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Abstract— A lot of methods have been proposed for 2D path
planning of mobile robot, which could be a mobile platform or
a wheelchair, in planar maps. This paper addresses a concept
of the shortest path planning for a mobile robot to traverse
a 3D surface, which is a parametrized regular surface that
models the non-flat terrain on which the mobile robot traverses.
Geodesic curve linking a given start to a given target that is
locally shortest on non-flat terrain is used as path. Nonlinear
geodesic equations are computed by a gradient descent method
with energy function of geodesic, which is shown to converge
to the geodesic path in a neighborhood of target position in
which a certain Lipschitz condition holds. We present numerical
simulations to illustrate the geodesic path planning on non-flat
terrains.

I. INTRODUCTION

The path planning problem is generally stated as: given
a start and a goal and a description or representation of
an environment, plan a path linking the start and target
locations subject to some criteria of safety, mobility and
optimality. The path planning for robots is a complex
problem in robotics that has been studied for decades,
and remain challenging in real-time robot motion in
dynamic environment consisting of static or moving
obstacles,such as UAV [8]-[11] and underwater robots
[11,12]. Researchers and engineers have been interested
in two-dimensional path planning for mobile robot. Many
methods have been proposed for path planning, such as
graph search, randomization methods, potential fields, soft
computing (e.g., fuzzy logic, neural networks, evolutionary
computations) based methods.

Depending on whether the environment model is
completely known a priori or not, path planning is mainly
classified into two categories: The first is called path
planning based on the environment model or global path
planning as the mobile robot knows all the information
about the environment. The path could be planned offline
without considering the resources of planning. The second
is called path planning based on sensors or local path
planning where the information of environment is provided
by sensors of the robot or the environment.The robot is
required to real-time plan or replan a path to account for
the new information of environment gathered by the sensors
and planning resources such as computing power and
allowed planning time. For the first kind of path planning,
we mention harmonic function [10], artifical potential field
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[7] and heat equation etc. For the second kind of path
planning, we mention wall-following [15], neural network,
genetic, fuzzy and Q-learning [16] etc. The A* algorithm
is between first and second [1,18]. Of all the path planning
approaches for mobile robot, the assumption of a flat
ground plane is assumed. The shorteset path planning on
a two-dimentional plane is appealing in applications, since
the path length is closely related to energy consumption
and mission completion time. Among them, Dubins shortest
path result on curvature constrained vehicle on 2D plane,
called R-geodesic with R the minimum turning radius of
a nonholonomic vehicle, opens a new research avenue of
shortest path planning in the plane [33].

In this study, the first kind of path planning for mobile
robot is considered, and we consider an issue of mobile robot
motion constrained on a non-flat terrain of three-dimentional
environment, such as hill climbing on a volcano or non-flat
terrain in which a complete 3D view of the environment is
adopted for mobile robot navigation. From geometric view
point, the non-flat terrain in three-dimentional environment
R

3 that can be regarded as surface (or called regular surface)
in R

3 [2]. We address a concept of geodesic path used as
the path primitive for locally shortest path planning on a
terrain surface in R

3 Euclidean space between starting point
and target destination, the same as the two-dimensional
environment. It is, however,not guaranteed global target
convergence on terrain surface since a geodesic is defined
to be locally the shortest distance from start to a target in a
neighborhood of start.

From differential geometry province, we know the
shortest distance between two point on a plane is the length
of the section on a straight line. A geodesic can also be
defined as a curve with zero geodesic curvature [19], [20].
Geodesic curvature of a curve on a surface at a point, is
equal to the curvature of the normal projection of the curve
onto the tangent plane of the surface at a point. A unique
geodesic curve can be drawn through any point on a surface
along a specified direction tangent to the surface. It can be
shown that the geodesic curve segment joining start point
and goal point on a surface has extremal length [2,3,4,20].
In the recent years, some geodesic development has Kasap
[5] who used different method to solve the non-linear
system of equation with boundary condition, Chen [25]
proposes geodesic-like for find geodesic on surface and
Gabriel [14] used geodesic distance for Riemannian metrics
in computer vision and graphics.
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Before implementing simulative result, we will
discretization non-linear geodesic equation system, and
integrated with robotic control system such that spanning
the path geodesic from start point and goal point on terrain
surface. Next step, given the energy of path geodesic
with gradient descent method, that is sovled numerical
computation of nonlinear geodesics equation for robot
dynamis. A natural option for the search direction is the
nagative gradient of the energy function of geodesic path
with gradient descent method, it also satified Lipschitz
condition and target convengence.

