
A Recursive Algorithm of Obstacles Clustering for Reducing

Complexity of Collision Detection in 2D Environment

Jin–Liang Chen, Jing–Sin Liu and Wan-Chi Lee

Institute of Information Science 20
Academia Sinica

Nankang, Taipei 115, Taiwan, R.O.C.
Email: liu@iis.sinica.edu.tw

ABSTRACT
In applications of industrial robots, the robot manipulator
must traverse a pre-specified Cartesian curve (path) with
its hand tip while links of the robot safely move among
obstacles. In order to reduce the costs of collision
detection, the number of collision checks can be reduced
by enclosing a few obstacles (a cluster) with a larger
(artificial) bounding volume, e.g. by their convex hull,
without cutting the specified curve. In this paper, an
efficient and convergent recursive algorithm for refining
an initial randomly generated set of clusters is proposed to
tackle the problem of clustering convex polygonal
obstacles in 2D robot's scene. Simulation results show that
the proposed algorithm acquires less number of clusters
and computationally more efficient. In addition, the
algorithm can be easily applied to dynamic environment
based on the idea of seeds in clusters.

1. INTRODUCTION
Collision detection and avoidance for mobile robots

or articulated robots along a prescribed trajectory is a basic
step toward motion planning. The problem has been
studied in many literatures [4-9] during the last two
decades. In applications of industrial robots, the (mobile)
robot manipulator must traverse a pre-specified Cartesian
curve with its hand tip while links of the robot safely move
among obstacles. As such, the complexity increases with
the dimension of robot's configuration space and the
number of obstacles in robot's scene (or workspace) [10].
Furthermore, the problem is more complicated if the
workspace is dynamic, i.e., obstacles may be intersected,
deleted, or moved. In order to reduce the costs of collision
detection, attempts are 1) to simplify the shapes of objects
to facilitate collision check of complex geometry, such as
polyhedrons, spheres, ellipsoids or planar convex polygons;
and 2) to reduce the number of collision checks by
enclosing a few obstacles with a larger (artificial)
bounding volume, e.g. by their convex hull [1].

Our work focuses on how to systematically cluster
the real obstacles into fewer but larger artificial obstacles,
which cannot cross (cut) the pre-specified curve, in a 2D
environment. In other words, the less number of artificial
obstacles shall result in the more efficient computation of
collision detection and not affect the robot moving in its
workspace. In [1], a heuristic algorithm having complexity
O(n2m) was proposed, where n is the number of convex
polygonal obstacles and m is the total number of vertices.
The algorithm first determines an input sequence of
obstacles to form clusters. Such sequence is intuitive,
namely, to combine the closest pair of obstacles in turn if
such combination doesn't cut the specified curve. As such,

()n
2 pairs of minimum Euclidean distances [3] between all

obstacles are necessarily computed firstly. Then, these
lengths of distances are necessarily sorted in decreasing
sequence for clustering.

Although the criterion of minimum distance is first
imposed in their algorithm, significance of this criterion
was not explicitly explained in [1]. It should be noted that
the geometric criterion in fact seems insignificant because
the major concern is only that the specified curve cannot
be cut. Therefore, we propose three viewpoints for
tackling the problem, namely, 1) the number of clusters k
should be as less as possible, 2) k is determined on the
specified curve and independent of any criterion, and 3)
assigning obstacles into a set of clusters that number has
been estimated may depend on certain of criteria, such as
minimum distance if similarity of obstacles' location in
workspace is significant for each cluster.

In this paper, a more efficient and convergent
recursive algorithm is proposed to tackle the problem of
clustering convex polygonal obstacles in 2D robot's scene.
The algorithm has approximately linear complexity of
O(nkm). Noted that the number of clusters k in general is
greatly less than the number of obstacles n. And, in fact k
is determined on the specified curve not on the density of
obstacles (i.e., n). Namely, k is almost constant

0-7803-6475-9/01/$10.00© 2001 IEEE

Proceedings of the 2001 IEEE
International Conference on Robotics & Automation

Seoul, Korea • May 21-26, 2001

3795

(a) (b)
Figure 1, (a) A robot's scene is with eleven convex polygonal
obstacles cluttered around a specified curve (trajectory of robot).
(b) The clustering result via using the algorithm in [1], in which
five clusters are obtained.

