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Abslrocf-A trajectory generation method far car-like 
mobile mbot based 011 cubic E p b l s  and lime segments is 
presented Tbe generated path is made up of portion of rublc 
spiral segments with zero cowamre ends aad upper bounded 
curvature and straight line segments. A numerirnlly efficient 
Q ~ W ~ S S ,  which is resorted to minimization over the sum of 
lea@ of each path segment of generated path vis b e a r  
programming, is presented to generate B Carteniau sbortest 
path linking start and destination caoliguratioos of car-like 
mobile robots tbrough an intermediate ronfiguratioa The 
intermediate roofiguration is not necensnrily selected fmm 
the symmetric means circle. The mefits of our path 
generation method based on cubic spirals are: @)The 
implementation is rtrdghtforward 10 that the generation ef 
feasible paths with bounded curvature is efficient far 
red-lime applicatious. @)Applicable ta mobile robots with 
forward and barkward driving sbUitie8 and only forward 
driving ability; (iii) Flexible to Incorporate other constraints. 

I. Introduction 
Path planning problem of autonomous mobile robots or 
vehicles (e.g. soccer robots) has been widely studied in 
recent years. The essential topic is to generate an 
acceptable path that optimizes a criterion to join two 
distinct configutations subject to constraints. It is 
challenging because nonholonomic robots can only move 
in the direction that they are facing. L. E. Dubins first 
discussed the shofiest paths with bounded curvature 
synthesized by circular arc and shaight line in 1957 [8]. J. 
A. Reeds and L. A. Shepp further studied the same path 
with cusp, i.e. the vehicle can drive both forward and 
backward, in 1990[9]. A complete characterization of patb 
synthesized by arc of circle and straight line was addressed 
by P. Sou&es and 1. Laumond [Z]. These studies 
concentrated on the fmding of the path with theoretical 
minimal length from a family of curves. They showed such 
kind of paths has at most two cusps, where the robot 
changes its moving direction. However, its non-continuous 
curvahm results in a control difficulty At the junction of a 
straight line and an arc, mobile robot needs to stop its 
wheel motion to make the perfect tracking achievable [4]. 
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The necessity to generate paths with continuous curvature 
for the navigation of mobile robots or autonomous vehicles 
with good drive characleristics and small hajectory 
tracking mors was noted by [IO], [Il l ,  [141, [IS]. 
Cloithoid curve is used as a transition curve for smoothing 
a circular-arc line segment junction [3], [4], [16]. Scheuer 
and Laugier [3], [4] incorporated a new constraint that the 
derivative of curvature is bounded into the path planring 
problem to make the planned path smoother. Nelson [ I l l  
presented two types of paths, Cartesian quintics for lane 
changing maneuvers and polar splines for symmetric tums, 
which both can smoothly connect line segments with zero 
curvature. There are other curves which have been 
proposed for trajectory of mobile robots or autonomous 
vehicles, e.g. B-spline [IS], quintic polynomials [15], 
quintic G’-spline [17]. They a e  easy to compute but 
difficult to  follow due to the complex curvature profiles. 

Another parametric curve is polynomial spiral whose 
curvature is a polynomial of arc length [IO]. Cubic spiral is 
a kind of trajectory whose direction function is cubic. A 
cubic spiral is cut at its two inflection points to obtain a 
curve with f ~ t e  length and has zero curvature at both 
end-points. This portion of a cubic spiral CM connect two 
coafgurations that are symmetric. Two configurations 
which are not aymmemc can be joined through an 
intermediate configuration, which is called J)r”enic 
mean, by two cubic spirals [I]. Instead of path length, 
Kanayama and Hamnan [ I ]  used path curvature and 
derivative of path curvature as criteria of path optimization 
intended to maximize passenger comfort Though the cubic 
spiral method can generate smoother path than other ones, 
it does not consider the bounded c-bc constraint of 
car-like mobile robots 1121, [19], a practical constraint in 
hming, or the avoidance of obstacles [13]. Funhemore, 
the “smoothest” criterion makes the path too long if two 
configurations are relatively far apart. 

