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Abstract. In recent years, the autonomous mobile robot has found diverse 
applications such as home/health care system, surveillance system in civil and 
military applications and exhibition robot. For surveillance tasks such as 
moving target pursuit or following and patrol in a region using mobile robot, 
this paper presents a fuzzy Q-learning, as an intelligent control for cost-based 
navigation, for autonomous learning of suitable behaviors without the 
supervision or external human command. The Q-learning is used to select the 
appropriate rule of interval type-2 fuzzy rule base.  The initial testing of the 
intelligent control is demonstrated by simulation as well as experiment of a 
simple wall-following based patrolling task of autonomous mobile robot. 

Keywords: mobile robot navigation, moving target, patrol, intelligent control, 
fuzzy Q-learning. 

1 Introduction 

The intelligent mobile robots technology has widespread applications at present and 
in the future. Applications of robotics have been applied to home services, health care 
and military missions such [3]-[5], etc. Developing various intelligence services, for 
example intelligent surveillance and patrol systems, is of emerging demand to support 
human society [6]-[7]. As an intelligent mechatronics system, the mobile robot needs 
to integrate algorithms related to environment sensing for obstacle detection and 
SLAM, behavior and route planning, controlling and executing [8]. The focus of its 
development is on how to make the mobile robots capable of safely, effectively and 
efficiently operating in various ways in real, unknown environments which may 
involve interacting with human activities. This requires developing a navigation 
method that incorporates enough functionalities, in addition to the basic obstacle 
avoidance and stationary target reaching modes.  In this paper, we are interested in 
using mobile robot for surveillance tasks in various environments. The surveillance 
by a mobile robot contains target tracking or pursuit, wall following and obstacle 
avoidance. For intelligent control of mobile robot for navigation, fuzzy control is able 
to deliver a satisfactory performance in face of unmodelled robot dynamics, 
uncertainty and imprecision of sensing and actuating devices [9]-[11]. It has been 
widely applied to the design of robot speed and orientation steering controller because 
of the following reasons: 1) Control rules are more flexible, thus it can simplify the 
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complex system; 2) The controller can emulate the human decision making; 3) It does 
not need a detailed model of the plant, and it replaces the mathematical values in 
describing control system by using the linguistic ambiguous labels for designing 
robust controllers. On the other hand, reinforcement learning, in particular Q-learning, 
shows good learning results in designing control input for performing constrained 
tasks by robots without knowing the system dynamics [22], [23]. The approaches of 
combining type-1 fuzzy logic and Q-learning for optimization of the consequence 
parts of fuzzy rules are promising due to the ease of implementation on mobile robot 
navigation [12]-[17] in which Q value is a cost for each navigation behavior. In this 
paper, we propose to combine Q-learning with interval type-2 fuzzy logic as an 
intelligent control for cost-based mobile robot navigation that yields smoother 
behaviors. The Q-learning algorithm is employed to evaluate and select the fuzzy 
rules for the mobile robot to take the action. The aim is to achieve a more smooth 
autonomous navigation of mobile robot in surveillance of unknown environment in 
which the mobile robot needs to be able to patrol a region and capture or follow one 
moving targets. Section 2 presents some related work. Section 3 introduces the 
intelligent control for cost-based mobile robot navigation based on fuzzy Q-learning. 
Validation of the intelligent control in simulation and real robot experiment for 
boundary following is shown in Section 4 and 5, respectively. Conclusion and future 
work is in Section 6. 

 

Fig. 1. The line of sight for target tracking and obstacles avoidance 

2 Related Works 

Moving target tracking/following and capturing is an on-line process. It is important 
in surveillance, and it has received increasing attentions more recently [1], [4]-
[8].One task for the intelligent control of a mobile robot in this study is moving target 
tracking or capturing and obstacles avoidance. It is assumed that the target moves 
along a trajectory that is either well-defined and known a priori or unknown. Refer to 
Fig. 3.The control objective for the mobile robot is to controlling the orientation angle 

0θ  and speed to guarantee that the mobile robot can follow the direction of the target, 

i.e. the real target orientation 0)( →tTθ , and dtDT ≤)( where d is a threshold 

(zero for capturing, nonzero for tracking) for the relative distance between the mobile 
robot and the moving target. 
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In [1], a potential field method was developed for velocity planning of a mobile 
robot to track a moving target in the presence of moving obstacles. In [4], using 
velocity vectors of the robot relative to each obstacle, an online navigation method 
based on calculating the best feasible direction close to an optimal direction to the 
target is proposed for pursuing a moving target amidst dynamic and static obstacles. 
Adaptive learning control for pursuit-evasion were presented in [6], [7], and 
experiments on capturing a moving object using pure pursuit were shown in [8].  

