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Abstract—A  trajectory generation method for car-like
mobile robot based on cubic spirals and line segments is
presented. The generated path is made up of portion of cubic
spiral segments with zero curvature ends and upper bounded
curvature and straight line segments. A numerically efficient
process, which is resorted to minimization over the sum of
length of each path segment of generated path via knear
programming, is presented to generate a Cartesian shorfest
path linking start and destination configurations of car-like
mobile robots through an intermediate configuration. The
intermediate configuration is not pecessarily selected from
the symmeiric means circle. The merits of our path
generation method based on cubic spirals are: (D)The
implementation is straightforward so that the generation of
feasible paths with bounded curvature is efficient for
real-time applications. (ii)Applicable to mobile robots with
forward and backward driving abilities and only forward
driving ability; (iii) Flexible to incorporate other constraints.

L Introduction

Path planning problem of autonomous mobile robots or
vehicles (e.g. soccer robots) has been widely studied in
recent years. The essential topic is to generate an
acceptable path that optimizes a criterion to join two
distinct configurations subject to constraints. It is
challenging because nonholonomic robots can only move
in the direction that they are facing. L. E. Dubins first
discussed the shortest paths with bounded curvature
synthesized by circular arc and straight line in 1957 [8]. 1.
A. Reeds and L. A. Shepp further studied the same path
with cusp, i.e. the vehicle can drive both forward and
backward, in 1990[9]. A complete characterization of path
synthesized by arc of circle and straight line was addressed
by P. Souéres and J. Laumond {2]. These studies
concentrated on the finding of the path with theoretical
minima} length from a family of curves. They showed such
kind of paths has at most two cusps, where the robot
changes its moving direction. However, its non-continuous
curvature results in a control difficulty. At the junction of a
straight line and an arc, mobile robot needs to stop its
wheel motion to make the perfect tracking achievable [4].
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The necessity to generate paths with continuous curvature
for the navigation of mobile robots or autonomous vehicles
with good drive characteristics aod small trajectory
tracking errors was noted by [10], [11], [14], [15]).
Cloithoid curve is used as a transition curve for smoothing
a circular-arc line segment junction [3], [4], [16]. Scheuer
and Laugier [3], [4] incorporated a new constraint that the
derivative of curvature is bounded into the path planning
problem to make the planned path smoother. Nelson [11]
presented two types of paths, Cartesian quintics for lane
changing maneuvers and polar splines for symmetric turns,
which both can smoothly connect line segments with zero
curvature. There are other curves which have been
proposed for trajectory of mobile robots or antonomous
vehicles, e.g. B-spline [18], quintic polynomials [15],
quintic G*-splipe [17]. They are easy to compute but
difficult to follow due to the complex curvature profiles.

Another parametric curve is polynomial spiral whose
curvature is a polynomial of arc length [10]. Cubic spiral is
a kind of trajectory whose direction function is cubic. A
cubic spiral is cut at its two inflection points to obtain a
curve with finite length and has zero curvature at both
end-points. This portion of a cubic spiral can connect two
configurations that are symmefric. Two configurations
which are not symmetric can be joined through an
intermediate configuration, which is called symmetric
nean, by two cubic spirals [1]. Instead of path length,
Kanayama and Hartman [1] used path curvature and
derivative of path curvature as criteria of path optimization
intended to maximize passenger comfort. Though the cubic
spiral method can generate smoother path than other ones,
it does not consider the bounded curvature constraint of
car-ltke mobile robots [12], [19], a practical constraint in
turning, or the avoidance of obstacles [13]. Furthermeore,
the “smoothest™ criterion makes the path too long if two
configurations are relatively far apart.

The problem of trajectory generation for car-like
mobile robot investigated here builds on the work of [1].
Qur aim is to compute the path with shortest length among
a set of families of continuous and upper-bounded
curvature paths made up of cubic spirals in connection
with straight line segments at null curvature points.



The paper is organized as follows. In Section 2, the
cubic spiral method is briefly reviewed, and the notations
used in this paper are introduced. The pumerical procedure
to find a path of minimal length via change of potential
intermediate orienations is presented in Section 3. The last
section is the conclusion.