The problem of trajectory generation for car-like 
mobile robot investigated here builds on the work of [l]. 
Our aim is to compute the path with shortest length among 
a set of families of continuous and upper-bounded 
curvature paths made up of cubic spirals in connectim 
with straight line segments at null curvature points. 
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The paper i s  organized as follows. In Section 2, the 
cubic spiral method is briefly reviewed, and the notations 
used in this paper are introduced. The numerical procedure 
to find a path of minimal length via change of potential 
intermediate orienations i s  presented in Section 3. The last 
section is the conclusion. 

n. Review of Cubic Spiral Method 

ll.1 Basics of cubic spiral i l l  
A triple q- ( X , y , @ )  is to represent a vehicle 
configuration where (x,y) i s  the position and e is the 
heading. For an arbitrary configuration q , [q] denotes its 
position(r,y), and(q)its directiono. 

A directed w e  n with finite length e is 
defined by a triple n=( t ,K ,qo)  where 
K : [a,(] + R i s  its curvature and qo = (xo,yo,Bo) is 
its initial configuration. A configuration 
q ( s ) = ( X ( s ) , y ( s ) , e ( s ) )  at arc length s is defied 
by 

e (s) = e ,  + Io'. ( t ) d t  

x ( s )  = x o  + j o ' c o s e ( t ) d t  ( I )  

y ( s )  = y o  + j o ' s i n  e ( r ) d r  

where s i s  defied as 0 at the initial configuration 

By deh i t ioq  cubic spiral is a set of trajectories that the 
direction function 0 is cubic. The curvahue of the 
portion of cubic spiral with WO reflection points as end 
points is zero and has finite length. The curvature function 
of this poeion of cubic spiral with length e is 
represented as z(s) = As(f  - s) ,where A i s  a nonzero 
constant to be determined. At the inflection points 
(s  = 0 and s = 1 ) the cubic spiral has zero cu rvam.  
The constant A of a cubic spiral joining two distinct 
configurations with relative angle a = O(e)-O(O) can 
be solved by the first equation of (3). The curvature 
function becomes (Lemma 2 , [I]), 

(xo,Yo700). 

For unjt length cubic spiral, its sue i s  given by (Lemma3, 
[ I l l  

The relation of e and d = size(q,, q2)  by a can be 
evaluated by a pre-calculated D(a) M. a table (Fig. 1) 
using the following equation (Proposition 8, [I]), 

d e = - -  
%) 

(3) 

11.2 Cubic Spiral Path Planning Metbod 

11.2.1 Concept of Symmetric Configurations 
For a configuration pair (q1,q2),  the size is the 

distance between the two points [q,]and[q,], and the 
angle is the difference between the two 
directions(q,)and(q2), i.e. 

(4) 
size(ql,q2) 3 d([q,lJq,l) 
angMql,q2) = W q 2 )  - (4,)) 

where the angle-normalizing function @is defmed as 

Foravector ?=(v, ,v  ), 

A configuration pair [q1,q2] is said to be symmehic if 
angle(i$ = atan2(v,,vx) 

A symmenic meon q of any coofiguration pair 
[q1,q2] is a configuration that both [q,,q]and[q,q,]are 
symmetric pairs. All symmetric means of a configuration 
pair[ql,q2] forms a circle if (q l )  # (q2 )  or a line if 
( q l )  = (q2)  (Proposition 3, [I]). 

