
Two-Literal Logic Programs and Satisfiability Rep-
resentation of Stable Models: A Comparison

Guan-Shieng Huang,1 Xiumei Jia,2 Churn-Jung Liau,3 and Jia-Huai You2

Abstract
Logic programming with the stable model semantics has been proposed as a

constraint programming paradigm for solving constraint satisfaction and other com-
binatorial problems. In such a language one writes function-free logic programs
with negation. Such a program is instantiated to a ground program from which the
stable models are computed. In this paper, we identify a class of logic programs
for which the current techniques in solving SAT problems can be adopted for the
computation of stable models efficiently. These logic programs are called 2-literal
programswhere each rule or constraint consists of at most two literals. Many logic
programming encodings of graph-theoretic, combinatorial problems given in the lit-
erature fall into the class of 2-literal programs. We show that a 2-literal program can
be translated to a SAT instance without using extra variables. We report and com-
pare experimental results on solving a number of benchmarks by a stable model
generator and by a SAT solver.

1 Introduction

The satisfiability problem (SAT) is to determine whether a set of clauses in proposi-
tional logic has a model. When a model exists, a typical SAT solver also generates
some models. The close relationship between the satisfiability problem and the
stable model semantics [6] has attracted some attention to the issues related to rep-
resentation and search efficiency. On the one hand, since both belong to the hardest
problems in NP and thus there exist a polynomial-time reduction from one to the
other, it is interesting to know how the two may be differentiated from the repre-
sentation point of view. On the other hand, the close relation between the imple-
mentation techniques for building SAT solvers and those for building stable model
generators has prompted the questions of how these solvers may be compared on
classes of programs and the problems they encode.

On the issues of representation, it is known that SAT instances can be trans-
lated to logic programs locally in linear time. Conversely, the translation from logic
programs to SAT instances is much more difficult. First, there is no modular trans-
lation [12]. Second, the currently known translations require a substantial amount
of extra variables, in the order of �� in the worse case, where � is the number of
variables in the given program [2, 17]. The use of extra variables could have sig-
nificant impact on search efficiency, because, since each variable (a proposition) is

1Department of Computer Science, National Taiwan University, Taipei, Taiwan.
2Department of Computing Science, University of Alberta, Edmonton, Canada
3Institute of Information Science, Academia Sinica, Taipei, Taiwan.

1

true or false in any interpretation, each additional variable could double the search
space, representing a possibly exponential increase of search space.

On the issues of implementation techniques, it is known, for example, that the
SMODELS system [15, 16] is implemented by adopting and improving upon ef-
fective methods for building a Davis-Putnam procedure [4], on which some of the
complete SAT solvers are also based. SMODELS has been demonstrated supe-
rior to some of the well-known SAT solvers experimentally, on problems such as
the Hamiltonian cycle problem, whose logic programming encoding is much more
compact than its satisfiability encoding [14]. For other satisfiability problems, the
current understanding is that the performance of SMODELS is comparable to the
performance of efficient SAT solvers (cf. [9, 15]).

In this paper,

� we identify a class of logic programs which are reducible to SAT instances
without using extra variables;

� we report some experimental results on solving a number of benchmarks by
SMODELS, and by reducing these logic programs to SAT instances and solv-
ing them by an efficient SAT solver, SATO [18].

SMODELS is one of the widely used systems for computing stable models.1

SATO is one of the most efficient SAT solvers around.2 The choice of SATO is also
due to the fact that it is designed to generate all models when a SAT instance is
satisfiable.

We conducted two sets of experiments. In the first one, the benchmarks are 2-
literal programs. These programs are translated to sets of clauses without using extra
variables. It turns out that for these benchmarks SATO consistently outperformed
SMODELS.

In the second set of experiments, we are interested in two questions. The first
is whether the advantage of SATO for 2-literal programs remains for non-2-literal
programs that can also be translated to SAT instances without using extra variables.
The second question is whether it is worthwhile to translate such a program to a
2-literal one using a linear number of extra variables. In this set of experiments,
we choose the Blocks World encoding of Niemelä [12], whose completion formula
is known to characterize the stable models semantics [1], thus there is a translation
without using extra variables. It turns out that SATO performed well with the “right”
value for the parameter �. A wrong choice could degrade SATO’s performance
dramatically. (The parameter � of SATO allows one to specify the number of clauses
that could be saved during the execution. The “right” value could improve search
efficiency significantly.) As for a translation to a 2-literal program with a linear
number of extra variables, it turns out that SATO performed badly.