 

Fig. 2. The computation flowchart of Q-learning algorithm 

3 Architecture Description of Fuzzy Q -Learning 

3.1 Q-Learning Algorithm 

Reinforcement learning is a promising approach to deal with control of physical robot 
with ever increasing complexity of hardware [22], [23] through experience and 
observations. Q-learning algorithm is a popular model-free reinforcement learning 
that have been demonstrated to give good results for some instances of robot tasks 
over the years. Fig. 2 shows the flowchart of Q-learning algorithm for a mobile robot 
that interacts with its environment via perception and action. Q-learning works as 

follows. After taking each action tA  from the action set A in a perceived state tS of 

state space S, the mobile robot gets an immediate reward tR at time t from the 

interaction with its surrounding environment, and changes its current state. Let the 

action-value function ),( tt ASQ denote the Q-value for a state-action pair ),( tt AS . 

Without knowing the dynamics of mobile robot being controlled, by measuring and 

storing the data ),,( 1 ttt RSS +  for taking the action tA , the expected Q-value for a 

state-action pair is online updated as follows:  
 

[ ]),(),(max),(),( 1 tttt
A

ttttt ASQASQRASQASQ −++← +γα                   (1) 

where the parameter ]1,0[∈α denotes the learning rate, and the 

parameter ]1,0[∈γ denotes the discount factor that influences the current value of 

future reward. After a sufficient number of trials over time, the mobile robot tends to 
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consistently learn a policy that maps the state to the action with maximum Q-value 
that will optimize the future reinforcement, independent of how the mobile robot 
behaves during the learning phase. 

3.2 Fuzzy System 

1) Traditional (Type1) Fuzzy System: Firstly, we design a fuzzy rule base of target 
pursuit and obstacles avoidance. In our work, the nearby environment information is 
obtained from a laser range finder. The sensing input data of nearby environment that 
measures the existence or closeness of obstacles or moving target within the field of 
view of the mobile robot is employed to control robot actions. The angular span of the 
sensing range from a laser range finder is partitioned into five segments in angular 
direction and three ranges in radial direction, as shown in Fig. 3. In Fig. 3, five 
directions are: R, L, F denotes right, left, in front of forward respectively; FL denotes 
in front of left, FR denotes in front of right. Three ranges of distance are: F denotes 
far distance, M denotes moderate distance and N denotes near distance. 

 

Fig. 3. The partition of field of view from a laser range finder for fuzzy system input 

2) Interval Type-2 Fuzzy Logic System: An interval type-2 fuzzy set A
~

, as shown in 
Fig4, is defined by a fuzzy membership function 
 

[ ]{ }1,0,)),(),,((
~

~ ⊆∈∀∈∀= xA
JuXxuxuxA μ                (2) 

 

where 
xJ  denotes primary membership of x,  ⊆∈= uJuA x

ux 1
]1,0[~ ),(μ  is the third 

dimension denoting a traditional (type-1) fuzzy set. It is completely described by its 
upper and lower membership functions denoted by  

)
~

()(~ AFOUx
A

=μ , )
~

()(~ AFOUx
A

=μ ,  

respectively. The area between the upper membership function and lower membership 
function is called the footprint of uncertainty (FOU) of interval type 2 fuzzy set FOU 
provides an additional degree of freedom to handle uncertainties. The output of the 
inference will obtain a type-2 fuzzy set. The inference result is type-reduced to a 
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Fig. 4. FOU (shaded area) for an interval type-2 fuzzy set [15] 
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type-1 fuzzy set, and the resulting type-reduced set is then defuzzified to generate a 
crisp output. In [19], both type-2 fuzzy and type-1 fuzzy were applied to speed control 
and the angle control of mobile robot and demonstrated that the performance of type-
2 fuzzy system is much better than type-1 fuzzy system.  For illustration, we design 
a two- input one-output fuzzy system shown in Fig. 5. The input data is provided by a 
laser range finder to detect environment information, and the output is a suitable value 
for the mobile robot to control the course. In this simulation study, the output set is 
segmented into five parts: large left, left, forward, right, and large right, respectively. 
The comparative performance of type-1 and interval type-2 fuzzy controllers is shown 
in Fig. 6. As shown in Fig. 6, the interval type-2 fuzzy controller shows better and 
smooth performance. The result of simulations encourages the use of interval type-2 
fuzzy control as the main controller for the robot navigation task from the practical 
performance standpoint. 

 

Fig. 5. Two- input one- output fuzzy system: type1 (left) vs type-2(right). Triangle or trapezoid 
membership functions of distance are used. Numerals in parenthesis denotes the number of  
rules. 

3.3 Integrated Intelligent Control System 

Fuzzy Q-learning has been applied to mobile robot navigation [15]-[17], where a 
reinforcement learning algorithm is used to fine tune the fuzzy rule base parameters. 
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Fig. 6. The output surface of type-1 fuzzy (left figure) vs. interval type-2 fuzzy (right figure) 
controllers. x, y are distance in the right and left directions, respectively; z is the output of robot 
turning angle. 