ll.2.2 Drawbacks 
The path planning algorithm of [I] i s  lo choose one best 
symmetric mean q from this circle as an intermediate 
contipration so as to minimize the s u m  of cost functions 
of the cubic spiral joining the symmetric palr (q,,q) 
and the cubic spiral joining the syuunetric pair (q, q 2 ) .  
There are two main drawbacks of this method that make it 
not fit practical use. First, the cost functions of h a y "  
and Hartman [ I ]  are either minimization of the integration 
of centripetal force or the change of centripctal force; the 
length of the path and maximal (or minimal) curvature 
along the path are not taken into consideration. Secondly, 
the method fails in the configuration pair that two 
configurations are originally symmetric. Though 
Kanayama and Hartman [ I ]  declared that this kind of 
configuration pair can be joined by simple w e  
(specifically, one symmetric curve), but for some cases, for 
example q1 = [O,O,O] and q2 = [-a,O,O] 
confgurations with the same horizontal heading but 
different positions, the simple curve may have iniiite 
length. 

In. Generation of continuous and bounded 
curvature trajectory using cubic spiral 
The cubic spiral it i s  extensible by line segments: a path 
can be made up of connecting together cubic spirals and 
straight lines at zero curvature points and the assembled 
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path still keeps the continuity of curvature. The path 
length is set as the criterion for optimization of paths 
[2],[7-9],[13] from family of continuous curvature curves 
assembled by at most two cubic spirals and two straight 
lines, while maximal (or minimal) value of curvature is set 
as constraint. The problem is to fmd a shortest path with 
bounded and continuous curvature joining a given ordered 
pairofconfigurations [ql,q2]. 

nI.1 Constraint of Maximal Curvature 
In practice, the path of a wheeled mobile robot has its 
minimal radius of turning which is constrained by wheel 
arrangement [5]-[7]. We use a constant K-to describe 
the absolute value of maximal curvature of the planned 
path. Because curvature of a straight line is zero, this 
conseaint only affects the cubic spiral segment of the path. 

Consider a cubic spiral with angle a. Its curvature 
bas the maximal (or minimal, if a < O  ) 

value 31alD(a)/2d at the middle point s = C/2 

Hence a constraint of curvature can be written as 

/ K ( S ) ~ < K , ,  =31alD(a)/2d ,o r  

111.2 Minimal Locomotion 
Consider a mobile robot that ~n move forward and 
backward We’ll present the computation of the cubic 
spiral for minimal locomotion fromq, through a specified 
intermediate direction 8, to achieve a goal direction 
given by (4,) , with the intermediate and end positions 
unspecified. 

We restrict the angle of a cubic spiral in the range 
[-2z,27r]. Connecting an initial configurationq, which 

has direction 0, and the intermediate configuration with 

direction e,, there exist two cubic spirals that all have 
the maximal curvature. Angces of these two cubic spirals 
are, 

4 =We -@,ayl =-W@~(W)+$ (7) 
Ifac: is positive, then a; must be negative, and vice versa. 

The above notation (14) “ r e s  a:, E [-E,%] and ai 
outside this range. Consider a mobile robot that can move 
forward and backward. To achieve each of both angles (7) 
by forward and backward motion, there are four cubic 
spirals can make it. These four types of motion are 
represented by the following notations, 

Positive sign outside the parenthesis means forward 

motion, and negative one means backward motion Fig. 2 
shows an example of the four trajectories with defining 
notations (8). 
For each of four cubic spirals (S), we defme: 
(i)four intermediate configurations 
q,*,q,t,q;+,and q r a n d  vectors 

(9) 
F’ =[~,l-[q,13~c:- =[q,tl-[q11 

c =[4;1-[4,1.~;- = [ q J - [ q , I  

where the first superscript denotes the range of the angle 
and the second superscript represents the motion direction. 
(ii)four distances for each path as the length ofeach ofthe 
above vectors 

dcy E d,, (acl*),dc:- 5 -d- (acl+) 
(10) 

dcy = dmin (aJ,d;- z - d ~ m  (ac,-) 

where d,. (a)  is always positive. Two of the above 
fourdc, corresponding to backward motion are negative, 
where negative distance value denotes backward motion of 
vehicle. Similarly for the angle a,, = @(e2 -e,), there 
are four paths for each q, . As a result, for a given 
intermediate direction (e,), there are 16 different paths 
with maximal curvature whose end direction is (q2 )  = 0,. 
Only two of them are selected from the symmetric mean 
circle. 
Let the minimal locomotion vector of two connecting 
cubic spirals with initial heading 0, through a given 
intermediate orientations to a desired orientation e, 
be denoted the vector <:%. It is defmed by the addition 
of minimal locomotion vector in each cubic spiral segment 