The remainder of the paper is organised as follows. Section
2 introduces the geodesic approach to find shortest path for
robot motion in three-dimensional environment terrain with
smooth. Section 3 describes numerial computation method
and target position convergence analysis. The simulations
results of the geodesic path approach on several different
convex terrain surface from start to target are presented in
section 4. The conclusion is given in the last section.

II. THE GEODESIC METHODS FOR SEARCHING SHORTEST

PATH

In the Euclidean three-dimensional environment R3, there
has some properties same as two-dimensional environment;
namely, the robot is a point, and its position is denoted by
qr = (x, y). The distance between position qr and goal qg is

d(qr, qg) = ‖qr − qg‖ (1)

, where ‖ · ‖ = 〈·, ·〉
1

2 is the classical Euclidean length [2,7].
Consider the terrain surface S with a parametric map X :
U → S of an open set U ⊂ R

2 and two parameterized curve
C1 and C2 on S, we denote C1(qs) : qs ∈ I → U and
C2(qg) : qg ∈ I → U , here C1 ∩ C2 = ∅, where I ∈ R

1. In
order to comoputing the shortest path between start qs and
goal qg on a terrain surface S, we establish

d(qs, qg) = min
qs,qg∈S

‖X(C1(qs))−X(C2(qg))‖ (2)

Thus, let α : [qs, qg] ⊂ I → U be a smooth map, where
I ⊂ R

1, we obtain a smooth path curve that is shortest path
γ = X ◦ α : I → S, we call that is geodesic. Formally, the
definition of geodesic is as below [2,4,20].

Definition 2.1: A shortest path γ : I → S is a
parameterized geodesic path curve at t0 ∈ I if D

dt
(dγ
dt
) = 0

at the point t0. If γ is a geodesic at t, ∀t ∈ I , we say that
γ is a geodesic. If [qs, qg] ⊆ I and γ : I → S is a geodesic,
the restriction of γ to [qs, qg] is called a geodesic segment
joining γ(qs) to γ(qg).

Where D
dt

is the covariant derivative and dγ
dt

is the
derivative of γ with respect to the parameter t. If γ : I → S

is a geodesic, the condition D
dt
(dγ
dt
) = 0 in the above

definition means that the length of the tangent vector dγ
dt

is
constant; i.e., the notion of a geodesic implies a curve with

constant velocity and zero acceleration [2,4,20].

In addition, a terrain surface S is constructed by local
coordinate system, i.e., X : (u, v) → X(u, v) ∈ S,
where X(u, v) be a parametrization of S. Therefore, the
computation of the length of γ in ambient S ⊂ R

3, we
use the first fundamental form from differential geometry,
it is merely the expression of how the terrain surface S

inherits the natural inner product of R
3. Geometrically, the

first fundamental form allows us to make measurements on
the surface without referring back to the ambient space R

3

where the surface lies. We show it as below [2,14,20]

Definition 2.2: For a terrain surface S, one defines

IS = 〈dX, dX〉, (3)

where dX = Xudu+Xvdv. The local metric IS defines at
each point the infinitesimal length of a path curve

l(γ) =

∫ qg

qs

‖
dγ

dt
‖dt =

∫ qg

qs

√

Edu2 + 2Fdudv +Gdv2dt

(4)
where E = 〈Xu, Xu〉, F = 〈Xu, Xv〉, G = 〈Xv, Xv〉. The
first fundamental form for S is

ds2 = Edu2 + 2Fdudv +Gdv2 (5)

In this case, ds is said to be an element of arc length.

