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Abstract This paper describes our work in developing a
3D robotic mapping composed by an
experimental mobile platform equipped with a rotating
laser range finder (LRF). For the purpose of obtaining

system

more complete 3D scans of the environment, we design,
construct and calibrate a crank-rocker four-bar linkage
so that a LRF mounted on it could undergo repetitive
rotational motion between two extreme positions,
allowing both horizontal and vertical scans. To reduce
the complexity of map representation suitable for
optimization later, the local map from the LRF is a grid
map represented by a distance-transformed (DT)
matrix. We compare the DT-transformed maps and find
the transformation matrix of a robot pose by a linear
simplex-based map optimization method restricted to a
local region allows efficient alignment of maps in scan
matching. Several indoor 2D and 3D mapping
experiments are presented to
consistency, efficiency and accuracy of the 3D mapping
system for a mobile robot that is stationary or in
motion.

demonstrate the
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1. Introduction

Building an environment map is a popular topic in
mobile robotic research and applications. The method of
how to get information on the environment and robot
localization is called SLAM (Simultaneous Localization
and Mapping) [1-10].
environment and sensor readings, SLAM is one of the most
fundamental methods for enhancing the robustness and
efficiency of mobile robot navigation [5, 8], path planning,
pursuing and patrolling.

With uncertainties in the

Since the range measurements are inaccurate and noisy,
the mapping process is error prone. There are two major
methods for constructing a map precisely and efficiently.
One is a probabilistic method [28] and the other is scan
matching. In the probabilistic method, EKF (Extended
Kalman Filter) [8, 9] and RBPF (Rao-Blackwell particle
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filter) [10, 11] have been used in SLAM for a long time.
The features [12] of the map are defined by probability
and the feature with the highest probability is the true
map’s information. Because of the advantage of a
continuously correct characteristic, the errors in the
probabilistic method can be decreased from the correct
features. On the other hand, due to the heavy matrix
computation time, the method only uses the few features.
Scan matching registers (and extracts the similar parts of)
two laser scans obtained at pose 1 and pose 2, in order to
determine their relative position and orientation, to obtain
the pose-to-pose rigid body transformation matrix T (x, y,
0) that will project the points at pose 2 so that they align
with pose 1. The method of scan matching is based on
comparing all the and finding the
transformation matrix that has the highest overlapping

information

area. This method can be categorized into feature to
feature, point to feature and point to point. In the feature
to feature approaches, the properties of laser scanned
data, such as line segments and corners, are extracted and
then matched directly [15, 16]. This kind of approach
requires the features’ extraction from laser scanned data.
In feature approaches the features, such as lines, are
extracted from reference scanned data and form a
predefined map. Then the current scanned data is
matched to this predefined map. The iterative closest
point (ICP) algorithm is the most popular method for
aligning two different point sets in 2D scan matching [14]
or 3D mapping [13], [31]. In the ICP method, the total
squared distance between the points in the current scan
and the corresponding points in the reference scan is
iteratively minimized for the registration of point clouds.

X

Figure 1. An LRF is rotated to obtain the 3D mapping data at
different elevation of its covered area.

Y
l
o
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Figure 2. Different motions on the actuated LRF yield different
sensing information [18].
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For a robotic mapping task, the preferred sensor is a laser
range finder (LRF). However, a 2D scanner mounted on
the robot takes measurements in the horizontal plane
only and thus only a 2D map can be built. For
autonomous and safe navigation for long periods of time,
it is necessary to provide a robot with 3D environment
information, such as objects and ceiling, rather than a 2D
map. For approaches to 3D mapping and 3D shape
sensing, [28] used two LRFs, one horizontal and one
vertical, to generate accurate 3D maps by registering the
horizontal scans. One cost-effective approach to extend
the 2D map to the 3D map that we adopt in this paper is
to rotate a LRF to acquire 3D data on the environment by
designing an actuated rotating mechanism [18-23, 29-31],
while the horizontal scans are used to estimate the robot
pose. Figure 1 shows conceptually how to expand the 2D
map to a 3D map by rotating a LRF with a different
elevation and a cloud of 3D data is obtained by
combining the 2D data with the elevation information. .
The motion of a rotating LRF can be defined by two
methods: continuing [22] or reciprocation [23]. There are
three rotational directions for an actuated LRF using
different rotational mechanism designs for 3D mapping
robots [19-21, 29-31], which yield different scanning
ranges (as depicted in Figure 2) and thus different
functionality in 3D mapping tasks.