6” = g  +z =&ec, +&&, i,J,k,l.{+,-} (13 
where the corresponding minimal distance is d:], dc2 
and I,, zc2 is unit vector of motion direction. 

111.3 Assemble a Path 
Following [I], we adopt two cubic spirals to form parts of 
a path. There are three zero clwature points at a 
two-cubic-spiral path. These points can be extended by 
straight lines to enhance reachability of path. In 
combination with two cubic spirals, five segments are used 
to assemble a path to connect a given configuration pair. 
The five directions are denoted by @1,8,,,e,,0,2,02 
withcorresponding v e c l o ~ ~ , , ~ ~ l , ~ , , ~ = 2 , ~ ,  where 

The directions of the five vectors are known, and only the 
lengths are to be determined. Define the unit vectors of the 
five vectors as &,Ec,, Z,, Z2 where positive 
direction of these five unit vectors represents forward 
motion direction. A feasible combination of these vectors 
satisfy the following equation, 
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[q2]=[q1]+G +GCl +cm+cc2+c2 (12) 

which can be rewritten more explicitly as 

[421=[61+di~itdeiriCi +d,%+dc2%2+d2% 
(13) 

where dl , d,, , d,, ds2, and d2 are length to be decided. 

the two cubic spiral segments of a path are 
By the d e f ~ t i o n  of (17), the constraints imposed on 

d,, > d z  ifds > 0 ,  d,, > d z  ifd;; > 0 ,  

4, < 4': 
(14) 

{de ,  < 4 i 
while the other coefficients dl,dm,and d,are free. It is 
noted that positive (negative) value of each d denotes 
forward (backward) motion. 

111.4 
The objective of this subsection is to formulate a minimal 
length solution of the family of paths composed of straight 
lines and cubic spirals. Assume 9, and i, j, k, and I have 
been selected already. The cost criterion for this family of 
paths can he defined as the sum of the length of each of the 
five segments 

Criterion of Minimal Path Lcngth 

(15) 
Because dz, and tdz have been chosen, 
D(a:,) and D(a,,) are conslants and 
d,,d,,,d,,d,,,andd, in (13) are variables to be 
determined that minimize the cost criterion (15) subject to 
the constraint (14). 
The cost of minimal locomotion for chosen d;]and d,", 
is the constant 

and m o t  he further reduced. We define 

dC*, = d,,  - d z , d : ,  = d , ,  - d:; (16) 

Then to minimize (15) is  equivalent to minimize the 
reduced cost 

And the constraints (14) can be rewritten as 

111.5 Vector Choice 
Now the condition (13) for path assembling can be 
rewritten as 

[%l#!aI.4ir*dAd&)**&% (19) 

c8,, = [ ~ 2 1 - [ ~ l l - ( d ~ ~ % l  +d%) (20) 

Defme the vector 

where the minimal locomotion vector ??in (18) witten 
explicitly as 

(21) i,:kf=dV< +dklfi 
rl CI <2 r 2  

which can be written equivalently as 

?- = d l i i , + d f , ~ ~ l + d ~ ~ + ~ 2 : , r i , + d ~ ~  (22) 

where the coefficie?ts d,,d,,and d2 are free, and the 
signs of d,,and d,, are pre-decided by the consfnints 
(18). To solve the coefficients from (22) for a given ",, 
we define 

6' - - and Gi = -iiA,ac (l,cl,m,c2,2} (23) 

Defme a vectors set N so lhat its corresponding set C 
of coefficients are nonnegative, 

