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ABSTRACT 
In applications of industrial robots, the robot manipulator 
must traverse a pre-specified Cartesian curve (path) with 
its hand tip while links of the robot safely move among 
obstacles. In order to reduce the costs of collision 
detection, the number of collision checks can be reduced 
by enclosing a few obstacles (a cluster) with a larger 
(artificial) bounding volume, e.g. by their convex hull, 
without cutting the specified curve. In this paper, an 
efficient and convergent recursive algorithm for refining 
an initial randomly generated set of clusters is proposed to 
tackle the problem of clustering convex polygonal 
obstacles in 2D robot's scene. Simulation results show that 
the proposed algorithm acquires less number of clusters 
and computationally more efficient. In addition, the 
algorithm can be easily applied to dynamic environment 
based on the idea of seeds in clusters.  
 

1. INTRODUCTION 
Collision detection and avoidance for mobile robots 

or articulated robots along a prescribed trajectory is a basic 
step toward motion planning. The problem has been 
studied in many literatures [4-9] during the last two 
decades. In applications of industrial robots, the (mobile) 
robot manipulator must traverse a pre-specified Cartesian 
curve with its hand tip while links of the robot safely move 
among obstacles. As such, the complexity increases with 
the dimension of robot's configuration space and the 
number of obstacles in robot's scene (or workspace) [10]. 
Furthermore, the problem is more complicated if the 
workspace is dynamic, i.e., obstacles may be intersected, 
deleted, or moved. In order to reduce the costs of collision 
detection, attempts are 1) to simplify the shapes of objects 
to facilitate collision check of complex geometry, such as 
polyhedrons, spheres, ellipsoids or planar convex polygons; 
and 2) to reduce the number of collision checks by 
enclosing a few obstacles with a larger (artificial) 
bounding volume, e.g. by their convex hull [1].  

Our work focuses on how to systematically cluster 
the real obstacles into fewer but larger artificial obstacles, 
which cannot cross (cut) the pre-specified curve, in a 2D 
environment. In other words, the less number of artificial 
obstacles shall result in the more efficient computation of 
collision detection and not affect the robot moving in its 
workspace. In [1], a heuristic algorithm having complexity 
O(n2m) was proposed, where n is the number of convex 
polygonal obstacles and m is the total number of vertices. 
The algorithm first determines an input sequence of 
obstacles to form clusters. Such sequence is intuitive, 
namely, to combine the closest pair of obstacles in turn if 
such combination doesn't cut the specified curve. As such, 

( )n
2  pairs of minimum Euclidean distances [3] between all 

obstacles are necessarily computed firstly. Then, these 
lengths of distances are necessarily sorted in decreasing 
sequence for clustering.  

Although the criterion of minimum distance is first 
imposed in their algorithm, significance of this criterion 
was not explicitly explained in [1]. It should be noted that 
the geometric criterion in fact seems insignificant because 
the major concern is only that the specified curve cannot 
be cut. Therefore, we propose three viewpoints for 
tackling the problem, namely, 1) the number of clusters k 
should be as less as possible, 2) k is determined on the 
specified curve and independent of any criterion, and 3) 
assigning obstacles into a set of clusters that number has 
been estimated may depend on certain of criteria, such as 
minimum distance if similarity of obstacles' location in 
workspace is significant for each cluster.  

In this paper, a more efficient and convergent 
recursive algorithm is proposed to tackle the problem of 
clustering convex polygonal obstacles in 2D robot's scene. 
The algorithm has approximately linear complexity of 
O(nkm). Noted that the number of clusters k in general is 
greatly less than the number of obstacles n. And, in fact k 
is determined on the specified curve not on the density of 
obstacles (i.e., n). Namely, k is almost constant  

0-7803-6475-9/01/$10.00©  2001 IEEE 

Proceedings of the 2001 IEEE 
International Conference on Robotics & Automation  

Seoul, Korea • May 21-26, 2001 

3795



  