The paper is organized as follows. The next section gives the background on
the stable model semantics. We show in Section 3 that a number of well-known

1DLV [8] is another system designed for computing the stable models of disjunctive programs.
Performance comparison with SMODELS can be found in [7, 13].

2For a comparison with other SAT solvers, see [11].

2

benchmarks given in the literature are essentially 2-literal programs. We also show
how in general a 2-literal program can be translated into a SAT instance without us-
ing extra variables, and provide experimental results. Section 4 reports experiments
with the Blocks World example. Section 5 comments on related work, and Section 6
concludes the paper.

2 Stable models of logic programs

In this paper, we consider (normal) logic programs which are finite sets of rules

�� ��� ���� ���not ��� ����not ��

where �, �� and �� are atoms of the underlying propositional language �. Here
atoms with a not in front are called default negations. Programs without default
negations are said to be positive.

The stable model semantics [6] is defined in two stages. The idea is that one
guesses a set of atoms, and then tests whether the atoms in the set are precisely the
consequences. In the first stage, given a program 	 and a set of atoms
 , the reduct
of 	 w.r.t.
 is defined as:

	� � ��� ��� ���� �� � �� ��� ���� ���not ��� ����not �� � 	
and �� � ������� �� ��
�

Since 	� is a positive program, its deductive closure �� � 	� 	 �� � is an atom in ��,
is the least model of 	� . Then,
 is a stable modelof 	 iff
 is the least model
of 	� .

A constraint is of the form � ��� ���� ���not ��� ����not ��, which can be
viewed as representing a rule of the form

 � ��� ���� ���not ��� ����not ���not

where
 is a new symbol. In the sequel, a program consists of program rules as well
as constraints.

3 Two-literal programs

A 2-literal program is a program where each rule or constraint consists of at most
two literals. A literal in this case refers to an atom � or a default negation not �.

Two-literal programs are similar syntactically to 2-SAT instances, a finite set of
clauses each of which consists of two (classic) literals. Although 2-SAT is linear-
time solvable, the existence problem for 2-literal programs is NP-complete.

Theorem 1 Deciding if a 2-literal program has a stable model is NP-complete.

A number of NP-complete problems can be expressed by a 2-literal program
(each of these encodings gives a proof to the NP-hardness).

3

3-SAT
The 3-SAT problem is NP-complete. The same reduction as given in [12] can

be used to reduce a 3-SAT instance to a 2-literal program. Let ����� be an instance
of 3-SAT where � is the set of clauses and � the set of variables. For each clause
��
 ��
 �� � � , where ��, ��, and �� are literals, put three program rules and one
constraint into 	 :

�� � not ���
�� � not ���
�� � not ���
� not ��

where �� is a new symbol, and ��� � ��
� if �� is an atom, and ��� is the atomic part

of �� if �� is a negated atom (i.e. if �� is �� then ��� is �); similarly for ��� and ���. In
addition, for each variable � � � , the program 	 has two rules � � not �� and
�� � not �. Clearly, the resulting program is a 2-literal one. It can be verified
easily that
 is a stable model of 	 iff
 ���������

�� is a model of �����. �

The following programs are taken from Niemelä [12] and will be used in this
paper as benchmarks.

K-colorability
The problem is, given facts about ���������, ������ ��, and available colors

������, find an assignment of colors to vertices such that vertices connected with an
arc do not have the same color.

����������� �������� �� �������not ���������������
���������������� �������� �� ������� ������� � �� �� ����������
� ��������� ������� ����������� ����������

An assignment of colors to vertices is represented by the predicate ����������:
vertex � is colored by color � . The first two rules above generate candidate solu-
tions using an auxiliary predicate ���������������, while the third rule eliminates
illegal ones. A stable model of the program then corresponds to a solution of K-
colorability, containing instances of ���������� for each vertex � and the color �
it gets. The ground instantiation of this program can be easily reduced to a 2-literal
program. Once the facts about ���������, ������ ��, and ������ are given as true
atoms, their occurrences can be removed from the body of a rule. For the second
rule, we ensure in addition that � and � are instantiated to different colors so that
� �� � is true and can also be removed.

