics, a wff of the form �ϕ or �ϕ is true in all possible worlds
of a model if it is true in one. However, the accessibility relation provided in the
Kripke model eliminates this property. The property then holds only when the
accessibility relation is a universal one.

4.3. Generalized quantifiers and NS

The study of generalized quantifiers has become an important field of logic and
linguistics in the last decade. Many fruitful theoretical results and applications to
the analysis of natural language have been produced88. It is impossible even to give
a brief survey of the field here. However, we will consider a logic with generalized
quantifiers proposed in 89 and discuss its relationship with NS.
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The language of the generalized quantifier logic (GQL) include two generalized
quantifiers ∇ and ♣ as well as the alphabet of FOL. In addition, the following
formation rule is added to those of FOL

• if ϕ is a wff, then ∇xϕ and ♣xϕ are wffs,too.

The intuitive meaning of ∇xϕ is “most x satisfy ϕ” and ♣xϕ means that “for at
least a few x, ϕ holds”.

A GQL structure is then a triple (D, I,N), where (D, I) is an FOL structure,
and (D,N) is an NS satisfying the following conditions:

1. Openess: D is open,

2. Uniformity: N is uniform in the sense that N(a) = N(b) for all a, b ∈ D, so
N can be identified with a subset of 2D, and we will view N in such way from
now on,

3. Coherence: if A,B ∈ N , then A ∩B �= ∅.

Given a GQL structure (D, I,N) and a variable x ∈ V AR, we can induce an
NS (U,Nx), where U = [V AR → D] and Nx : U → 22U

is defined by

Nx(v) = {S ⊆ U | ({u(x) | u ∈ S} ∈ N) ∧ (∀u ∈ Su =x v)}

for all v ∈ U . Then the following two rules are added to the denotation function
for FOL

8. |∇xϕ| = Nx|ϕ|,
9. |♣xϕ| = Nx|ϕ|.

This shows that NS can be used to define some useful generalized quantifiers.

4.4. Probability quantifiers and PRAS

In 58, two kinds of probability on first-order logics are distinguished. One puts a
probability on possible worlds and results in the probabilistic modalities considered
in section . The other approach puts a probability on the domain and results in
probability quantifiers. In this section, we will consider the relationship between
this kind of probabilistic logic and PRAS.

The alphabet of probability quantifier logic (PQL) consists of a class of proba-
bility quantifiers (> r) for all r ∈ [0, 1] as well as that of FOL. For simplicity, we
assume that the set of variables V AR is finite. Let V AR+ denote the set of finite
nonempty sequences of variables. The wffs of PQL will include (> r)xϕ if ϕ is a
wff and x ∈ V AR+.

A PQL structure is a triple (D, I, Pr), where (D, I) is just an FOL structure, and
Pr is a probability distribution on D. The probability measure Pr can be extended
to a product measure Prn on the domain Dn for any n > 1 by measure theoretic



for Modal and Quantifier Logics 21

techniques58. For any sequence of variables x, we can define the equivalence relation
=x on U = [V AR → D] by

u =x v ⇔ ∀y �∈ xu(y) = v(y).

If the cardinality of V AR is n, then (U,=x, P r
n) forms a PRAS for any x ∈ V AR+,

and the denotation of the wff (> r)xϕ is defined by

|(> r)xϕ| = (=x)1−r|ϕ|.

We must remarks that PQL is in fact only a fragment of the logic developed
in 58 since we do not allow arithmetic expressions formed by probability terms.
However, it is still sufficiently expressive to represent statistical knowledge such as
“The probability that a randomly chosen bird flies is greater than 0.9”. For example,
(> 0.5)xyLike(x, y) means that if we pick a pair randomly from the domain, the
probability that x likes y is greater than 0.5. Moreover, we consider only the
probability quantifiers based on equivalence relations of the form =x. However, it
is not difficult to combine the idea of rough quantifiers discussed above, and have a
logic of rough probability quantifiers.

5. Concluding Remarks and Future Works

Though all logics discussed in this paper are by themselves a topic of research,
we only touch upon the basic aspects of them and concentrate on their relationship
with rough set theory. Therefore, there remain many research problems deserving
further study. Among them, we list some of the most important ones:

1. A development of complete axiomatization of the PEL discussed in Sec. 3.4.

2. The articulation and further development of the logic for reasoning about
knowledge and communication based on MDAS.

3. The study of the logical properties of the rough quantifiers introduced in Sec.
4.2.

Moreover, this paper only surveys the logical aspects of rough set theory that
can be fitted into the paradigms of possible worlds or variable assignments as the
universe. There are also other related topics to be considered in the future extension,
such as the study of consequence relations based on information systems90,91.