(a)                       (b) 
Figure 1, (a) A robot's scene is with eleven convex polygonal 
obstacles cluttered around a specified curve (trajectory of robot). 
(b) The clustering result via using the algorithm in [1], in which 
five clusters are obtained.  
 
 
while the curve is fixed. The algorithm proceeds as 
follows. Firstly, the number of clusters k can be estimated 
after scanning all obstacles twice. Two procedures are 
proposed to identify the seeds of obstacles in clusters that 
determine existence of these clusters. Where, a cluster 
could be deleted if there are no seed within it. On the 
contrary, non-seeds in a cluster indicate that the obstacles 
can also be grouped into the other clusters, which are 
called floating obstacles. Secondly, procedures are 
developed to reassign the floating obstacles into clusters 
based on certain of criteria, such as minimum Euclidean 
distance. Finally, simulation results show that clustering of 
obstacles is very efficient in computational time and less 
number of clusters is obtained by using the proposed 
recursive algorithm.  
 

2. DEFINITIONS OF THE PROBLEM 
Suppose a 2-D robot's scene in which a Cartesian path 

(curve) has been specified for robot end-effector to follow 
and many obstacles modeled by convex polygons cluttered 
without crossing this curve. For instance, Fig.1a shows 
eleven convex polygonal obstacles cluttered around a 
specified curve. The goal of the proposed algorithm is to 
simplify the scene by clustering the set of convex polygons 
into fewer but larger artificial convex polygonal obstacles 
that cannot cross (or cut) the specified curve. For example, 
Fig.1b shows the clustering result via using the algorithm 
in [1], in which the eleven obstacles are reduced into five 
artificial obstacles (i.e. clusters). However, it is expected to 
obtain less number of clusters and do such clustering more 
efficiently. 

Assume a set of convex polygonal obstacles H={Pi, 
i=1 to n} is to be grouped into clusters {Cj, j=1 to k}. A 
cluster Cj={Pa| Pa∈ Cj} is represented by an artificial 
convex hull [2] enclosing the set {Pa}. Define the notation 

Pb⊂ Cj to mean that Pb can be grouped with Cj. Namely, 
Pb⊂ Cj implies that the convex hull of Pb and Cj cannot cut 
the specified curve, otherwise it is denoted by Pb⊄ Cj. Note 
that Pa∈ Cj implies Pa⊂ Cj, on the contrary Pb⊂ Cj doesn't 
imply Pb∈ Cj. To proceed, two definitions are used to 
describe the relationship between two clusters Cx and Cy 
(or two polygons Pa and Pb):  
1) Cx⊂ Cy if and only if Pa⊂ Pb, ∀  Pa∈ Cx and ∀  Pb∈ Cy, 

otherwise, Cx⊄ Cy ,  
2) Cx⊂ Cy (Cx⊄ Cy) if and only if Cy⊂ Cx (Cy⊄ Cx). 
 

3.THE RECURSIVE ALGORITHM 
The proposed algorithm consists of four procedures 

(Procedure I-IV) to group n polygons into k clusters.  
 
3.1 ESTIMATION OF THE NUMBER OF CLUSTERS  

In Procedure I, clusters are constructed, one by one, 
around the specified curve until all polygons have been 
scanned once. Initially, the number of clusters is set to be 
null, and then polygons are inputted by a random sequence. 
Let the first input polygon be within the first cluster. Then, 
the next cluster can be created when the current input 
polygon cannot be grouped into any of clusters created 
previously. Such procedure is written in the following 
pseudocode.  
 