To introduce the system of geodesic equations, that is,
by X : (u, v) → X(u, v) ∈ S, we given γ(s) =
X(u(s), v(s)) ∈ S, where the coordinate system (u, v) =
(u(s), v(s)) is orthogonal, s ∈ [qs, qg] ⊂ I , i.e., F (u, v) = 0,
which be expression of γ : [qs, qg] ⊆ I → S in the
parameterization X with coordinates u(s) and v(s). Then,
the tangent vector field dγ(s)

ds
, s ∈ [qs, qg] ⊂ I , is given by

dγ(s)

ds
=

d(X(u(s), y(s))

ds
= du(s)Xu+ dv(s)Xv (6)

therefore, the fact γ
′

(s) is parallel equivalent to D
dt
(dγ
dt
) = 0

d

ds
(
dγ(s)

ds
) = u

′

(Xuuu
′

+Xuvv
′

) + v
′

(Xvuu
′

+Xvvv
′

)

+u
′′

Xu + v
′′

Xv

(7)
since the covariant derivative D

ds
(dγ
ds
) is the component of

d
ds
(dγ(s)

ds
) in the tangent plane [2,17,19], and by using Gauss

Weingarten Equation for Xuu, Xuv, Xvu, Xvv in terms of
Christoffel symbols Γi

jk (i, j, k = 1, 2) [2,5,17,20] are given
by

Xuu = Γ1
11Xu+ Γ2

11Xv, Xuv = Γ1
12Xu+ Γ2

12Xv

Xvu = Γ1
21Xu+ Γ2

21Xv, Xvv = Γ1
22Xu+ Γ2

22Xv

(8)

the fact, γ
′

(s) is parallel equivalent to the system of differ-
ential equations

u
′′

+ Γ1
11(u

′

)2 + 2Γ1
12u

′

v
′

+ Γ1
22(v

′

)2 = 0 (9)

v
′′

+ Γ2
11(u

′

)2 + 2Γ2
12u

′

v
′

+ Γ2
22(v

′

)2 = 0 (10)
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where

Γ1
11 =

GEu − 2FFu + FEv

2(EG− F 2)
, Γ1

12 =
GEv − FGu

2(EG− F 2)

Γ1
22 =

2GFv −GGu + FGv

2(EG− F 2)

Γ2
11 =

2EEu − EEv + FEu

2(EG− F 2)

Γ2
12 =

EGu − FEv

2(EG− F 2)
, Γ2

22 =
EGv − 2FFv + FGu

2(EG− F 2)

(11)

By (9) and (10) that the system is known as the differential
equations of geodesics of S, and we have proposition as
following

Proposition 2.3: Let α : [qs, qg] ⊂ I → U be a smooth
map of open set of R

2, given the path γ(s) = X ◦ α(s) :
I → X(u1(s), u2(s)) ∈ S (terrain surface) is a geodesic if
and only if γ satisfies the following differential equations

d2ui(s)

ds2
+

2
∑

j,k=1

Γk
ij(u1(s), u2(s))

duj(s)

ds

duk(s)

ds
= 0 (12)

where i = 1, 2 and s ∈ [qs, qg], both u1(s) = u(s) and
u2(s) = v(s) are local coordinate system of S.

Now we show that a geodesic minimizes arc length of
path for points sufficiently close. In addition, if a path
minimizes arc length between qs and gg , it is a geodesic
[2,4,20]

Definition 2.4: A segment of the geodesic path
γ : [qs, qg] → S is called minimizing if l(γ) ≤ l(µ),
where l(·) denotes the length of path and µ is an arbitrary
piecewise differentiable path joining γ(qs) to γ(qg).