Briefly speaking, in this paper, we survey and establish the correspondence be-
tween various approximation spaces and the semantic domains of modal and quan-
tifier logics. On the other hand, in 92,93, the rough set theory is treated uniformly
in the relation algebra framework. For an approximation space (U,R) and a subset
of U , X , the lower or upper approximation maps X into a subset of U . However,
if we identify X with its cylindrical extension Xc =def X × U , then X can be also
seen as a binary relation on U . Then, we have (RX)c = R ◦ Xc, where ◦ is the
composition operation between two relations. This facilitates the transformation of
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an approximation space into a relation algebra. By combining his results and ours,
the semantics of many logics explored here may have an algebraic interpretation.
This seems unsurprising since algebraic semantics ever played an important role
before Kripke semantics for modal logic becomes so prevailing. However, to what
extent the results can give rise to the algebraic semantics of the logics discussed in
this paper need still further investigation.

References

1. C.J. Liau. “On rough quantifiers”. In R. Trappl, editor, Proceedings of the 14th Eu-
ropean Meeting on Cybernetics and Systems Research, pages 175–180, 1998.

2. C.J. Liau. “Modal reasoning and rough set theory”. In Proceedings of the 8th Interna-
tional Conference on Artificial Intelligence: Methodology, Systems, Applications,
pages 317–330, LNAI 1480, Springer-Verlag, 1998. (An abstract also appears in Proc.
of IPMU’98 , pages 1894–1895, Paris, 1998).

3. Z. Pawlak. “Rough sets”. International Journal of Computer and Information Sci-
ence, 11:341–356, 1982.

4. Z. Pawlak. Rough Sets–Theoretical Aspects of Reasoning about Data. Kluwer Aca-
demic Publishers, 1991.

5. J. Komorowski, L. Polkowski, and A. Skowron. “Rough sets: a tutorial”. In S.K. Pal
and A. Skowron, editors, Rough-Fuzzy Hybridization: A New Method for Decision
Making, Springer-Verlag, Singapore(in Print), 1998.

6. T.Y. Lin and N. Cercone, editors. Rough Sets and Data Mining–Analysis of Impre-
cise Data. Kluwer Academic Publishers, 1997.

7. E. Or�lowska, editor. Incomplete Information: Rough Set Analysis, Volume 13 of
Studies of Fuzziness and Soft Computing. Physica-Verlag, Heidelberg, Germany, 1998.

8. L. Polkowski and A. Skowron, editors. Rough Sets in Knowledge Discovery 1:
Methodology and Applications, Volume 18 of Studies of Fuzziness and Soft Com-
puting. Physica-Verlag, Heidelberg, Germany, 1998.

9. L. Polkowski and A. Skowron, editors. Rough Sets in Knowledge Discovery 2: Ap-
plications, Case Studies and Software Systems, Volume 19 of Studies of Fuzziness
and Soft Computing. Physica-Verlag, Heidelberg, Germany, 1998.

10. L. Polkowski and A. Skowron, editors. Proc. of 1st International Conference on
Rough Sets and Current Trends in Computing, LNAI 1424. Springer-Verlag, Berlin,
1998.

11. D.M. Gabbay and F. Guenthner, editors. Handbook of Philosophical Logic, Vol. I-IV.
D. Reidel Publishing Company, 1983.

12. R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
13. B.F. Chellas. Modal Logic : An Introduction. Cambridge University Press, 1980.
14. D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors. Handbook of Logic in Ar-

tificial Intelligence and Logic Programming, Vol. 1-4. Clarendon Press - Oxford,
1994.

15. S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logic in
Computer Science, Vol. 1-3. Clarendon Press - Oxford, 1992.

16. E. Or�lowska. “Logic of nondeterministic information”. Studia Logica, XLIV:93–102,
1985.

17. E. Or�lowska. “Logic of indiscernibility relation”. Bulletin of the Polish Academy of
Science: Mathematics, 33:473–485, 1985.

18. E. Or�lowska. “Semantics of knowledge operators”. Bulletin of the Polish Academy
of Science: Mathematics, 35:255–264, 1987.



for Modal and Quantifier Logics 23

19. E. Or�lowska. “Reasoning about vague concepts”. Bulletin of the Polish Academy of
Science: Mathematics, 35:643–652, 1987.

20. E. Or�lowska. “Logic for reasoning about knowledge”. Zeitschrift f. Math. Logik und
Grundlagen der Math, 35:559–572, 1989.

21. E. Or�lowska. “Kripke semantics for knowledge representation logics”. Studia Logica,
XLIX:255–272, 1990.

22. L. Farinas del Cerro and E. Or�lowska. “DAL–A logic for data analysis”. Theoretical
Computer Science, 36:251–264, 1985.

23. C.M. Rauszer. “Approximation methods for knowledge representation systems”. In
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