INITIALIZATION: 
A Cartesian piecewise linear curve is specified;  
Let H={Pi, i=1 to n} be the set of convex polygons;  
Let Cj denote the cluster j;  
Let k denote the number of clusters, and initially, k ←0;  
 
PROCEDURE I: 
While H is not empty do  

Select and remove a Pi at random from the set H;  
Let flag ←0;  
For j ← 1 to k do 

Compute a convex hull CH to enclose Pi and Cj;  
If CH doesn't cut the specified curve then  

Cj ← CH;  
Label Pi∈ Cj;  
flag ←1;  
Break this for-loop;  

Endif  
Endfor  
/* To create a new cluster Ck+1 when Pi⊄ Cj, j=1 to k */  
If flag = 0 then 

k ← k+1;  
Ck ← Pi ;  

Endif  
Endwhile  
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(a)                       (b) 

  

(c)                       (d) 

  

(e)                    (f) 

Figure 2, At most six sorts of possible clustering results 
can be obtained for the scene in Fig.1a, which can be 
composed of (a) to (e). For example, (f) shows the result 
composed of Fig.2b and Fig.2d.  Seeds are shaded.  
 

Procedure I can efficiently be used to obtain a set of 
initial clusters by that the specified curve cannot be cut. In 
fact, the output clusters by using the procedure would not be 
unique while different input sequences of polygons were used. 
For instance, at most six sorts of possible clusters can be obtained 
for the scene shown in Fig.1a. First, we separate this scene into 
two sets of polygons, one above and one below the specified 
curve. Fig.3a to Fig.3c and Fig.3d to Fig.3e show all possible 
clusters for the two sets of polygons, respectively. Although the 
output clusters might be different, such sets of clusters are 
usable at all because the specified curve cannot be cut still. 
Subsequently, in order to incorporate with certain of 
criteria and further reduce the number of clusters, 
Procedure II-IV in the following are proposed. Before that, 
two properties are shown for the clusters obtained via 
using Procedure I.  

 
PROPERTY 1: Pb⊄ Cx, where Pb∈ Cy and x<y.  
Proof: By Procedure I, Cy is created due to Pb⊄ Cx, ∀  
Pb∈ Cy and ∀  x<y.   
 
PROPERTY 2: Cx⊄ Cy, ∀  x≠y.  
Proof: By Definition 2 and Property 1, Pb⊄ Cx implies 
Cy⊄ Cx. Thus, we have Cx⊄ Cy.  
 
3.2 DELETION OF TRIVIAL CLUSTERS 

Based on Property 1, Procedure II is proposed in order 
to examine whether Pa⊂ Cy or not, where Pa∈ Cx and y>x. 
After Procedure II is used, we can know which polygons 
have the alternative choice to be reassigned into other 
clusters. Such polygons are called floating. On the contrary, 
a polygon Pi∈ Cj is called a seed of Cj if Pi cannot be 
reassigned, i.e., Pi⊄ Cx, ∀  x≠j. For instance, the shaded 
polygonal obstacles in Fig.2 are seeds in clusters.  
 
PROCEDURE II: 
For i ←1 to n do  

Let y indicate the index Pi∈ Cy;  
For j ← y+1 to k do 

Compute a convex hull CH to enclose Pi and Cj;  
If CH doesn't intersect the specified curve then  

Record Pi⊂ Cj;  
Endif  

Endfor  
Endfor  
 

Normally, a cluster Cj may include some seeds that 
can determine the existence of Cj. That is, at least the seeds 
would stay in Cj even if all floating Pa∈ Cj were removed 
from Cj and reassigned into the other clusters. However, a 
cluster may include no seed, which is called a trivial 
cluster. For instance, Fig.3a shows that a trivial cluster 
consists of (four) floating polygons. Any trivial cluster 
should be deleted because the number of clusters should be 
as less as possible. Assume a cluster Ct is trivial and 
{Pa,Pb}∈ Ct. Therefore, there must exist a set of other 
clusters {Cx,Cy} that Pa⊂ Cx and Pb⊂ Cy, where Pa⊄ Cy and 
Pb⊄ Cx, due to the fact of Ct⊄  Cx or Cy and Definition 1. In 
other words, the existence of a trivial cluster Ct is possible 
while |Ct|≥2 and k≥3 (i.e. at least Ct, Cx and Cy).  