This paper presents the development of an actuated LRF-
based robotic 3D indoor mapping system based on
transforming the scanning data of a LRF into a distance
transform (DT) map for a scan matcher. DT maps are then
used to compare the contrasting robot poses defined by a
transformation matrix T(x, y, 6). A linear simplex
optimization method [17] is applied to find a
transformation matrix T* that yields maximum overlap
between two maps.
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(@) (b)
Figure 3. (a) The map before DT. The value of grids that obstacle
occupies is initially set to zero and other positions are set to
infinity. (b) The map after DT. The distance to the closest
obstacle is set as the grid value of every non-obstacle position.

T* defines the robot localization. We design a crank-
rocker four-bar linkage to rotate the LRF mounted on it,
so that the LRF can scan both horizontally and vertically
to continuously acquire 3D mapping data when the
mobile robot is stationary or in motion. A composite
transformation is derived to transform the 2D data of the
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LRF to 3D data in the global map, which is set as the map
in the first scan.

The organization of the paper is as follows. Section 2
presents the 2D mapping system with the specific mobile
platform for experiments. Section 3 presents the details of
our crank-rocker design and its integrated use in 3D
mapping with demonstrated experimental
results showing the usefulness of the mapping system.
Conclusions are made in Section 4.

systems

2. 2D mapping

2.1 Preliminaries
2.1.1 DT (Distance Transform)

The distance transformation (DT) [27] provides each grid
of a grid map with the Euclidean distance to the nearest
obstacle. The DT transforms the information from an LRF
into a matrix. Each element of the matrix stands for the
distance to the nearest obstacle on the map. In this paper,
we use the Euclidean distance transformation as the DT
algorithm in (1)

DT(,y) = min{(x—i)’ +(y—j) :i=Lu, MAj =1, N} (1)

where M and N are the size of DT. Figure 3 illustrates a
map before (a) and after (b) DT. Figure 5 shows the raw
scanned map from an LRF and its intensity map after DT.
The intensity map has the contours of the original map.

2.1.2 Transformation matrix

The 2D transformation matrix between two consecutive
maps is composed of a translation (x,y) and a rotation
specified by an angle & defined as

cosf -—sinf x
T(x,y,0)=|sin@ cos@ y 2)
0 0 1
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Figure 4.(a) The map from LRF . (b) The intensity map after DT.

For a collection of maps at different time steps{P(t+i),
i=0,..., n}, the transformation matrix from time t to t+n can
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be found by simply multiplying the transformation
between two consecutive maps as:

Ttt+n _ Ttt+1 _Tt+2 it .= Tft+n—1 .TH” )

t+1 t+n— t+n-1

where each T is of the form (2).

There are many sources of error when two maps are
matched with each other. Scan matching is used to find a
T*" value to align the comparative maps with
maximum overlap so that the new map from the LRF
scan highly coincides with the comparative map. The
optimal transformation matrix T;*"" at time n is obtained
as a result of the minimization of a cost function defined
as the sum of the distances to the obstacles of this map:

m
argmin ) DT(T/"" P, @)
'T[t+ﬂ ’:1

where P, =(Px, Py 1) is the point of the obstacles.