 

Fig. 7. The structure of integrating Q-learning with an interval type-2fuzzy controller 

Fig. 7 shows the flow chart of integrating Q-learning algorithm into interval type 2 
fuzzy controller. An interval type 2 fuzzy system is characterized by IF-THEN rules, 
where their antecedent or consequent sets are of interval type 2. The type 2 fuzzy 
logic system includes a fuzzifizer, a rule base, fuzzy inference engine, and output 
processor. The output processor includes a type-reducer and a defuzzifier and it 
generates a type 1 fuzzy set output. The integration allows the fuzzy rule to be 
evaluated by the Q-learning so that for more complex situation defined by fuzzy rules, 
the Q values could be provided as the cost to individual rules that are activated by 
current state-action pair. Here the rule is in the form of 
 

IF S is s THEN a is A with Q(s,A) 
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where the state and action membership functions are given as interval type 2, and thus 
Q(s,A) has two values, one for each membership function. Each rule for control is 
associated with a Q-value after learning results to show the goodness of the rule. An 
illustration is shown in Table1 for Fig. 5 where there are five fuzzy sets of the rule 
base in A: Large Left, Left, Forward, Right, and Large Right.  

3.4 Kalman Filter 

To estimate the target’s expected movement variation in the speed and position, we 
incorporate the Kalman filter to probabilistic estimate of its motion [18]. The Kalman 
and it can refer to figures 10 and 14filter is very powerful in estimations of past, 
present, and even future state, and it can do so even when the precise nature of the 
modeled system in unknown. The filter estimates a process by using a form of 
feedback control. The filter estimates the process state at some time and then obtains 
feedback in form of measurements. The time update equations can also be thought of 
as predictor equations, while the measurement update equations can be thought of as 
corrector equations as shown in Fig. 8. The time update projects the current state 
estimate ahead in time. The measurement update adjusts the projected estimate by an 
actual measurement at that time. The well-known equations for the time and 
measurement updates are repeated in Table 2 and Table 3 for easy reference. The 
matrix A relates the state at previous time step 1−k  to the state at the current step 
k , and the matrix B relates the control input u to the state x . The process noise 
covariance Q and measurement noise covariance R matrices might change with each 
time step. The matrix H relates the state to the measurement 

kz with normal 

probability distribution. 

Table 1. Fuzzy Rule Base 

Rule Base Left Laser 

Near Medium Far 

 

 

Right 

Laser 

Near 
12111 ,qqwithA  22212 ,qqwithA  32313 ,qqwithA  

Medium 
42414 ,qqwithA  52515 ,qqwithA  62616 ,qqwithA  

Far 
72717 ,qqwithA  82818 ,qqwithA  92919 ,qqwithA  

 

 

Fig. 8. The ongoing discrete Kalman filter cycle [18] 
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Table 2. Discrete Kalman Filter Time Update Equations 

DISCRETE KALMAN FILTER TIME UPDATE EQUATIONS 
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Table 3. Discrete Kalman Filter Measurement Update Equations 

DISCRETE KALMAN FILTER MEASUREMENT UPDATE EQUATIONS 
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Fig. 9. A simple environment for the task of wall following 

4 Simulation 

4.1 Wall-Following in a Simple Environment  

Evolutionary aspect of Q-learning is better understood by observing the motion of 
mobile robots [2]. Here we perform an off-line Q-learning simulation of a right wall 
following mission [12], [20], [21] by keeping a safety distance with a wall, in which 
the static wall is on the right, and a safe wide place is on the left of the robot as shown 
in Fig.9. The robot state is described by two extreme points sensed by the laser range 
finder: the rightmost and extreme right front. The robot motion is described by a 
sequence of action {turning right, turning left, turning zero} without stopping. For 
each state sensed by the readings from a laser range finder, an action executed by the 
mobile robot will cause a cost (in our case, the acquired Q value, 0 for collision, 50 
for collision-free and 100 for wall following) given by the interaction with the 
environment. After the convergence of Q-learning as shown in Fig. 10, the cost-based 
navigation behavior corresponding to the maximum Q value shown in Q- table of 
Table 4 is selected to execute in each moving step of mobile robot. In this simulation, 
being informed of the Q value, the robot will consider the action for next step as  
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turning zero to achieve the best performance. This demonstrates that the navigation 
based on Q-learning is promising for real-world implementation, since the robot is 
able to learn the desired reactive behavior in this simple situation.  