Deleting a trivial cluster Ct in theory involves two 
effects: 1) the cluster Ct disappears and 2) all Pa∈ Ct must 
be reassigned into the other clusters. Both of the effects 
may result in reduction of reassignment choice of the 
floating polygons Pi∉ Ct. Firstly, after a trivial cluster Ct is 
deleted, Pi⊂ Cx should be reexamined, where some Pa∈ Ct 
are removed into Cx. Secondly, the seeds within Cj, for j= 
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(a)                       (b) 

Figure 3, (a) shows five clusters consisting of five seeds 
and a trivial cluster. (b) shows four embryo seeds Sj, j=1 to 
4, and four floating obstacles after the trivial cluster is 
deleted. Darker shaded polygons are new seeds.  
 
 
1 to k, should be updated because some floating polygons 
Pi may become seeds. Then, the embryo clusters Sj={all 
the seeds within Cj}, for j=1 to k, can be enclosed by their 
convex hulls before reassignment of floating polygons. For 
instance, after the trivial cluster in Fig.3a is deleted, Fig.3b 
shows four embryo clusters and four floating obstacles. In 
addition, any subset {Pa}∈ Ct can be totally assigned into 
another cluster Cx if ∀ Pa⊂ Cx. That is because the subset 
{Pa} is originally a valid cluster by Definition 1. In the 
following, Procedure III is used to delete trivial clusters.  
 
PROCEDURE III: 
For t ←1 to k do  

If there is no seed-polygon within Ct then  
Remove each Pa∈ Ct from Ct and reassign Pa into a 
cluster Cx, where Pa⊂ Cx, via certain of criteria;  
Update whether Pi⊂ Cx still or not, for i=1 to n;  
Update seeds within Cj, j=1 to k;  

Endif  
Endfor  
Delete all empty clusters and update k;  
For j ←1 to k do  

Compute a convex hull Sj to enclose all the seeds in Cj;  
Endfor  
 
3.3 REASSIGNMENT OF FLOATING OBSTACLES 

Finally, each floating Pi should be assigned to a 
certain Sj, which is achieved based on certain of criteria. 
For example, Fig.2f shows the final clustering result after 
the four floating polygons in Fig.3b are reassigned via 
using the geometric criterion of minimum Euclidean 
distance [3] between each Pi and a certain Sj.  

Although the case in Fig.3b is simple, in theory 
reassignment of the floating polygons may be more 
complicated. Assume a set of polygons Gj should be 

assigned to Sj, in which polygons may come from different 
clusters, i.e., Gj is not originally a valid cluster. In other 
words, the set Gj may be separated into sub-clusters Ds, 
s=1…h, by path of the specified curve. And, the set Gj may 
not be totally assigned to Sj although each polygon in Gj 
can singly be grouped with Sj. Reasoned as above, only 
one of the sub-clusters Ds of Gj can be assigned to Sj. In 
this case, the proposed algorithm can be recursively called 
to cluster polygons in Gj into Ds, s=1…h, as less number h 
as possible. Where, Procedure IV is proposed to achieve 
the recursion of the recursive algorithm (Procedure I-IV).  
 
PROCEDURE IV: 
Initialization 

Let F={all of floating polygons};  
Define Gj be the set of floating polygons that should be 
grouped into Sj, j=1 to k;  

While there exists any floating polygon within F do 
/* To produce Gj, j=1 to k. */  
Let Gj be empty, j=1 to k;  
For each floating polygon Pi in F do  

Group Pi into a proper Gj via certain of criteria if Pi⊂ Cj, 
i.e., Gj ←Pi∪ Gj;  

Endfor  
/* To assign floating polygons in Gj into Sj, j=1 to k. */  
For each non-empty Gj do  

Call the recursive algorithm (Procedure I-IV) with 
H=Gj as the input, and then output sub-clusters Ds 
of Gj, s= 1 to h;  
Select a certain Ds via certain of criteria to be 
assigned to Sj, i.e., Sj ←Ds∪ Sj;  
Remove all Pi∈ Ds from F;  
Set Pi ⊄ Cj if Pi ⊄ Ds, for each floating Pi;  