1L Review of Cubic Spiral Method

1.1 Basics of cubic spiral [1]
A triple g=(x,v,0) is to represent a vehicle
configuration where (r,p) is the position and & is the
heading. For an arbitrary configuration ¢, [¢]denotes its
position (X, ¥) , and (g} its direction &

A directed curve [I with finite length £ is

defined by a tiple [I=({,x,q,) where
k:[0,£] > R isits curvatwre and g, = (X, ¥,,8,) is
its initial configuration. A configuration

g()={x(5),9(),0(5)) at arc length 5 is defined
by

6(s)=8, + Jo’x(t)dt
x(8s)y= x, + Jo’cose(r)dt m
y(s)y= y, + J;sinﬂ(t)dt

where § is defined as 0 at the initia}l configuration
(%5, ¥9:60) -

By definition, cubic spiral is a set of trajectories that the
direction function & is cubic. The curvature of the
portion of cubic spiral with two reflection points as end
points is zero and has finite length. The curvature function
of this portion of cubic spiral with length £ is
represented as K{s) = As(£ — ) ,where 4 is 2 nonzero
constant to be determined. At the inflection points
(s=0 and s =£) the cubic spiral has zero curvature.
The constant 4 of a cubic spiral joining two distinct
configurations with relative angle a = 8(£)}—60(0) can
be solved by the first equation of (3). The curvature
function becomes (Lemma 2, [11),

6
x{s)= f—?s(! —-5) 2)

For unit length cubic spiral, its size is given by (Lemma3,
[

Dia)=2 J:”cos(a(% — 2t

The relation of fand d =size(q,,q,) by ¢ can be
evaluated by a precalculated D{a) vs. a table (Fig. 1)
using the following equation (Proposition &, [1]),
d
f=——-o 3)
D(a)
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II.2 Cubic Spiral Path Planning Method

I1.2.1 Concept of Symmetric Configurations
For a configuration pair (9,,4,) , the size is the
distance between the two points [g,]and[q,], and the

angle is the  difference between the two
directions (g, )and(q,) . ie.
size{g,,q,) = d([,).[4. D @

angle(q,,q,) = ®((q,) —(q,))

where the angle-normalizing function @ is defined as

@(8)=0-~ 2fr[92;”J

)

For a vector ¥ = (vI ,
angle(ﬁ atanZ(vy,v ).
A configuration pair [g,,4, ] is said to be symmetric if

tan 6+6) ,ifx,:txz
Xz~ X5
8 +8 T
@(]—2—2')=i—2—, lfxi = X,

A symmetric mean ¢ of any configuration pair
[4,,4,]is a configuration that both [g,,q]and[g,q, Jare
symmetric pairs. All symmetric means of a configuration
pair[q,,4,] forms a circle if (g,)#(g,)or a line if
(¢,)=(g,) (Proposition 3,{1]).

1£.2.2 Drawbacks

The path planning algorithm of {1] is to choose one best
symmetric mean ¢ from this circle as an intermediate
configuration so as to minimize the sum of cost functions
of the cubic spiral joining the symmetric pair (g,,q)
and the cubic spiral joining the symmetric pair {(g,q,) .
There are two main drawbacks of this method that make it
not fit practical use. First, the cost functions of Kanayama
and Hartman [1] are either minimization of the integration
of centripetal force or the change of centripetal force; the
length of the path and maximal (or minimal) curvature
along the path are not taken into consideration. Secondly,
the method fails in the configuration pair that two
configurations are originally symmetric. Though
Kanayama and Hartman [1] declared that this kind of
configuration pair can be joined by simple curve
(specificaily, one symmetric curve), but for some cases, for
example g, =[0,0,0] and g, =[-a,0,0]
configurations with the same horizontal heading but
different positions, the simple curve may have infinite

length.

II. Generation of continmous and bounded

curvature trajectory using cubic spiral

The cubic spiral it is extensible by line segments: a path
can be made up of connecting together cubic spirals and
straight lines at zero curvature points and the assembled



path stifl keeps the continuity of curvature. The path
length is set as the criterion for optimization of paths
{21,[7-9),[13] from family of continuous curvature curves
assembled by at most two cubic spirals and two straight
lines, while maximal {or minimal} value of curvature is set
as constraint. The problem is to find a shortest path with
bounded and continuous curvature joining a given ordered
pair of configurations [g,,4,].

III.1 Constraint of Maximal Curvature
In practice, the path of a wheeled mobile robot has its
minimal radins of twrning which is constrained by wheel
arrangement [5]-[7]. We use a constant &, to describe
the absolute value of maximal curvature of the planned
path. Because curvature of a straight line is zero, this
constraint only affects the cubic spiral segment of the path.
Consider a cubic spiral with angle & . Its curvature

has the maximal (or minimal, if a<0 )

value 3|a|D(a)/2d at the middle point §=#£/2.
Hence a constraint of curvature can be written as

[k (5)] < K =3a|D(@)/2d ,or

dzd  (a)=3a|D(@)/ 2k, (6)

1I1.2 Minimal Locomotion
Consider a mobile robot that can move forward and
backward. We'll present the computation of the cubic
spiral for minimal locomotion from g, through a specified
intermediate direetion &, to achieve a goal direction
given by (g,), with the intermediate and end positions
unspecified.

