
Definability in Logic and Rough Set Theory 1

Tuan-Fang Fan2 and Churn-Jung Liau3and Duen-Ren Liu4

Abstract. Rough set theory is an effective tool for data mining. Ac-
cording to the theory, a concept is definable if it can be written as a
Boolean combination of equivalence classes induced from classifica-
tion attributes. On the other hand, definability in logic has been expli-
cated by Beth’s theorem. In this paper, we propose two data represen-
tation formalisms, called first-order data logic (FODL) and attribute
value-sorted logic (AVSL), respectively. Based on these logics, we
explore the relationship between logical definability and rough set
definability.

1 Introduction
In recent years, knowledge discovery in databases (KDD) and data
mining have received more and more attention because of their prac-
tical applications. The rough set theory proposed by Pawlak provides
an effective tool for extracting knowledge from data tables [3]. To
represent and reason about the extracted knowledge, a decision logic
(DL) is also proposed in [3]. The semantics of the logic is defined in a
Tarskian style through the notions of models and satisfaction. While
DL is an instance of propositional logic, we can also represent knowl-
edge in data tables by using first-order logic (FOL)[2] or many-sorted
first-order logic (MSFOL). In this paper, we investigate the definabil-
ity of concepts in the context of these alternative logical descriptions
of data tables. In the next section, we review rough set theory, with
the emphasis on the notion of definability. Then, in Sections 3 and
4, we propose first-order data logic and attribute value-sorted logic
for the description of data tables respectively, and discuss the rela-
tionship between logical definability and rough set definability in the
context of these logics. We conclude the paper in Section 5.

2 Rough Set Theory—A Review
The basic construct of rough set theory is an approximation space,
which is defined as a pair (U, R), where U is the universe and R ⊆
U ×U is an equivalence relation on U . We can write an equivalence
class of R as [x]R if it contains the element x. Note that [x]R = [y]R
iff (x, y) ∈ R.

In philosophy, the extension of a concept is defined as the objects
that are instances of the concept. Following the terminology, a subset
of the universe is called a concept or a category in rough set the-
ory. Given an approximation space (U, R), each equivalence class of
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R is called an R-basic category or R-basic concept, and any union
of R-basic categories is called an R-category. Now, for an arbitrary
concept X ⊆ U , we are interested in the definability of X by us-
ing R-basic categories. We say that X is R-definable if X is an R-
category; otherwise X is R-undefinable. The R-definable concepts
are also called R-exact sets, whereas R-undefinable concepts are said
to be R-inexact or R-rough. A rough set can be approximated by two
exact sets, called the lower approximation and upper approximation
of X , respectively, and defined as follows:

RX = {x ∈ U | [x]R ⊆ X},

RX = {x ∈ U | [x]R ∩X 6= ∅}.

Obviously, a set X is R-definable iff RX = RX .
In data mining problems, the equivalence relation is determined

by the attributes (features) used to classify objects. Two objects are
equivalent if they have the same values in every such attribute. Thus,
intuitively, a concept is definable in rough set theory if it can be pre-
cisely described by such attributes.

3 Definability in First-order Data Logic
To describe data tables by (a fragment of) FOL, we use an instance
of function-free monadic predicate logic, called first-order data logic
(FODL). The alphabet (or vocabulary) of FODL consists of a set of
constant symbols, a finite set of monadic predicate symbols, a set of
variables, Boolean connectives (¬,∧,∨,⊃,≡), and the quantifiers
(∀,∃). The syntax and semantics of FODL are the same as those of
ordinary FOL[2].

Based on FODL, we can formulate the definability of a concept in
rough set theory precisely. In the language of FODL, a concept corre-
sponds to a predicate, and the equivalence relation in an approxima-
tion space can be determined by a set of predicates. Let S be a subset
of predicates. Then the following formula defines an indiscernibility
relation (with respect to S):

ηs(x, y) =
^

P∈S

P (x) ≡ P (y).

Given an arbitrary predicate P , we can define two formulas corre-
sponding to the lower and upper approximations of P :

Ps(x) = ∀y(ηs(x, y) ⊃ P (y)),

Ps(x) = ∃y(ηs(x, y) ∧ P (y)).

Let Γ be an FODL theory that contains only predicate symbols in
S ∪ {P}. Then we say that P is S-definable with respect to Γ if

Γ |= ∀x(Ps(x) ≡ Ps(x)),

where |= means the semantic consequence relation in FODL.



In classical logic, the definability of a predicate is explicated by
the well-known Beth’s definability theorem[1]. The theorem states
that explicit definability is equivalent to implicit definability. Let Γ
be an FODL theory that contains only predicate symbols in S∪{P}.
Then Γ explicitly defines P if there exists a wff ϕ(x) that contains
only predicate symbols in S such that

Γ |= ∀x(ϕ(x) ≡ P (x)).

We say that Γ implicitly defines P if for any A, B ∈ Mod(Γ) such
that QA = QB for all Q ∈ S, we have P A = P B, where Mod(Γ)
is the set of models of Γ. In effect, the implicit definability of a pred-
icate P means the possibility of uniquely characterizing P . The pri-
mary objective of this paper is to establish the relationship between
logical definability and rough set definability.