Endfor  
Endwhile  
 
3.4 CONVERGENCE OF THE RECURSIVE ALGORITHM  

In this subsection, we prove that the recursive algorithm can 
always be terminated in finite time. To begin with, Procedure 
I-II can be completed by twice scanning the set        
{Pi, i=1…n}. Then, Procedure III can be finished in (k−2) 
times for the worst case because the procedure would be 
terminated at least while k<3. In other words, the 
convergence of the recursive algorithm is only determined 
on Procedure IV. We only need to prove that the depth of 
recursively calling the algorithm is finite and the   
floating obstacles would inevitably be grouped into one  
of clusters.  

Firstly, Procedure IV can be finished while k=1 
(cluster) because all obstacles are seeds in this case. 
Namely, the floating obstacles may exist only when k≥2.  

3798



 
(a)                      (b) 

Figure 4, Clustering results: (a) 17 clusters via using the 
algorithm in [1] and (b) 15 clusters via using the proposed 
recursive algorithm for a randomly generated 100 convex 
polygons around a specified curve.  
 
 
Assume k=2 clusters (i.e. two seeds must exist at least) and 
then the number of floating obstacles is the maximum, i.e., 
n−2. Reasoned as above, the maximum number of 
obstacles inputted to the recursively called algorithm is 
n−2. Therefore, the depth of recursively calling the 
algorithm is  n/2  times in worst case. Secondly, assume 
Pa∈ Cj and Pb∈ Gj, and then any floating Pa can at least be 
grouped into Sj since Pb∈ Gj implies Pb⊂ Cj and Pb⊂ Pa.  
 
3.5 APPLIED TO DYNAMIC ENVIRONMENT 

Our algorithm can easily be applied to dynamic 
environment in which obstacles may be inserted, deleted, 
or moved by virtue of these designed procedures and the 
definitions of seed and floating obstacles in clusters. If a 
set of new obstacles is inserted among the existing clusters, 
Procedure I would be applied to group them with clusters 
rapidly. Then, Procedure II and IV could be applied to 
determine whether some of them are seeds and reassign 
them, respectively.  

On the other hand, a cluster may become trivial and 
should be deleted (that Procedure III would be used) while 
all seeds within it have been deleted or removed. 
Otherwise, a cluster remains a cluster with changing its 
artificial shape. Furthermore, obstacles may move within 
workspace, which is equivalent to delete then insert them.  
 
3.6 COMPLEXITY OF THE ALGORITHM 

To check if convex polygonal obstacles could be 
grouped with clusters, computation of the convex hulls 
needs O(m) times [2] in worst case. Here, computing 
intersection between the convex hull and the specified 
curve is assumed in constant time [1]. In Procedure I, 
grouping each polygon at most spends O(km) times of 
computing convex hulls. Therefore, O(nkm) computations 
are totally required. Similarly, O(nkm) times of detecting 

seeds in clusters should be spent in Procedure II. To 
proceed, in Procedure III the relationship between certain 
polygons and clusters should be updated in O(nkm) times 
after deleting a trivial cluster. Due to the facts that trivial 
clusters are indeed rare and k is almost constant, the 
complexity is O(nkm) in practice. Finally, reassignment of 
floating obstacles should also spend O(nkm) times. We 
conclude that the complexity of the recursive algorithm is 
O(nkm). In Section 4, simulation results verify the 
approximately linear time complexity of the recursive 
algorithm.  
 

4. SIMULATION  
In order to demonstrate the efficiency of the proposed 

algorithm, Fig.4a and Fig.4b show the simulation results of 
the algorithm in [1] with 17 clusters and of our algorithm 
with 15 clusters, respectively, for a randomly generated 
robot's scene with 100 convex polygonal obstacles around 
a prescribed curve. Note that clustering does not exclude 
the situation of overlapping among artificial obstacles. 
Such overlaps in fact are insignificant because the 
specified curve is still free of those artificial obstacles. The 
geometric criterion of minimum Euclidean distance 
between floating polygons and embryo clusters is used 
while reassignment of polygons (Procedure IV).  