For example, suppose we have three colors, ��������, ���������, and �����������.
For any vertex �, the ground instantiation of the first two rules includes

�������� ����� not ������������� ����
������������� ����� �������� �����
������������� ����� �������� �������

For example, if �������� ���� is in a stable model
 , ������������� ���� must be
false in
 , which in turn forces �������� ����� and �������� ������� to be false too.

�

4

Queens
The problem is to place � queens on an �
 � board so that no queen attacks

any other queens.

�� �! �� �� �� ��! ��not ����� �! �
����� �! �� �� �� ��! ��not �� �! �
� �� �� ��! �� �� ��� �� �! �� �� �� ! �� � ��
� �� �� ��! �� ��! ��� �� �! �� �� �! ��� ! � �� !
� �� �� ��! �� �� ��� ��! ��� �� �! �� �� �� ! ���

 �� �� �� ! �� ��"� � �� � ��"�! � ! ��
� �� ��not ��"�� �
��"�� �� �� �� ��! �� �� �! �

Instances of �� � and ��! � are given as facts providing dimensions of the board.
An instance of �� �! � describes a legal position of a queen. Thus, in a stable
model instances of �� �! � are queens’ positions on the board. The first two rules
generate all candidate board positions, whereas the next three constraints remove
illegal ones. The last rule and the constraint above it ensure that every queen gets a
position. When this program is instantiated, the true facts of predicate �� �, along
with inequality and equality among absolute values are removed so that the resulting
ground program is a 2-literal one. �

Pigeons
The problem is to put
 pigeons into# holes so that there is at most one pigeon

in a hole.

$�"�	�%�� $������	 �� �����%��not ���$�"�	�%�
���$�"�	�%�� $������	 �� �����%��not $�"�	�%�
� $������	 ��not ��"�����	 �
��"�����	 � � $������	 �� �����%�� $�"�	�%�
� $������	 �� �����%�� �����% ��� $�"�	�%�� $�"�	�% ���% �� % �

� $������	 �� $������	 ��� �����%�� $�"�	�%�� $�"�	 � �%�� 	 �� 	 �

Again, given facts about $������	 � and �����%�, the first two rules generate all
possible arrangements of pigeons and holes. The next constraint and rule ensure
that every pigeon gets a hole, followed by the constraint that no pigeon gets more
than one hole. The last constraint says that no hole holds more than one pigeon.
The ground instantiation of this program yields a 2-literal program. �

It can be shown by a similar instantiation process that the program given by
Niemelä in [12] to solve the Schur problem, and the program by Marek and Truszczyński
[10] to solve the Clique problem are essentially 2-literal ones.

3.1 Translating two-literal programs to SAT instances

The class of 2-literal programs can be translated to a set of clauses without the need
of using extra variables.

5

Theorem 2 There exists a polynomial time reduction from a 2-literal program	 to
a set of clauses&, without using extra variables, such that
 is a stable model of
	 iff
 is a model of&.

We prove this theorem using Dung’s result on fixpoint completion [5], which is
based on a mechanism of reducing a program to a quasi-program. We sketch our
proof below.

A quasi-programis a normal logic program in which no rule has any positive
body literals. That is, a rule is of the form � � not ��� ����not ��, where � � �.
Given program rules

�� ��� ���� �� �not ��� ����not ��
�� � not ����� ����not �����

� � � � � '

the first rule above can be reduced to

�� not ����� ����not �����
� ����not ����� ����not �����

�not ��� ����not ��

A fixpoint construction is defined so that every program 	 can be reduced to a quasi-
program 	��	
�. Dung shows that there is a one-to-one correspondence between the
stable models of 	 and those of 	��	
�. However, the reduction is not a polynomial
time process in the general case.

If 	 is a 2-literal program, then the fixpoint construction above is bounded by
(�)�� where) is the number of rules in the program, since each rule is reduced at
most) times.