while the curve is fixed. The algorithm proceeds as
follows. Firstly, the number of clusters k can be estimated
after scanning all obstacles twice. Two procedures are
proposed to identify the seeds of obstacles in clusters that
determine existence of these clusters. Where, a cluster
could be deleted if there are no seed within it. On the
contrary, non-seeds in a cluster indicate that the obstacles
can also be grouped into the other clusters, which are
called floating obstacles. Secondly, procedures are
developed to reassign the floating obstacles into clusters
based on certain of criteria, such as minimum Euclidean
distance. Finally, simulation results show that clustering of
obstacles is very efficient in computational time and less
number of clusters is obtained by using the proposed
recursive algorithm.

2. DEFINITIONS OF THE PROBLEM
Suppose a 2-D robot's scene in which a Cartesian path

(curve) has been specified for robot end-effector to follow
and many obstacles modeled by convex polygons cluttered
without crossing this curve. For instance, Fig.1a shows
eleven convex polygonal obstacles cluttered around a
specified curve. The goal of the proposed algorithm is to
simplify the scene by clustering the set of convex polygons
into fewer but larger artificial convex polygonal obstacles
that cannot cross (or cut) the specified curve. For example,
Fig.1b shows the clustering result via using the algorithm
in [1], in which the eleven obstacles are reduced into five
artificial obstacles (i.e. clusters). However, it is expected to
obtain less number of clusters and do such clustering more
efficiently.

Assume a set of convex polygonal obstacles H={Pi,
i=1 to n} is to be grouped into clusters {Cj, j=1 to k}. A
cluster Cj={Pa| Pa∈ Cj} is represented by an artificial
convex hull [2] enclosing the set {Pa}. Define the notation

Pb⊂ Cj to mean that Pb can be grouped with Cj. Namely,
Pb⊂ Cj implies that the convex hull of Pb and Cj cannot cut
the specified curve, otherwise it is denoted by Pb⊄ Cj. Note
that Pa∈ Cj implies Pa⊂ Cj, on the contrary Pb⊂ Cj doesn't
imply Pb∈ Cj. To proceed, two definitions are used to
describe the relationship between two clusters Cx and Cy
(or two polygons Pa and Pb):
1) Cx⊂ Cy if and only if Pa⊂ Pb, ∀ Pa∈ Cx and ∀ Pb∈ Cy,

otherwise, Cx⊄ Cy ,
2) Cx⊂ Cy (Cx⊄ Cy) if and only if Cy⊂ Cx (Cy⊄ Cx).

3.THE RECURSIVE ALGORITHM
The proposed algorithm consists of four procedures

(Procedure I-IV) to group n polygons into k clusters.

3.1 ESTIMATION OF THE NUMBER OF CLUSTERS

In Procedure I, clusters are constructed, one by one,
around the specified curve until all polygons have been
scanned once. Initially, the number of clusters is set to be
null, and then polygons are inputted by a random sequence.
Let the first input polygon be within the first cluster. Then,
the next cluster can be created when the current input
polygon cannot be grouped into any of clusters created
previously. Such procedure is written in the following
pseudocode.

INITIALIZATION:
A Cartesian piecewise linear curve is specified;
Let H={Pi, i=1 to n} be the set of convex polygons;
Let Cj denote the cluster j;
Let k denote the number of clusters, and initially, k ←0;

PROCEDURE I:
While H is not empty do

Select and remove a Pi at random from the set H;
Let flag ←0;
For j ← 1 to k do

Compute a convex hull CH to enclose Pi and Cj;
If CH doesn't cut the specified curve then

Cj ← CH;
Label Pi∈ Cj;
flag ←1;
Break this for-loop;

Endif
Endfor
/* To create a new cluster Ck+1 when Pi⊄ Cj, j=1 to k */
If flag = 0 then

k ← k+1;
Ck ← Pi ;

Endif
Endwhile

3796

(a) (b)

(c) (d)

(e) (f)

Figure 2, At most six sorts of possible clustering results
can be obtained for the scene in Fig.1a, which can be
composed of (a) to (e). For example, (f) shows the result
composed of Fig.2b and Fig.2d. Seeds are shaded.