Stepl
Using Mater encodar pradict the
pasition of LRF in the global map

Step 2

Choose g optimal method to find
2 transformation matrix
Tixx 8] from global DT

Step 3

- From Tixy 8] transform the
information of LRF to global map

and global DT

Figure 5. The flow chart of 2D mapping system based on scan
matching

2.2 2D mapping systems

In the method of scan matching, it is necessary to predict
the position of the robot as an initial guess and thus
predict the map, which has new information that the
global map doesn’t have. A correct prediction can be used
to speed up the SLAM process and build a more accurate
map. Figure 5 shows our approach to 2D SLAM (cf. [34]),
which is extended to 3D mapping in the next section. It
consists of the different steps during the mapping
processes. First, our implementation uses the information
from motor encoders for the transformation matrix of a
robot pose to predict the LRF data on the global position,
while the LRF acquires the 2D information of the
environment. In step 2, the data from the LRF is
transformed to a DT matrix as a representation of the
local map to be compared with the robot’s localization.
The optimization method is exploited to solve (4) and to
find the optimal transformation matrix that yields
maximum overlap. In step 3, the transformation matrix
obtained in step 2 is used to construct the environment
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map using Global Distance Transform (GDT) definition
(Sec. 2. 4) to combine the global map’s DT and the new
map’s DT.

L i Wo giw@m
1

(b)
Figure 6. (a)Experimental mobile platform- a four-wheeled robot

with two front driving wheels and two supporting wheels (b)
The kinetic formula of vehicle motion between two consecutive

time instants
2.3 Kinetic formula of experimental mobile platform

Figure 6(a) shows our experimental mobile platform: a
four wheeled robot with two motors on the front wheels.
The LRF is mounted on the centre O of the front of the
robot and rotated by a four-bar linkage platform on the
mobile robot to allow both horizontal and vertical scans.
We need to find the relative motion x, y, O between O
and Ow1 of the centre at time instants t and f+1, as
depicted in Figure 6(b), given the inputs of the speed Lo,
Ro, of the left and right driving wheels at time f and the
width of the robot W.

At first the distance travelled by wheels Ls, Ra in one time
step At is given by Le=LoAt, R=RoAt . The x ,y, 0 of
relative motion between O: and Ox1is given in (5) using
the triangular ratio:

180- L,

T (5)

x=Wycosd, y=W;sing, 6=

where W, + W is the turning radius at time ¢.
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Instead of matching two consecutive maps, we set the DT
map of the first scan at t=t to be the global distance
transformation map (GDT) and the reference map for the
scan matcher. In order to register newly scanned maps
with GDT through maximum overlap between the maps,
a prediction of the position and orientation of the robot is
proposed. From the kinetic formula (5), we can get the
predicted robot pose Tm(x, y, 0) using a motor encoder.
Then the predicted position Ppr.of a data point from the
LREF is.

Ppre = (xpVL” ypl’e) (6)
=Ty -P

Denote DTpre as DT of Ppre. Then the size Q of DTyre is the
extreme x, y values of Ppr. and defined in (6) , i.e.,

Q=[[Min(x,,,), Max(x,,,)IX[Min(y,,,), Max(y,,,)]

A prediction of the position (i, j) of the map in GDT is
obtained as:
DT, =GDT(,j),(i,j) € Q (7)
In performing scan matching to find the optimal
transformation matrix described in Sec. 2.1.2, those Ppre
points with DT values higher than a threshold A
{P,e : DT, > A} 8)
that may cause a faulty match are discarded temporarily
to maximize the overlap of the newly scanned map and
the global map. After comparing the maps, these
eliminated points are added back into the global map

with the matched points to complete the prediction of the
global map. In our implementation, we set:

A =R, sin(y)

where R,; =20 m is the maximum range and y =0.25is
the angular resolution of the LRF in a scan.

2.4 Global DT definition for update of GDT map

For each newly created DT map obtained from a new
scan, its new information is combined to the GDT to
update the map. To combine an existing GDT and a new
DT as an updated GDT for each scan, we need to
compare all the elements in the existing GDT and the
newly created DT. There are three different situations
when comparing each element (i,7) e Q (a)GDT(i, j) and
DT(i, j) are close enough. Then updated GDT(i, j) is the
average of GDT(i, j) and DT(i, j) in (9).