Once we get a quasi-program, we can apply Clark’s predicate completion [3].
Given a propositional program �, the Clark completionof �, denoted ��)$���,
is the following set of formulas: for each atom � � �,

� if � does not appear as the head of any rule in �, � � * � ��)$��� (*
stands for falsity here);

� otherwise, � � +�
 ���
+� � ��)$��� (with default negations replaced
by negative literals), if there are exactly � rules � � +� � � with � as the
head. We write , (tautology) for +� if +� is empty.

� for any constraint � ��� ���� ���not ��� ����not �� in �, ���
 ���
 ���

���
 �����
 �� is in ��)$���.

For any quasi-program 	��	
�, it is well-known that the models of��)$�	��	
��
correspond to the stable models of 	��	
�.

Note that for a 2-literal program 	 , ��)$�	��	
�� can be translated to a set of
clauses in a simple way. For example, suppose we have � rules with the same atom
� as the head: �� ��,..., �� ��. Then, the completion formula is �� ��
 ���
 ��
(where the occurrences of not are replaced by �), which is equivalent to two
clauses: �
 ���
 ���
 ��� and ��
 ��
 ���
 ��. We also note that the translation
of an equivalence to a set of clauses in general is not guaranteed to be a polynomial
time process, since it involves converting a disjunctive normal form to a conjunctive

6

normal form. Finally, since this proof is independent of the size of any constraint,
the restriction that a constraint has at most two literals in the given program can be
removed and it will not affect the claim stated in the theorem.

3.2 Experiments with two-literal programs

We compare search efficiencies for 2-literals programs experimentally. We tested
three problems: K-colorability, Queens, and Pigeons. For each problem, we give
a table listing the search times in seconds under the setting described below. For
easy comparison, following each table a chart is also provided.

The logic programs for these problems and the graph instances were taken from
the SMODELS web site3. These programs were run in SMODELS (Version 2.2.6),
and the search times reported by SMODELS recorded. The search time here is
the user CPU time (according to the unix time command) that incurred in run-
ning SMODELS, excluding the time spent by LPARSE, an interface to SMODELS
whose main function is to instantiate a function-free program to a ground program.
For a problem that can be solved within a few seconds, the time used by LPARSE
could be a significant factor. For harder problems, it becomes insignificant.

We used the same encodings for translation. First, a logic program was grounded
using LPARSE (Version 1.0.6), and the ground program was then translated to a
SAT instance. The translation was implemented by a Prolog program which gener-
ates the appropriate input format for SATO. We then ran the translated SAT instance
in SATO (Version 3.2.1) with the default setting of the parameter �, 4 and recorded
the search time reported by SATO. In the tables these search times are given under
the header SATO-Translation. In SATO the search time plus the “build time” is the
user CPU time of the unix time command. The build time is usually a small frac-
tion of the entire user CPU time. Note that, since we are interested only in search
efficiency, neither grounding by LPARSE nor the translation to a SAT instance was
considered part of the execution.

SATO comes with a number of benchmarks encoded as SAT instances, includ-
ing Queens and Pigeons. We also ran these SAT benchmarks for comparison. In
the tables, they are reported under the header SATO-Benchmark.

All of the experiments were performed on a Linux machine with a Pentium IV
1.5 GHz processor and 1 Gb main memory. When a solution exists, the recorded
time is for the generation of the first solution. “Too long” in an entry means that
no answer was returned within 2 hours time. Currently, SATO can accommodate
at most 30,000 variables. “Too many variables” in an entry means that the SAT
instance is over that limit. In testing Pigeons we used the data where the number of
pigeons was one more than the number of holes, so that the problem had no solution.
For colorability, the test results were generated with 3 colors.

3at http://saturn.tcs.hut.fi/Software/smodels/
4The default is � � ��. It was incorrectly said to be � � �� in the user manual, and clarified via

an email exchange with the author.