Procedure I can efficiently be used to obtain a set of
initial clusters by that the specified curve cannot be cut. In
fact, the output clusters by using the procedure would not be
unique while different input sequences of polygons were used.
For instance, at most six sorts of possible clusters can be obtained
for the scene shown in Fig.1a. First, we separate this scene into
two sets of polygons, one above and one below the specified
curve. Fig.3a to Fig.3c and Fig.3d to Fig.3e show all possible
clusters for the two sets of polygons, respectively. Although the
output clusters might be different, such sets of clusters are
usable at all because the specified curve cannot be cut still.
Subsequently, in order to incorporate with certain of
criteria and further reduce the number of clusters,
Procedure II-IV in the following are proposed. Before that,
two properties are shown for the clusters obtained via
using Procedure I.

PROPERTY 1: Pb⊄ Cx, where Pb∈ Cy and x<y.
Proof: By Procedure I, Cy is created due to Pb⊄ Cx, ∀
Pb∈ Cy and ∀ x<y.

PROPERTY 2: Cx⊄ Cy, ∀ x≠y.
Proof: By Definition 2 and Property 1, Pb⊄ Cx implies
Cy⊄ Cx. Thus, we have Cx⊄ Cy.

3.2 DELETION OF TRIVIAL CLUSTERS

Based on Property 1, Procedure II is proposed in order
to examine whether Pa⊂ Cy or not, where Pa∈ Cx and y>x.
After Procedure II is used, we can know which polygons
have the alternative choice to be reassigned into other
clusters. Such polygons are called floating. On the contrary,
a polygon Pi∈ Cj is called a seed of Cj if Pi cannot be
reassigned, i.e., Pi⊄ Cx, ∀ x≠j. For instance, the shaded
polygonal obstacles in Fig.2 are seeds in clusters.

PROCEDURE II:
For i ←1 to n do

Let y indicate the index Pi∈ Cy;
For j ← y+1 to k do

Compute a convex hull CH to enclose Pi and Cj;
If CH doesn't intersect the specified curve then

Record Pi⊂ Cj;
Endif

Endfor
Endfor

Normally, a cluster Cj may include some seeds that
can determine the existence of Cj. That is, at least the seeds
would stay in Cj even if all floating Pa∈ Cj were removed
from Cj and reassigned into the other clusters. However, a
cluster may include no seed, which is called a trivial
cluster. For instance, Fig.3a shows that a trivial cluster
consists of (four) floating polygons. Any trivial cluster
should be deleted because the number of clusters should be
as less as possible. Assume a cluster Ct is trivial and
{Pa,Pb}∈ Ct. Therefore, there must exist a set of other
clusters {Cx,Cy} that Pa⊂ Cx and Pb⊂ Cy, where Pa⊄ Cy and
Pb⊄ Cx, due to the fact of Ct⊄ Cx or Cy and Definition 1. In
other words, the existence of a trivial cluster Ct is possible
while |Ct|≥2 and k≥3 (i.e. at least Ct, Cx and Cy).

Deleting a trivial cluster Ct in theory involves two
effects: 1) the cluster Ct disappears and 2) all Pa∈ Ct must
be reassigned into the other clusters. Both of the effects
may result in reduction of reassignment choice of the
floating polygons Pi∉ Ct. Firstly, after a trivial cluster Ct is
deleted, Pi⊂ Cx should be reexamined, where some Pa∈ Ct
are removed into Cx. Secondly, the seeds within Cj, for j=

3797

(a) (b)

Figure 3, (a) shows five clusters consisting of five seeds
and a trivial cluster. (b) shows four embryo seeds Sj, j=1 to
4, and four floating obstacles after the trivial cluster is
deleted. Darker shaded polygons are new seeds.

1 to k, should be updated because some floating polygons
Pi may become seeds. Then, the embryo clusters Sj={all
the seeds within Cj}, for j=1 to k, can be enclosed by their
convex hulls before reassignment of floating polygons. For
instance, after the trivial cluster in Fig.3a is deleted, Fig.3b
shows four embryo clusters and four floating obstacles. In
addition, any subset {Pa}∈ Ct can be totally assigned into
another cluster Cx if ∀ Pa⊂ Cx. That is because the subset
{Pa} is originally a valid cluster by Definition 1. In the
following, Procedure III is used to delete trivial clusters.