Theorem 1 Let Γ be an FODL theory that contains only predicate
symbols in S ∪ {P}. Then the explicit (or implicit) definability of P
in Γ implies that P is S-definable with respect to Γ.

4 Definability in Attribute Value-sorted Logic

In FODL, a monadic predicate intuitively corresponds to an attribute-
value pair. However, in many cases, the number of possible values for
an attribute may be infinite. In such infinite-domain cases, an infinite
number of predicates must be available in FODL, but since the indis-
cernibility wff ηs can only be defined with respect to a finite subset
of predicates S, it is sometimes inadequate. To circumvent such dif-
ficulties, we can use many-sorted first-order logic (MSFOL) as the
data representation formalism.

4.1 Syntax and semantics

We use a special instance of MSFOL, called attribute value-sorted
logic (AVSL), to describe data tables. The set of sorts for AVSL is
Σ = {σi | i ∈ I} ∪ {σu}, where I is an index set. The sort σu is
called the object sort and each σi is called an attribute value sort.

As in the case of FODL, the alphabet (or vocabulary) of AVSL
consists of constant symbols, predicate symbols, variables, and log-
ical symbols. The only difference is that, in AVSL, a rank function
is used to assign a rank to constant symbols, predicate symbols, and
variables. The rank of a constant symbol or a variable is an element
of Σ, and the rank of a predicate symbol is in Σk if its arity is k.
A constant (resp. variable) of rank σu is called an object constant
(resp. variable); otherwise, it is called an attribute domain constant
(resp. variable). We assume that the set of predicate symbols is the
union of a set of monadic predicates and the set of dyadic predicates
{Ri | i ∈ I}. For each i ∈ I , Ri is of rank (σu, σi), and called an
attribute predicate. Also, a monadic predicate of rank σu is called a
concept predicate; and for each i ∈ I , a monadic predicate of rank
σi is called a value predicate. Now, a term is either a constant or
a variable, and the rank of the term is that of the constant or vari-
able. If P is a predicate of rank (σ1, · · · , σk) and t1, t2, · · · , tk are
terms of ranks σ1, σ2, · · · , σk respectively, then P (t1, t2, · · · , tk) is
an atomic formula (k = 1, 2). The formation rules for compound
wffs are the same as those for ordinary FOL[2].

4.2 Logical definability

Analogous to the case of FODL, we can formulate the definability of
a rough concept in AVSL. Let x and y be object variables, v be an

attribute domain variable, and S be a subset of the index set I . Then
we can define the indiscernibility formula (with respect to S) as:

εs(x, y) =
^
i∈s

∀v(Ri(x, v) ≡ Ri(y, v)).

Again, given an arbitrary concept predicate P , we can define two
formulas corresponding to its lower and upper approximations:

εPs(x) = ∀y(εs(x, y) ⊃ P (y)),

εPs(x) = ∃y(εs(x, y) ∧ P (y)).

Let Γ be an AVSL theory that contains only predicate symbols in
{Ri | i ∈ S}∪{P}. Then we say that P is indiscernibly S-definable
with respect to Γ if

Γ |= ∀x(εPs(x) ≡ εPs(x)).

The definition of the explicit and implicit definability of P in Γ is
the same as that in the FODL case and, analogously, we have the
following theorem.

Theorem 2 Let Γ be an AVSL theory that contains only predicate
symbols in {Ri | i ∈ S} ∪ {P}. Then the explicit definability of P
in Γ implies that P is indiscernibly S-definable with respect to Γ.

In addition to Pawlak’s approximation space, the notion of toler-
ance approximation spaces has been proposed in [4] to cope with
the problem of imprecise boundary regions in rough set theory. The
definability of a concept in a tolerance approximation space can also
be formulated in AVSL. First, let x, y, v and S be defined as above.
Then the tolerance formula (with respect to S) is

τs(x, y) =
^
i∈s

∃v(Ri(x, v) ∧Ri(y, v)).

Second, the lower and upper approximations of a concept predicate
P are defined as follows:

τPs(x) = ∀y(τs(x, y) ⊃ P (y)),

τPs(x) = ∃y(τs(x, y) ∧ P (y)).

Finally, let Γ be an AVSL theory that contains only predicate symbols
in S ∪ {P} such that {

V
i∈s ∀x∃vRi(x, v)} ⊆ Γ. Then we say that

P is tolerantly S-definable with respect to Γ if

Γ |= ∀x(τPs(x) ≡ τPs(x)).

Note that, to ensure the reflexivity of the tolerance relation,
∀x∃vRi(x, v) is included in Γ for each i ∈ S. However, logical
definability no longer implies rough set definability in terms of the
tolerance approximation space.

5 Conclusion
In this paper, we propose using FODL and AVSL for logical descrip-
tions of data tables. Based on these logics, we precisely formulate the
notion of definability in rough set theory and discuss its relationship
to explicit and implicit definability in classical logic.
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