7

Pigeons SATO-Benchmark SATO-Translation SMODELS

6 0.009 0.001 0.019
7 0.036 0.015 0.695
8 1.826 0.101 0.884
9 1.863 0.836 7.729
10 20.166 8.425 76.123
11 359.615 100.500 844.255
12 4482.400 1284.010 10563.450

Table 1: Search times for Pigeons

6 7 8 9 10 11 12
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Ti
m

e(
Se

c.
)

SATO Benchmark
SATO Translation
Smodels

Figure 1: Pigeons

Queens SATO-Benchmark SATO-Translation SMODELS

8 0.001 0.001 0.023
10 0.001 0.001 0.073
13 0.001 0.005 0.348
15 0.001 0.001 1.672
16 0.001 0.005 4.450
17 0.006 0.016 15.115
18 0.008 0.009 25.146
19 0.006 0.016 11.750
20 0.008 0.018 153.730
21 0.010 0.011 251.836
25 0.016 0.094 too long

Table 2: Search times for Queens

8

8 10 12 14 16 18 20 22 24 26
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Ti
m

e(
se

c.
)

SATO Benchmark
SATO Translation
Smodels

Figure 2: Queens

Nodes SATO-Translation SMODELS

20 0.00 0.01
25 0.00 0.02
29 0.00 0.02
100 0.01 0.03
300 0.01 0.10
600 0.02 0.25
1000 0.04 0.435
6000 too many variables 3.05

Table 3: Search times for 3-colorability

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

Ti
m

e(
se

c.)

SATO Translation
Smodels

Figure 3: 3-colorability

9

4 Experiments with a non-2-literal program

A logic programming encoding of the Blocks World is given by Niemelä [12]. It
is shown in [1] that the completion formula of the program characterizes the stable
model semantics.

We give two tables showing different kinds of experimental results. The setting
under which the experiments were conducted is the same as before, except that we
experimented with different values of the parameter � in the case of SATO. It turns
out that this is important.

In the first table, the data files large.c, large.d, and large.e (which specify
the blocks, their initial configuration and the target configuration) were taken from
Niemelä’s web page. For each instance, two cases were tested, the case with the
smaller number of steps had no solution whereas the one with the next larger num-
ber had a solution. For large.c for instance, 7 steps cannot move from the given
configuration to the target one while 8 steps can. We created the data file large.f
with 21 blocks which requires 11 steps to solve. This instance turns out to be impor-
tant in illustrating the changing behavior of SATO. The header SATO (g=20) means
that the SAT instance translated from the logic program by completion was run by
setting the parameter � to 20. The last column, with the header SATO-2 (g=20), re-
ports the experiments for the approach where a non-2-literal rule was first translated
to a number of 2-literal rules using at most one extra variable, as follows:

If � is � � ��� � � � � �� with) � 	, then translate � into � � not ��,
and, for � � ' �), �� � not �� if �� is an atom � and �� � �� if ��
is not �.

Essentially, this breaks rule � into several 2-literal rules by representing the body of
the rule by a named proposition. It can be shown that the class of programs that can
be faithfully translated this way includes the class of programs whose completion
characterizes the stable model semantics. Since the latter is the case for the Blocks
World program of Niemelä, this translation preserves the stable model semantics.
Then, the resulting 2-literal program was translated to a SAT instance, and run by
SATO. As the reader can see, even with a linear number of extra variables, the
performance became unacceptable very quickly.

In the second table, we illustrate the performance variations of SATO on the two
larger instances. It turns out that with the default value of � no answer was returned
in 2 hours; and with � �
�, SATO was extremely efficient.

5 Related Work

Babovich et al. [1] also reported experiments with SMODELS and SATO for the
Blocks World problem. They timed their experiments using the unix time com-
mand. For SMODELS this included the time used by LPARSE. They also used an
older version of SATO where no parameter � was provided. In addition, we used
a much faster machine. To a large extent, our experimental results for � � 	� are

10

Problem Blocks Steps SMODELS SATO(g=20) SATO-2(g=20)

large.c 15 7 0.58 0.38 1.17
8 4.65 0.78 1.97

large.d 16 8 1.26 1.09 7.50
9 10.08 0.98 11.26

large.e 17 9 1.99 1.58 11.84
10 17.15 6.17 71.49

large.f 21 10 2.62 307.07 too long
11 55.57 29.59 too long

Table 4: Search times for Blocks World

Problem Blocks Steps SATO (g=10) SATO (g=20) SATO (g=90)

large.e 17 9 2.41 1.58 2.08
10 761.93 6.17 3.34

large.f 21 10 55.88 307.07 3.87
11 too long 29.59 8.70

Table 5: Comparison with different values of �

comparable to theirs. However, the creation of the instance large.f in our case re-
vealed the changing behavior of SATO. In contrast, SMODELS behaved gracefully
and proportionally.