PROCEDURE III:
For t ←1 to k do

If there is no seed-polygon within Ct then
Remove each Pa∈ Ct from Ct and reassign Pa into a
cluster Cx, where Pa⊂ Cx, via certain of criteria;
Update whether Pi⊂ Cx still or not, for i=1 to n;
Update seeds within Cj, j=1 to k;

Endif
Endfor
Delete all empty clusters and update k;
For j ←1 to k do

Compute a convex hull Sj to enclose all the seeds in Cj;
Endfor

3.3 REASSIGNMENT OF FLOATING OBSTACLES

Finally, each floating Pi should be assigned to a
certain Sj, which is achieved based on certain of criteria.
For example, Fig.2f shows the final clustering result after
the four floating polygons in Fig.3b are reassigned via
using the geometric criterion of minimum Euclidean
distance [3] between each Pi and a certain Sj.

Although the case in Fig.3b is simple, in theory
reassignment of the floating polygons may be more
complicated. Assume a set of polygons Gj should be

assigned to Sj, in which polygons may come from different
clusters, i.e., Gj is not originally a valid cluster. In other
words, the set Gj may be separated into sub-clusters Ds,
s=1…h, by path of the specified curve. And, the set Gj may
not be totally assigned to Sj although each polygon in Gj
can singly be grouped with Sj. Reasoned as above, only
one of the sub-clusters Ds of Gj can be assigned to Sj. In
this case, the proposed algorithm can be recursively called
to cluster polygons in Gj into Ds, s=1…h, as less number h
as possible. Where, Procedure IV is proposed to achieve
the recursion of the recursive algorithm (Procedure I-IV).

PROCEDURE IV:
Initialization

Let F={all of floating polygons};
Define Gj be the set of floating polygons that should be
grouped into Sj, j=1 to k;

While there exists any floating polygon within F do
/* To produce Gj, j=1 to k. */
Let Gj be empty, j=1 to k;
For each floating polygon Pi in F do

Group Pi into a proper Gj via certain of criteria if Pi⊂ Cj,
i.e., Gj ←Pi∪ Gj;

Endfor
/* To assign floating polygons in Gj into Sj, j=1 to k. */
For each non-empty Gj do

Call the recursive algorithm (Procedure I-IV) with
H=Gj as the input, and then output sub-clusters Ds
of Gj, s= 1 to h;
Select a certain Ds via certain of criteria to be
assigned to Sj, i.e., Sj ←Ds∪ Sj;
Remove all Pi∈ Ds from F;
Set Pi ⊄ Cj if Pi ⊄ Ds, for each floating Pi;

Endfor
Endwhile

3.4 CONVERGENCE OF THE RECURSIVE ALGORITHM

In this subsection, we prove that the recursive algorithm can
always be terminated in finite time. To begin with, Procedure
I-II can be completed by twice scanning the set
{Pi, i=1…n}. Then, Procedure III can be finished in (k−2)
times for the worst case because the procedure would be
terminated at least while k<3. In other words, the
convergence of the recursive algorithm is only determined
on Procedure IV. We only need to prove that the depth of
recursively calling the algorithm is finite and the
floating obstacles would inevitably be grouped into one
of clusters.

Firstly, Procedure IV can be finished while k=1
(cluster) because all obstacles are seeds in this case.
Namely, the floating obstacles may exist only when k≥2.

3798

(a) (b)

Figure 4, Clustering results: (a) 17 clusters via using the
algorithm in [1] and (b) 15 clusters via using the proposed
recursive algorithm for a randomly generated 100 convex
polygons around a specified curve.

Assume k=2 clusters (i.e. two seeds must exist at least) and
then the number of floating obstacles is the maximum, i.e.,
n−2. Reasoned as above, the maximum number of
obstacles inputted to the recursively called algorithm is
n−2. Therefore, the depth of recursively calling the
algorithm is n/2 times in worst case. Secondly, assume
Pa∈ Cj and Pb∈ Gj, and then any floating Pa can at least be
grouped into Sj since Pb∈ Gj implies Pb⊂ Cj and Pb⊂ Pa.