We restrict the angle of a cubic spiral in the range
{=27,27]. Connecting an initial configuration g, which
has direction &, and the intermediate configuration with

direction €, , there exist two cubic spirals that all have

the maximal curvature. Angles of these two cubic spirals
are,

&, =ME, -8, =-sgnldl,)- 2m)+e Yl
If a:, is positive, then ¢r_; must be negative, and vice versa.
The above notation (14) assures &, € [—7,7] and o,

outside this range. Consider a mobile robot that can move
forward and backward. To achieve each of both angles (7)
by forward and backward motion, there are four cubic
spirais can make it. These four types of motion are
represented by the following notations,

(o, 1) Lai ) (a) and{a},)” (®

Positive sign outside the parenthesis means forward
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motion, and negative one means backward motion. Fig. 2
shows an example of the four trajectories with defining
notations (8).

For each of four cubic spirals (8), we define:

(i) four intermediate configurations
gt .qy g, .and g, and vectors
—-++ = _.+_ ST

=g’ 1-[9,1.v5 =g, 1-[g,] ©

V=g 1- [41],‘;‘~[q.,,] [4,]

where the first superscript denotes the range of the angle
and the second superscript represents the motion direction,
(ii)four distances for each path as the length of each of the
above vectors

cl = (acl )’ = _dmin (acl+)
dc_l+ = min (a )9da_l_ = _dmjn {acl_)

where o (-) is always positive. Two of the above
fourd | corresponding to backward motion are negative,
where negative distance value denotes backward motion of
vehicle. Similarly for the angle@,, = ®{(8, — &), there
are four paths for each g, . As a result, for a given
intermediate direction (@, ), there are 16 different paths
with maximal curvature whose end directionis (g,) =6, .
Only two of them are selected from the symmetric mean
cirele.

Let the minimal locomotion vector of two connecting
cubic spirals with initial heading &, through a given
intermediate orientation & to a desired orientation &,

be denoted the vector ¥7 . It is defined by the addition
of minimal locomotion vector in each cubic spiral segment

V) =dh, +doh,, &k el (19

whcre thc correspondmg minimal distance is d v

cl»
and #,,%,, isunitvector of motion direction.

(10

HI.3  Assemble a Path

Foellowing [1], we adopt two cubic spirals te form parts of
a2 path. There are three zero curvature points at a
two-cubic-spiral path. These peints can be extended by
straight lines to enhance reachability of path. In
combination with two cubic spirals, five segments are used
to assemble a path to connect a given configuration pair.
The five directions are denoted by 9 9 9 ,8 9

c2?
with corresponding vectors ¥, 0.,V , ¥ ,, v2 where

G, =08 +6,)/2),8,=0((8, +6,)/2)
The directions of the five vectors are known, and only the
lengths are to be determmed Define the unit vectors of the
five vectors as n] 19 W s c2’n2 where  positive
direction of these five unit vectors represents forward
motion direction. A feasible combination of these vectors
satisfy the following equation,



[.]1=[g]+V +¥, +¥, +V, +% a2

which can be rewritten more explicitly as

[9'2] = [QI]+ dlﬁl + dnlﬁcl +dmﬁm + dclﬁcl + dZﬁZ

(13)
where d,d,,,d,.d ,,and d,are length to be decided.
By the definition of (17), the constraints imposed on

the two cubic spiral segments of a path are

{df. >d irdl>o,

Ifdcﬂ; > 0’ ch > d:;
d,<d!

dcz < d:;
(14)
while the other coefficients d|,d_,and d,are free. It is

noted that positive (negative) value of cach d denotes
forward (backward) motion.

Hi4 Criterion of Minimal Path Length

The objective of this subsection is to formulate a minimal
Jength solution of the family of paths composed of straight
lines and cubic spirals. Assume &, and i, j, k, and 7 have
been selected already. The cost criterion for this family of
paths can be defined as the sum of the length of each of the
five segments

dcl

D(a:z)

<l

D(er,)

cost(IT) = |d) |+ +d |+ +ld,|

(13
Because dz, and dz have been  chosen,
D(a')) ad D(a') ae constants and
d,d,.d d,andd, in (13) are variables to be
determined that minimize the cost criterion (15) subject to
the constraint (14).