N | .. ..
updutedGDT(l,]) = E(GDT(I,]) + DT(z,])), ©)

if |GDT(i, j) — DT(i, j| < Threshold
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(b)GDT(i, j) is higher than DT(i, j). This point does not
add new information of the environment with the
existing GDT map. Then GDT(j, j) is unchanged:

updatedGDT (i, j) = GDT (i, ), if GDT(i,j) > DT(i,j) (10)

(c)GD1T(i, j) is lower than DT(j, j). This point contains new
information on the environment that does not appear in
the existing GDT map. Then increment GDT(i, j) by

updatedGDT (i, j) = DT(i, j) + Threshold, an
if GDT(i, j) < DT(i, )

After applying (11), this point (if it appears in a new DT

map in later scans) will be likely to meet (9) to update

the GDT map.
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Figure 7. 2D mapping result in 7F of IIS building.(a) The 2D
SLAM results (b) The intensity graph in GDT. Red lines are the
path of robot and blue lines show the scanned environment.

2.5 Experimental results of 2D mapping

The simplex method [17] is exploited to solve (4) for the
efficiency of online updates of the 2D map [34]. The LRF
senses the 2D information on the environment in the
horizontal plane from -30° to 210°. Figure 7(a) shows the
2D mapping result from the experiments performed at 7F
of our office building, composed of structural elements
like floors, walls, doorways, etc. The running time of this
experiment was about 5 minutes. Figure 7(b) shows the
intensity graph of 7(a), in which the contour of Figure 7(a)
can be seen. The map s
http://www.youtube.com/watch?v=n_ho-
CZ4N4o&feature=related

shown in

Figure 7(a) is a kind of loop-closing problem, a revisit of a
in the environment. The
coincidence of the start and end positions of the robot
shows that the loop is closed.

previously visited area

The errors in robot poses accumulate in posterior maps.
The errors may occur from two sources. The first is the
inaccuracy of the prediction of kinetic poses due to wheel
motions. The second is the optimization method used to
find the optimal transformation matrix. The setting of

www.intechopen.com

thresholds in related computations is used to avoid the
first cause of errors, thus the major cause of errors may be
the optimization methods. In the following we compare
the errors resulting from different optimization methods.

2.7 Optimization methods

In this section, a comparison of the linear simplex method [27]
with other optimization methods to solve the nonlinear
equation in (4), which may contain local minima, is
presented. The optimization methods that are tested in the
experiments for comparison are PSO [24], SCE [25] and
SIMPSA [26]. Figure 8 and Table 1 show the error in the
distance in the transformation matrix T(x, y, 0) by
comparing it with the global (ground truth) solutions. We
found that all the averages and standard deviations are
below the scale (1cm) in this experiment. Hence, all the
methods yield accurate transformation matrices. On the
other hand, Figure 9 and Table 2 compare the distance
from the robot’s position to the original position. The
errors of the position are higher than the errors of the
transformation matrix. Table 2 shows that Simplex is the
most efficient in terms of computational time, while PSO
spends nearly 100 times the time that Simplex consumes
in the performed 2D mapping experiment. For accuracy
comparison, PSO and SCE produced solutions closer to
the global solutions, while SIMPSA and Simplex show
larger errors.

T
o

tance of T(x.y 9) (em)

Figure 9. The distance from robot’s position to the ground truth
position

3. 3D mapping system

The LRF scan takes only 2D measurements. The LRF
needs a rotational motion to expand the 2D map to a 3D
map. In this section we present a design of a rotational
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mechanism using a four-bar linkage to actuate the LRF
for this purpose. During the 3D SLAM, we use the same
horizontal information for each scan. The horizontal
information can be detected from the first and last scans.
The flow chart for the extension of 2D mapping to 3D
mapping is shown in Figure 10. To transform the 2D data
of a LRF to 3D data in each scan, the transformation is
composed by interpolating Tc and Ti. The first step is to
obtain an accurate linkage transformation T.(0) of the
rotation angle 0 of the LRF. We compute the
transformation matrix Tc in our mapping system (Figure
5 and Figure 10), which transforms the map of the last
scan to the map of the first scan, which is set as the global
map. The details of the 3D mapping system and its
testing are presented in this section.