 

Fig. 10. The results of after learning 

Table 4. Fuzzy Q-learning 

action Turning Right Turning Zero Turning Left 

Learned max 

Q-Value 

0 142.8478 71.4130 

4.2 Kalman Filter for Estimation of Target 

This section describes the task of pursuit of a one-dimensional moving target by a 
mobile robot. The robot has onboard sensors that continuously locate the moving 
target. A pure pursuit is one way to specify how to do repetitive new course 
calculations: target update based on look ahead distance [8]. A simulation of pure 
pursuit for one-dimensional moving point target is shown in Fig. 11 where a capture 
occurs if the point robot and the point target occupy the same place at the same time. 
The target is simply moving in one direction (right to left) with known moving 
trajectory and the point robot can arrest the target using pure pursuit method. To 
minimize the time of capturing the target, the robot moves at its maximum speed  
 

 

Fig. 11. The simulation of pure pursuit where the moving target moves along a fixed horizontal 
direction 
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TR VV ≥ , where the maximum speed of the target is TV .However, in situations 

which the target moves at an unfixed direction of travel and unknown velocity on a 
domain, even randomly such as Markov chain or Brownian motion, the robot needs to 
predict the unknown target motion for achieving a higher possibility of eventually 
capturing the target. Therefore, we employ the Kalman filter method [18] to solve this 
problem, assuming the target movement is changed randomly, and the Kalman filter 
is used to estimate next state to build a suitable trajectory as shown in Fig. 12 so that 
the method of pure pursuit could be applied to the estimated trajectory. 

5 Experimental Results 

In this section, an experiment is conducted which the robot is operating for patrol in 
an unknown, unstructured environment. In addition to avoid the obstacles for safe 
navigation, the mobile robot is required to explore and then patrol by right wall 
following in an unknown environment. Wall following by a mobile robot has been  
 

 

Fig. 12. Simulation of the Kalman filter for target estimation. Red dots denote the real 
movements of the target that moves randomly within a range. Solid blue curve denotes the 
estimated trajectory.  

 

 

Fig. 13. The wheeled mobile robot equipped with a laser range finder for experimrnt 

SICK laser range finder 

2.4 GHz notebook 

two integrated servo motors  
to drive left and right wheels 

30 cm* 50 cm* 40 cm 



 An Intelligent Control System for Mobile Robot Navigation Tasks in Surveillance 459 

 

tested using proximity sensors (sonar or infrared) for different control algorithms 
[12], [20], [21] based on line of sight range measurements (distance and its rate), 
and/or bearing angle. Here our implementation and testing is conducted on a mobile 
robot equipped with a SICK laser range finder in the front, as shown in Fig. 13, to 
perform a scan of 180 degrees of field of view with maximum sensing range 5m to 
obtain nearby environment information. We employed the interval type-2 fuzzy Q-
learning techniques for obstacles avoidance and wall following in an unknown 
environment. In this task, the robot needs to explore and follow the right wall, while 
avoiding the obstacles. This task spends 125 seconds of total time for a completion of 
the patrol, in which a feedback is provided every 0.3 seconds. The patrol trajectory 
and the output of turning angle are shown in Fig. 14 and Fig. 15, respectively. In Fig. 
15, the fluctuation of output angle indicates that the mobile robot encountered flat real 
walls or curved obstacle boundaries to make a fine tuning of its motion direction, 
therefore the output response is seen a substantial beating as the mobile robot 
encounters a corner. The patrolling in a real indoor environment is shown in Fig. 16 
(http://youtu.be/es93QfFz8qs). 

 

Fig. 14. The patrolling trajectory in the experiment 

 

Fig. 15. The turning angle that the mobile robot approaches the wall 
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Fig. 16. The snapshots of patrolling experiment in a real environment (from the left upper 
photo to right bottom photo) 

6 Conclusion 

In this paper, we proposed a novel autonomous and intelligent controller for mobile 
robot navigation tasks in surveillance which requires the accomplishment of a variety 
of missions. The system is composed of reinforcement learning, fuzzy control, and a 
prediction component based on Kalman filter for estimating the trajectory of moving 
target to support a mobile robot for target pursuit, obstacles avoidance, and wall 
following of patrolling mission. The controller is composed by fuzzy Q-learning 
where the fuzzy rules are selected by the Q learning to meet a diverse set of 
navigation tasks in surveillance. The interval type-2 fuzzy logic system is employed, 
which shows better and smooth navigation performance. For tasks of moving object 
such as pursuit- evasion, the Kalman filter could be employed for a randomly moving 
target to predict its motion trajectory. Preliminary experiment in a simple real and 
unknown indoor environment validates that the intelligent control is effective to learn 
from the data collected and accomplish the tasks of wall following and obstacle 
avoidance. Ongoing and future work are planned to improve the current 
implementation of intelligent control for more complex mobile robot navigation 
behaviors such as capturing a moving target. For improving the generalization 
capability of reinforcement learning, future work will consider enhancing the 
computational efficiency using adaptive learning algorithm for navigation in more 
complex environment. 
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