3.5 APPLIED TO DYNAMIC ENVIRONMENT

Our algorithm can easily be applied to dynamic
environment in which obstacles may be inserted, deleted,
or moved by virtue of these designed procedures and the
definitions of seed and floating obstacles in clusters. If a
set of new obstacles is inserted among the existing clusters,
Procedure I would be applied to group them with clusters
rapidly. Then, Procedure II and IV could be applied to
determine whether some of them are seeds and reassign
them, respectively.

On the other hand, a cluster may become trivial and
should be deleted (that Procedure III would be used) while
all seeds within it have been deleted or removed.
Otherwise, a cluster remains a cluster with changing its
artificial shape. Furthermore, obstacles may move within
workspace, which is equivalent to delete then insert them.

3.6 COMPLEXITY OF THE ALGORITHM

To check if convex polygonal obstacles could be
grouped with clusters, computation of the convex hulls
needs O(m) times [2] in worst case. Here, computing
intersection between the convex hull and the specified
curve is assumed in constant time [1]. In Procedure I,
grouping each polygon at most spends O(km) times of
computing convex hulls. Therefore, O(nkm) computations
are totally required. Similarly, O(nkm) times of detecting

seeds in clusters should be spent in Procedure II. To
proceed, in Procedure III the relationship between certain
polygons and clusters should be updated in O(nkm) times
after deleting a trivial cluster. Due to the facts that trivial
clusters are indeed rare and k is almost constant, the
complexity is O(nkm) in practice. Finally, reassignment of
floating obstacles should also spend O(nkm) times. We
conclude that the complexity of the recursive algorithm is
O(nkm). In Section 4, simulation results verify the
approximately linear time complexity of the recursive
algorithm.

4. SIMULATION
In order to demonstrate the efficiency of the proposed

algorithm, Fig.4a and Fig.4b show the simulation results of
the algorithm in [1] with 17 clusters and of our algorithm
with 15 clusters, respectively, for a randomly generated
robot's scene with 100 convex polygonal obstacles around
a prescribed curve. Note that clustering does not exclude
the situation of overlapping among artificial obstacles.
Such overlaps in fact are insignificant because the
specified curve is still free of those artificial obstacles. The
geometric criterion of minimum Euclidean distance
between floating polygons and embryo clusters is used
while reassignment of polygons (Procedure IV).

In addition, experiments are performed on the similar
scenes randomly generated with various numbers n and m
around the same curve in order to compare computational
times. Fig.5 and Fig.6 show comparisons of computational
times by fixing m/n=5(k=5~19), m=500(k=13~17),
respectively. From Fig.5 and Fig.6, computational times
using the algorithm in [1] grow exponentially, i.e., O(n2m).
On the contrary, complexity of the recursive algorithm is
approximately linear O(nkm), as the example of fixing
m=500 in Fig.6 shows. Normally, increasing the number of
obstacles n might slightly increase the number of clusters k
because additional obstacles may be randomly placed on
where they can’t be grouped into any of clusters and then
necessarily create new clusters. The slightly increased
number k results in a little rise in computational time of the
recursive algorithm, for example, a little rise of the
computational time occurs between 140 and 150 of n in
Fig.5 or Fig.6 due to k is increased by one. In general, the
number of clusters k affects the computational complexity
very limitedly because its variation is very small.

On the other hand, because the load of computing
convex hulls in Procedure IV is heavy, computational time
of the recursive algorithm shall be larger than that of [1]
when m/n > 7 as Fig.6. In such case, we suggest passing
the use of Procedure IV in clustering, and then the
computational time should be considerably saved.

3799

0

160

320

480

10 30 50 70 90 110 130 150 170 190

obstacle's number n when fixing m/n =5 and k=5~19

ti
m

e
(s

ec
)

Recursive Algorithm

Reference [1]

Figure 5, Comparison of computational time for varying n
from 10 to 200 and fixing m/n=5 and k=5~19.