Dl(sctr;:;ce X(cm) Y(cm) e’
PSO Max 6.4657 2.5634 2.5634 0.5255
G+o | 0.77+0.81 | 0.34+0.35 | 0.61+0.79 | 0.094+0.09
SCE Max | 4.1131 1.9647 1.9647 0.6913
G+ 0 | 0.74+0.67 | 0.35+0.31 | 0.57+0.67 | 0.099+0.09
Max 6.1106 1.5526 1.5526 0.4835
SIMPSA =
txo | 0.83+0.83 | 0.36+0.31 | 0.65+0.85 | 0.10+0.088
Simplex Max | 5.9534 1.805 1.8052 0.7874
G+ o | 0.80+0.82 | 0.3620.31 | 0.63+0.83 | 0.102+0.09

Table 1. Errors of transformation matrix T(x,y,0). Gt and 6 show
the average and standard deviation , respectively, of the error
between the solutions obtained by each optimization method
and global solution.

Distance to Relative Computational
Ground-truth time
position (cm) (Methods/Simplex)
max 6.8941
P! 7164
50 0 2.8142+1.6403 99716
max 7.7390
E .087.
5C 0 3.5518+1.690 8.0873
max 11.6108
IMPSA 4.1
SIMPS [iE=e) 4.1986+3.0994 993
Simol max 9.0126 1
implex
P [io | 3658226818

Table 2. Errors of robot’s position
3.1 Mechanical design of rotational motion mechanism

Different rotational mechanism designs for 3D mapping
robots have been presented with good functionality in
practice [19-21, 29-31], For example,The mechanical
design of a rotational motion of the LRF in [31] is an arm-
type linkage.. Our design of a crank-and-rocker four-bar
linkage to actuate an LRF is presented in this subsection
and its calibration is given in the Appendix. Figure 11(a)
shows a four-bar linkage called a crank-rocker [32]. The
sum of the shortest (s) and longest (1) links of the planar
four-bar linkage must be smaller than the sum of the
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remaining two links (p, q). In this case the shortest link
can rotate 360 degrees, relative to the longest link. As
Figure 11(a) shows, a characteristic of the mechanism is
that one link can rotate a whole circle continuously, while
the rocker can undergo the motion of reciprocation (to
and fro). Figure 11(b) shows a photo of our crank-rocker
design, where the rocker should move slowly when the
load is heavy, then return to moving quickly, as shown in:
http://www.youtube.com/watch?v=RwwaWoePkUA&fea
ture=related

Initial motor

Linkages -
Transformation C;ﬁ:ﬁin
T(8)

1
1
L

TU(f 1) Prons || 1| Tomtod 8eens TL@una) Prons |
1 =

o

Interpolate
Transformation
Tom(%Y: 6)

Figure 10. The flow chart of 3D mapping system
3.1.1 Linkage transformation

In the photo of our construction of the crank-rocker
mechanism shown in Figure 11(b), the linkages (s, g, p, |
)=( Ls, L1, Ls, Ls+) constitute a four-bar linkage and the
other linkages Lss, L, L7 are fixed. The appendix shows
the calibration of the linkages to ensure the accuracy of
the movable sensor position and therefore the accuracy of
the 3D mapping data acquired by this actuated LRF. The
motor encoder is transformed to the rotational angle Oinput
of linkages Ls and L. Then Lss and the angle 6

output
between the fixed linkage L; relative to the horizontal
plane are derived wusing triangle theorem. By

transforming the motor encoder to the angle 6 (ie. the
calibrated §,,,,, , defined in the Appendix) of the fixed
linkage L7 relative to horizontal plane, the 2D range data
(Prx, Piy) is obtained from rotating a LRF at different
heights with the stationary robot. It is transformed to 3D

data (Pcx =Prx, Pcy, Pcz ) via (12):

Pex 1 0 X 0l Prx
Poy [=]0 cos(@) 0| Py (12)
Poz 0 sin(H*) oL 1

Here we assume that the pose of stationary robot is
(0,0,0).