In addition, experiments are performed on the similar 
scenes randomly generated with various numbers n and m 
around the same curve in order to compare computational 
times. Fig.5 and Fig.6 show comparisons of computational 
times by fixing m/n=5(k=5~19), m=500(k=13~17), 
respectively. From Fig.5 and Fig.6, computational times 
using the algorithm in [1] grow exponentially, i.e., O(n2m). 
On the contrary, complexity of the recursive algorithm is 
approximately linear O(nkm), as the example of fixing 
m=500 in Fig.6 shows. Normally, increasing the number of 
obstacles n might slightly increase the number of clusters k 
because additional obstacles may be randomly placed on 
where they can’t be grouped into any of clusters and then 
necessarily create new clusters. The slightly increased 
number k results in a little rise in computational time of the 
recursive algorithm, for example, a little rise of the 
computational time occurs between 140 and 150 of n in 
Fig.5 or Fig.6 due to k is increased by one. In general, the 
number of clusters k affects the computational complexity 
very limitedly because its variation is very small.  

On the other hand, because the load of computing 
convex hulls in Procedure IV is heavy, computational time 
of the recursive algorithm shall be larger than that of [1] 
when m/n > 7 as Fig.6. In such case, we suggest passing 
the use of Procedure IV in clustering, and then the 
computational time should be considerably saved. 

3799



0

160

320

480

10 30 50 70 90 110 130 150 170 190

obstacle's number n  when fixing m/n =5 and k=5~19

ti
m

e 
(s

ec
)

Recursive Algorithm

Reference [1]

 
Figure 5, Comparison of computational time for varying n 
from 10 to 200 and fixing m/n=5 and k=5~19.  
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Figure 6, Comparison of computational time for varying n 
from 40 to 160 and fixing m=500 and k=13~17.  
 

n Average k n Average k n Average k 

40 14.3 ⁄ 13.7 80 15.3 ⁄ 14.0 120 16.0 ⁄ 15.3 
50 13.7 ⁄ 12.7 90 15.3 ⁄ 15.3 130 17.3 ⁄ 15.7 
60 13.7 ⁄ 13.0 100 17.0 ⁄ 15.7 140 16.0 ⁄ 16.0 
70 14.3 ⁄ 14.3 110 16.3 ⁄ 16.3 150 17.7 ⁄ 16.7 

Table, the average k ([1] / the recursive algorithm) of three 
simulations with respect to n varied from 10 to 200.  
 

Finally, the resulted numbers of clusters averaged 
from three simulations are compared in Table by the form 
([1] / the recursive algorithm). The number of clusters by 
our algorithm is obviously less than that by [1], because 
trivial clusters can be effectively deleted in clustering by 
the use of Procedure III. Comparing the two algorithms, 
the proposed algorithm comes up with fewer clusters much 
more efficiently when the total numbers of obstacles and 
vertices are large. 
 

5. CONCLUSIONS AND DISCUSSIONS 
The recursive algorithm for efficiently clustering 

obstacles in the robot's scene into fewer artificial obstacles 
(clusters) has been proposed for reducing the complexity 
of robotic collision detection. By identifying seeds of 
clusters, the algorithm can further reduce the number of 
clusters k by deleting trivial clusters and incorporate with 
certain of criteria for reassigning non-seeds, for example, 

the smaller size of clusters or the larger free space for 
collision avoidance. Compared to the complexity O(n2m) 
of algorithm in [1], complexity of the recursive algorithm 
is approximately linear, i.e., O(nkm). Note that k is greatly 
less than the number of obstacles n and almost constant 
while the specified Cartesian curve (path) is fixed.  

Although the use of the recursive algorithm is 
restricted to 2-dimensional scene, Procedure I for 
estimating the number of clusters can be still applied to 
3-dimensional scene. In order to extend the algorithm to 
3-dimensional scene, our future work is to redesign 
Procedure III and IV.  
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