N {z; , z ~ , ~ ~ , z ~ , ~ ~ , z ~ , z ~ , , ~ ~ ~ } , ~ , /  = +,- 
f2 = (4 ,d;,d; ,d;,d;,d;,d:,,d:,} 

da = d' . - d- ., n = l , m , z ,  d!, =ld:,l,d:, =Id:,I 

Then (22) can be "formed into 

with all coefficients nonnegative. The criterion (17) can be 
rewritten by 

Now the path length minimization can be formdated as a 
canonical form of linear programming problem, and only 
two elements of the coefficient set C are needed, while 
others an zero. Assume a pair of linearly independent 
vectors and ii6 E N are chosen with corresponding 
nonzero components doand d6 E C, so that (24) can be 
partitioned as 
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Without loss of generality, the choice of r?,and Eb is 

defined so that 8’ i s  positive and 8- i s  negative. Then, 

by (26). the coefficients dl,dc,,d,,dc2 and d, are 

solved to minimize (25). 
The procedure to fmd a shortest path joining two 
configmations of mobile robot is to search tiom all 
possible combination of two cubic spirals and straight lines, 
and find the one that minimizes the cost (17). Fig. 3 is an 
example to demonstrate the synthesis procedure of a 
shortest path whenever .gm is selected and 
thusi, j .  k,md 1 have been decided First the minimal 
locomotion vector i$ + ?: i s  computed to defme 
the<2,,. Then two vectors to be extended are selected 
from eight candidates. In the case s h o w  here, 

!J: are chosen. The result path (plotted in solid 
line) is composed of one straight line and two cubic 
spirals. 
It is noted here that the selection of intermediate 
8, direction i s  not necessarily from symmetric means 
circle (as [I] did), whose configuration (direction and 
orientation) is completely specified. Examples of shortest 
paths planned by the algorithm are shown in Fig. 4 for 
mobile robot capable of forward and backward motion and 
forward motion only. 

IV. Conclusion 
For generation of hounded curvature path linldng two 
configurations of wheeled mobile robots, this paper 
considers ’ the family of curvature-constrained curves 
constituted by line segments and cubic spirals segments 
with ends at inflection points. The reachahility is enlarged 
due to the addition of line segments as parts of the cubic 
spiral path. A shortest path planning method searches a 
minimal length path from all feasible paths generated by 
linear programming optimization o v a  the length of each 
path segment via the change of intermediate configuration. 
The method i s  applicable to generate paths of mobile 
robots with or without backward motion capability As for 
practical use, the implementation is  straightforward for 
real-time applications and flexible to incorporate obstacle 
avoidance , for navigating a mobile robat in a constrained 
workspace [ZO], e.g. m robot soccer game. 
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Fig. 1 Distance function of cubic spirals. The dashed 

venical line corresponds to la1 = 180° ; left side of this 

line is atregionandright side is a-region [l] 

Fig2 There are four cubic spirals from an initial 
configuration q, to reach an intermediate direction (9,) 
with maximal (or minimal) curvature value at their middle 
pints. 

[2O]T.C. Liang and J.S. Liu, “Collision-free path planning 
of mobile robots using cubic spirals,” 2004 IEEE Int. 
Conference on Robotics ond Biomimefics, Shenyang, 
China, August, 2004. 

Fig. 3 This figure shows how to synthesize a shortest path 
if 8, is given and thus i, j ,  k,md 1 have been 

decided. First the minimal locomotion vector + <: is 

computed to define the<pw,. Then two vectors to be 

extended are selected kom eight candidates. In this case, 

<;pd ?; are chosen. The path (solid line) is composed 
of one straight line and two cubic spirals 

Fig.4 Example of generated shortest paths. (a)Eacb path 

has the same (q2) hut different [q2]. @) Each path has 

the m e  [q2]but different(q,) . (c)Fonvard motion only 

for (a) (d) forward motion only for @) 

(a) (b) 
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