3.1.2 Composite transformation

(12) derives the 3D data acquisition formula using a
rotating LRF when the mobile robot is stationary. In a

www.intechopen.com



dynamic case, the robot travels along a path to a new
scan location to take a new scan, so that a sequence of
scans that contain new information in the map are
constantly acquired and a local map is built for each scan
to update the global map. The transformation matrix for a
robot in motion is composed by two parts. First is the
transformation matrix of the four-bar linkage that
actuates the LRF. The other is the transformation matrix
of a robot’s localization. The transformation matrix of the
four-bar linkage is the same for each scan, even when the
robot is moving. For estimating the transformation matrix
of robot localization, one needs the contrastive position
of a sequence of acquired scans from the first scan (at = t)
to the last scan (at t=t+n). Given that the transformation
matrix T, = T”"( X, yn,Hn) in Figure 10 is defined by the
first and the last scans, the transformation from the first
scan to each intermediate scan when the robot is in slow
motion is found by interpolation via:

i .
T (3, 91,0) = To ) i=1,e (13)

Combining the linkage transformation of the crank-rocker
mechanism and the transformation of the moving robot
pose (13), we obtain:

P 5{1 cos(6;) —sin(6;) x;
ng’ =|sin(¢;) cos(d;) y;
p&" 0 0 1

- (14)
1 0 oll P&

0 cos(@) 0P}
10 sin(g’) O 1

where the superscript denotes the time of the data and

' is the linkage angle of the fixed linkage L7 relative to
horizontal plane defined in the Appendix. In this way, 2D
data from the LRF is transformed to the global position in
a 3D map via (14).

It is noted that (12) is a special case of (14).

Crank-rocker

(a) (b)
Figure 11. (a) The crank-rocker four-bar linkage (b) The
rotational motion device. Hmpu
and La. eoutput t(or 6" as its calibrated value) denotes the angle

of the fixed linkage L7 relative to horizontal plane.

; is the angle between linkages Ls

www.intechopen.com

3.1.3 System testing: stationary robot

For indoor navigation, the robot needs to recognize the
objects in the environment. For testing the capability of
our system for 3D object recognition when the robot
stands still, three boxes are placed on the ground (see
Figure 12(a)) and we construct their 3D maps, as shown
in Figure 12(b). Since the length of each side of the boxes
is an invariant, we compare the width (57.5, 34.8, 24.8 cm)
with real measurement of boxes (58.29, 34.35, 25.2 cm)
shown in Figure12(c). The discrepancies are 7.9, 4.5 and 4
mm in each dimension, due to the errors inherent in LRF
sensing and the linkage transformation of the four-bar
linkage.

Figure 12. Stationary results of sensing 3D objects. (a) The scene
of three boxes(b) The 3D map (c) 2D map by projecting 3D map
of (b) onto X-Y plane (ground floor).

T (d)

Figure 13. Stationary results. Two 3D mapping results produced
by our mapping system fixed at different locations. Left:3D
maps, Right: the scenes.

In another test, Figure 13 (a) and (b) show the same
environment scanned at different locations using a
stationary robot. There is an elevator far from the LRF
and it is blocked by the walls in the central region of
Figure 13(b). A plant contour of Figure 13(d) is
constructed clearly in Figure 13(c). The edges of the
windows can be seen clearly, but some of them are
blocked. This experiment shows the limitation of 3D

Yu-Shin Chou and Jing-Sin Liu: A Robotic Indoor 3D Mapping System Using a 2D Laser Range Finder

Mounted on a Rotating Four-Bar Linkage of a Mobile Platform



mapping using a rotating LRF mounted on a stationary
robot, where the gathering of environment information is
incomplete. To remedy this, the 3D information of the
environment may be gathered more completely by a
mobile robot equipped with a rotating LRF and by
combining the moving robot pose and a linkage
transformation.