Given a program 	 , if its completion formula characterizes the stable model
semantics, then obviously 	 can be translated to a SAT instance without using extra
variables. Note that this in general doesn’t guarantee that the resulting SAT instance
is of the polynomial size, since it involves converting a disjunctive normal form to
a conjunctive normal form.

There are problems whose “natural” solutions are 2-literal programs but their
completions may not characterize the stable models semantics. One of these prob-
lems is the reachability problem (known to be NL-complete, i.e. nondeterministic
log-space complete): given a graph - � ���.� and two vertices " and �, determine
whether there is a path from " to �. The problem can be solved by the following
program:

��������� �� ������ � �� ����������
��������� �� ����"� � �
���������� � not ����������

The ground instances of the first rule become 2-literal rules after true instances of
������ � � are removed. Now consider the digraph with the set of vertices � �
�"� �� �� and the set of paths . � ���� ��� ��� ���. Though the problem has no stable
models, its completion formula has a model.

11

6 Conclusion

A main result of this paper is the discovery of the class of 2-literal programs for
which an efficient SAT encoding exists and requires no extra variables. Our exper-
imental results indicate that the SAT translations of these programs can be solved
efficiently by a competent SAT solver. Whether to use extra variables or not in a
translation could be significant, as extra variables may increase search space expo-
nentially. Our experimental results also suggest that even with a linear number of
extra variables, the performance can be degraded significantly. We also reported the
changing behavior of SATO for some larger Blocks World instances, which were
not known previously. This seems to suggest that the advantage of SATO on search
efficiency is not at all obvious for non-2-literal programs in general, even if some of
these programs can be translated to SAT instances without using extra variables.

References

[1] Y. Babovich, E. Erdem, and V. Lifschitz. Fage’s theorem and answer set pro-
gramming. In Proc. Int’l Workshop on Non-Monotonic Reasoning, 2000.

[2] R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic
programs. Annals of Math. and Artificial Intelligence, 14:53–87, 1994.

[3] K.L. Clark. Negation as failure. Logics and Databases, pages 293–322, 1978.

[4] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

[5] P. Dung. A fixpoint approach to declarative semantics of logic programs. In
Proc. North American Conf. on Logic Programming, pages 604–625, 1989.

[6] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In Proc. 5th ICLP, pages 1070–1080. MIT Press, 1988.

[7] T. Janhunen, I. Niemelä, P. Simons, and J. You. Unfolding partiality and dis-
junctions in stable model semantics. In Proc. KR 2000, pages 411–424. Mor-
gan Kaufmann, April 2000.

[8] N. Leone et al. DLV: a disjunctive datalog system, release 2000-10-15. At
http://www.dbai.tuwien.ac.at/proj/dlv/, 2000.

[9] V. Lifschitz. Answer set programming. In K.R. Apt et al., editor, The Logic
Programming Paradigm: A 25-Year Perspective, pages 357–371. Springer,
1999.

[10] V. Marek and M. Truszczyński. Stable models and an alternative logic pro-
gramming paradigm. In K.R. Apt et al., editor, The Logic Programming
Paradigm: A 25-Year Perspective, pages 375–398. Springer, 1999.

12

[11] M. Moskecicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engin-
erring an efficient sat solver. In Proc. 38th ACM Design Automation Confer-
ence, pages 530–535, June 2000.

[12] I. Niemelä. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Math. and Artificial Intelligence, 25(3-4):241–
273, 1999.

[13] I. Niemelä and P. Simons. Extending the Smodels system with cardinality and
weight constraints, pages 491–521. Kluwer Academic Publishers, 2000.

[14] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[15] P. Simons. Extending and Implementing the Stable Model Semantics. PhD
thesis, Helsinki University of Technology, Helsinki, Finland, 2000.

[16] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence. To appear.

[17] M. Truszczyński. Computing large and small stable models. In Proc. ICLP,
pages 169–183. MIT Press, 1999.

[18] H. Zhang. Sato: an efficient propositional prover. In Proc. CADE, pages
272–275, 1997.

13