0

160

320

480

40 50 60 70 80 90 100 110 120 130 140 150 160

obstacle's number n when fixing m =500 and k = 13~17

ti
m

e
(s

ec
)

Recursive Algorithm

Reference [1]

Figure 6, Comparison of computational time for varying n
from 40 to 160 and fixing m=500 and k=13~17.

n Average k n Average k n Average k

40 14.3 ⁄ 13.7 80 15.3 ⁄ 14.0 120 16.0 ⁄ 15.3
50 13.7 ⁄ 12.7 90 15.3 ⁄ 15.3 130 17.3 ⁄ 15.7
60 13.7 ⁄ 13.0 100 17.0 ⁄ 15.7 140 16.0 ⁄ 16.0
70 14.3 ⁄ 14.3 110 16.3 ⁄ 16.3 150 17.7 ⁄ 16.7

Table, the average k ([1] / the recursive algorithm) of three
simulations with respect to n varied from 10 to 200.

Finally, the resulted numbers of clusters averaged
from three simulations are compared in Table by the form
([1] / the recursive algorithm). The number of clusters by
our algorithm is obviously less than that by [1], because
trivial clusters can be effectively deleted in clustering by
the use of Procedure III. Comparing the two algorithms,
the proposed algorithm comes up with fewer clusters much
more efficiently when the total numbers of obstacles and
vertices are large.

5. CONCLUSIONS AND DISCUSSIONS
The recursive algorithm for efficiently clustering

obstacles in the robot's scene into fewer artificial obstacles
(clusters) has been proposed for reducing the complexity
of robotic collision detection. By identifying seeds of
clusters, the algorithm can further reduce the number of
clusters k by deleting trivial clusters and incorporate with
certain of criteria for reassigning non-seeds, for example,

the smaller size of clusters or the larger free space for
collision avoidance. Compared to the complexity O(n2m)
of algorithm in [1], complexity of the recursive algorithm
is approximately linear, i.e., O(nkm). Note that k is greatly
less than the number of obstacles n and almost constant
while the specified Cartesian curve (path) is fixed.

Although the use of the recursive algorithm is
restricted to 2-dimensional scene, Procedure I for
estimating the number of clusters can be still applied to
3-dimensional scene. In order to extend the algorithm to
3-dimensional scene, our future work is to redesign
Procedure III and IV.

REFERENCES
[1] A. C. Nearchou, N. A. Aspragathos, and D. P.

Sofotassios, “Reducing the complexity of robot's
scene for faster collision detection”, Journal of
Intelligent and Robotic Systems, vol.26, no.1,
pp.79-89, 1999.

[2] J. V. Leeuwen, “The handbook of theoretical
computer science”, Elsevier Science Publishers,
1990.

[3] F. Chin, C. A. Wang, “Optimal algorithm for the
intersection and the minimum distance problems
between planar polygons”, IEEE Transaction On
Computers, vol.32, no.12, pp.1203-1207, 1983.

[4] J. C. Latombe, “Robot motion planning”, Kluwer
Academic Publishers, 1991.

[5] T. Lozano-Perez and M. A. Wesley, “An algorithm
for planning collision-free paths among polyhedral
obstacles”, Comm. ACM, vol.22, no.10, pp. 560-570,
1979.

[6] T. Lozano-Perez, “Spatial planning: A configuration
space approach”, IEEE Trans. On Computers, vol.32,
no.2, pp.108-120, 1983.

[7] O. Khatib, “Real-time obstacle avoidance for
manipulators and mobile robots”, International J.
Robot. Res., vol.5, no.1, pp. 90-98, 1986.

[8] A. C. Nearchou and N. A. Aspragathos,
“Collision-detection continuous path control of
manipulators using genetic algorithm”, J. Systems
Engrg., vol.6, pp.20-32, 1996.

[9] K. P. Valavanis, T. Hebert, R. Kolluru, and N.
Tsourveloudis, “Mobile robot navigation in 2-D
dynamic environments using electrostatic potential
field”, IEEE Trans. On Syst. Man and Cyber., vol.30,
no.2, pp.187-196, 2000.

[10] J. T. Schwartz and C. K. Yap, “Advances in robotics:
Algorithmic and geometric aspects of robotics”,
Lawrence Erlbaum Associates, Inc., vol.1, pp.95-143,
1987.

3800

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