3.2 System testing: 3D mapping experiments

Figure 14 and Figure 15 are the results of experiments
performed in the office buildings 3F and 7F, respectively.
We eliminate all the information of the floor and ceiling
to make the map visually clear. The running time of
whole experiment is around 16 minutes. Figure 14(a) and
Figure 15(a) are the results of GDT SLAM. Figure 14(b)
and Figure 15(b) are the 3D maps which have been built.
These maps are composed of the walls, together with
some furniture in the middle space. The contour of the 3D
maps is almost the same as the 2D maps. The film
http://www.youtube.com/watch?v=ceBAgnJhack

shows the details of the 3D map.

Figure 14. Mapping result of 3F of IIS building.(a) GDT SLAM
(b) The obtained 3D map.

(@) (b)

Figure 15. Mapping result of 7F of IIS building. (a) GDT SLAM
(b)The obtained 3D map

Even though we demonstrate the accuracy and efficiency
of the method for small movements of the mobile robot,
the convergence of GDT SLAM is not attained in every
situation. The convergence problem and comparison of
our approach to other 3D mapping methods such as 6D
SLAM [29, 21] are left for future work.
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4. Conclusions

In this paper, we described the implementation and
testing of a 3D robotic mapping system based on a scan
matching method called simplex-based GDT SLAM. The
local map is a grid map represented by a distance-
transformation (DT) matrix. The range measurements
during the 3D map building process could be facilitated
by a rotational mechanism design of a crank-rocker four-
bar linkage mounted on a mobile robot. The integrated
system allows 3D scans of a rotating LRF to provide the
height information, using a composition of linkage
transformation and robot localization derived from a
motor encoder and kinetic formula of the mobile platform
and also allows the prediction of the 3D map. In the
experiments performed in the office building for testing
the 3D mapping system, the consistency, efficiency and
accuracy of the mapping system are demonstrated by
constructing 2D or 3D maps with a stationary or moving
robot. For future work on real-time 3D mapping and the
application scenarios based on it, the practical aspects of
the compression and registration of huge 3D data using
techniques such as 3D Normal Distributions Transform
(NDT) of spatial representation of 3D point clouds [33]
should be studied.

5. Appendix. The calibration of rotational motion

The measurement of the length of each linkage depicted
in Figure 11(b) is shown below.

L,=132+6,, Ly=36+65,, Ly=125+5,, L,=85+5,
L;=88+68;5, Lg=5+5,, L,=118+5,
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798 06 @4 07 0
ot x10'

(a) (b)
Figure A. Range data and motor encoder. (a) measured Ru(Em)
versus Em (b) calibrated R«(Em)versus Em

In this Appendix, we describe the -calibration of
6,,i=1,--,7in the tolerance interval [-0.5,0.5]cm for
making the linkage transformation and thus 3D mapping
acquisition, more correct. We set the mobile platform in
front of a wall, which is supposed to be perpendicular to
the floor. The rotating LRF performs a total of 500 scans,
one scan for each 1.8° of rotation starting from 0=0° to
90° forward. We repeat this 200 times to collect 100,000
data points of range Rw(Em)/angle 6(Em) from two cycles
of the motor encoder with 20,000 Ev readings per cycle.
The range data Ru(Ewm) is plotted in Figure A(a) where Rn

www.intechopen.com



(0) is the distance value to the wall when the encoder
reading is 0. We define the calibrated distance:

R.(Ey) =R, (0)cos(0(Ey)) (A1)

as shown in Figure A(b). The aim of calibration is to find
6;,i=1,---,7 such that:

argnEnabs(RC(EM)—Rm(EM)) (A2)

i

to yield a best fit calibration curve R*(Em) (Al) with
optimal O0*Em) and R*(Ewm). Finally, the -calibrated
6;,i=1,---,7 is obtained from minimizing (A2) as:

5, =04034, 5,=-0.1178, &,=-03218, &, =0.2625
55=-0.09, & =007, & =-0.1709

We use 0%(Em) as the rotational angle Ooupu of a rotating
LRF in Figure 11(b) for acquiring 3D mapping data in the
experiments performed in this paper.
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