The cost of minimal locometion for chosen d31 and dfz

is the constant
kI
ck + dc2|

D(al) D(al)
and cannot be further reduced. We define

l i

cost(IT}*) =

* _ ii o _ gk
dcl - dc] dcl=dc2 - dcz dcz

(16)
Then to minimize (I5) is equivalent to minimize the
reduced cost
cost’(I1) = cost(IT) - cost(TT4")

. (i7n

a4
clil + |d,,,|+ :2':
D(a,) Dia;;)

And the constraints (14) can be rewritten as

=|d\j+

+|dy|

{d:l>0 1‘fa’j§>0,{d:2>0 if d2 >0, ”

<0 d, <0

IILS Vector Choice
Now the condition (13) for path assembling can be
rewritten as

=gl el i Hdfp v dn, (19)

Define the vector
‘-;gqaf =[g,]-[a]- (@37, + d:;ﬁcz)

where the minimal locomotion vector iz'cij * in (18) written

(0)

explicitly as

=ik _ gl = ki —
vc - dclncl + dclnc2

@n
which can be written equivalently as
Vosa =41y +dify+d f 4 dA,+df, (22)

where the coefficients d,,d,,,and d, are free, and the
signs of dand d_, are pre-decided by the constraints
(18). To solve the coefficients from (22) for a given ¥,
we define

iy =, and iy =—#,,ae{l,cl,mc2,2} (23)

Define a vectors set N so that its comresponding set €
of coefficients are nonnegative,
N = i) A B8, Ll ) g =

C={d’,d;.d;.d;,d7,d; ,d}.d};}

dc'l =d:z = d:z

d, =d!-d, a=1,m,2, d}, =
Then (22) can be transformed into
Vot =47 +A 7+ +d i+, A+ +d7 ()

with all coefficients nonnegative. The criterion (17) can be
rewritten by

m‘@=@+@%+¢+¢%+@ 2

Now the path length minimization can be formulated as a
canonical form of linear programming problem, and only
two elements of the coefficient set T are needed, while
others are zero. Assume a pair of linearly independent
vectors 7, and #, € Mare chosen with corresponding
nonzero components d and d, € C, so that (24) can be
partitioned as
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Vo =%+ =a'ﬁa +az,

dfuly g wm g @ -9)

6 =Uagelr,)- agle,, W0 =WNagr}) gy, ) @

Without loss of generality, the choice of #i,and 7, is

is negative. Then,

,d, andd, are

defined so that & is positive and &
by (26), the coefficients d,d,,.d,

cl?
solved to minimize (25).

The procedure to find a shortest path joining two
configurations of mobile robot is to search from all
possible combination of two cubic spitals and straight lines,
and find the one that minimizes the cost (17). Fig. 3 is an
example to demonstrate the synthesis procedure of a
shortest path whenever &, is  selected and
thusi, j, k,and [/ have been decided. First the minimal
locomotlon vector v +v > is computed to define
the v/ goul+ 1hEN TWO vectors to be extended are selected
fmm elght candidates. In the case shown here,
52and V" are chosen. The result path (plotted in solid
ling) is composed of one straight line and two cubic
spirals.
It is noted here that the selection of intermediate
9m direction is not necessarily from symmetric means
circle (as (1] did), whose configuration (direction and
orientation) is compietely specified, Examples of shortest
paths planned by the algorithm are shown in Fig. 4 for
mobile robot capable of forward and backward motion and
forward motion only.

1IV. Conclusion

For generation of bounded curvature path linking two
configurations of wheeled mobile robots, this paper
considers the family of curvature-constrained curves
constituted by line segments and cubic spirals segments
with ends at inflection points. The reachability is enlarged
due to the addition of line segments as parts of the cubic
spiral path. A shortest path planning method searches a
minimal length path from all feasible paths generated by
linear programming optimization over the length of each
path segment via the change of intermediate configuration.
The method is applicable to generate paths of mobile
robots with or without backward motion capability. As for
practical use, the implementation is straightforward for
real-time applications and flexible to incerporate obstacle
avoidance , for navigating a mobile robot in a constrained
workspace [20], e.g. in  robot soccer game.
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Fig. 1 Distance function of cubic spirals. The dashed
vertical line corresponds to |a|= 180°; left side of this

lineis a* region and right side is & region [1].
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T

Fig.2 There are four cubic spirals from an initial
configuration g, to reach an intermediate direction (g,,)

with maximal (or minimal} curvature value at their middle
points.
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of mobile robots using cubic spirals,” 2004 IEEE Int.
Conference on Robotics and Biomimeties, Shenyang,
China, August, 2004,

Fig. 3 This figure shows how to synthesize a shortest path
if 8 is given and thus i, f, k,and [ have been

decided. First the mipimal locomotion vector il'fl + \'2':;' is

computed to define the i"gm. Then two vectors to be
extended are selected from eight candidates. In this case,
¥!,and ¥ are chosen. The path (solid line) is composed
of one straight line and two cubic spirals.

Fig4 Example of generated shortest paths. (a)Each path
has the same (g, )but different[q,]. (b) Each path has
the same [g, Jbut different (g, ) . (c)Forward motion only
for (a) (d) forward motion only for (b)

@) (b)
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