By Def. 2.4, the geodesics locally minimize the arc length
that is given [2,4,20]

Proposition 2.5: Let p ∈ S, U be a neighborhood of
p, and B ⊂ N a ball of center p. Let γ : [qs, qg] → B be
a geodesic segment with γ(qs) = p. If µ : [qs, qg] → S

is any piecewise differentiable path joining γ(qs) to
γ(qg) then l(γ) ≤ l(µ) and if equality holds then
γ([qs, qg]) = µ([qs, qg])

From above, the shortest path distance between two
objects on a terrain surface S is defined by the length-
minimizing path from the start qs to the goal qg on S. We
obtain

d(qs, qg) = inf
γ∈Ω

l(γ) (13)

where Ω is the set of all paths from the start qs to the
goal qg on a terrain surface S, and the set Ω can be only
considered the set of all geodesic on S from qs to qg .

III. COMPUTATION OF ROBOTIC GEODESICS
AND CONVERGENCE ANALYSIS

Let the robotic state qr ∈ R
n and the velocity (control

law) νr ∈ R
n [22]. In addition, from Prop. 2.3 the two

second-order differential equations can be rewritten as four
first-order differential equations [19]

dui(s)

ds
= νri , i = 1, 2 (14)

and derivative of νri , we have

dνri
ds

= −
2

∑

j,k=1

Γk
ij(u1(s), u2(s))

duj(s)

ds

duk(s)

ds
, i = 1, 2

(15)

that we can obtain control system for robot

q̇r(s) = νri , i = 1, 2 (16)

and

ν̇ri = σ = −
2

∑

j,k=1

Γk
ij(u1(s), u2(s))

duj(s)

ds

duk(s)

ds
, i = 1, 2

(17)

where σ is the control input [23].

By (17), the robotic route is spanning path from two
points, start and goal, on the terrain surface S, that is
solution of geodesic equations, or which path is geodesic
on the terrain surface. Now we’re going to discretize the
the geodesic equations (9) and (10) governing the geodesic
path linking start and goal with the following bouondary
conditions after discretization [5]

u(qs) = u0, v(qs) = v0, u(qg) = un+1, v(qg) = vn+1

(18)
where (u, v) ∈ U ⊂ R

2. If {ui, vi}
n+1
i=0 is a solution of

system of geodesic differential equations (9) and (10) with
X(u0, v0) = q0 = qs and X(un+1, vn+1) = qn+1 = qg ,
then the {X(ui, vi)}

n+1
i=0 would approach the geodesic γ as

n+1 approaches to infinity [6,24]. Therefore, the set {qs =
q0, q1, · · · , qn, qn+1 = qg} can be represented as the state of
robotic position with respect to arc-length s (we assume the
arc-length s is proportional to time T , i.e. s(T ) = T (s)) on
the terrain surface S. Using the concept of Potential Field
Methods which the robot can described as

∇qr = ‖qr − qn‖ = 0, ∀n ∈ N (19)

where the robotic position currently can regarded as the
new start point qs for robot.

From preceding section, a terrain surface S is represented
as a parametric surface with parametrization X : U → S,
and consider γ : [qs, qg] → U be a path geodesic on S, the
energy of geodesic path γ we have [25,30]

E(γ) =
1

2

∫ qg

qs

‖
dγ

ds
‖2ds =

1

2

∫ qg

qs

〈X
′

, X
′

〉ds (20)
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With {ui, vi}
n+1
i=0 , is a solution of system of geodesic

differential equations, the engergy function E with respect
to the parameter s [25,26,30], we obtain

E(ui, vi) =
1

2

∫ qg

qs

〈X
′

(u(s), v(s)), X
′

(u(s), v(s))〉ds

(21)
differentiating E with respect to ui and vi respectively, we
obtain [25]

Eui
=

∫ qg

qs

〈
∂

∂ui

X
′

(u(s), v(s)), X
′

(u(s), v(s))〉ds (22)

Evi
=

∫ qg

qs

〈
∂

∂vi
X

′

(u(s), v(s)), X
′

(u(s), v(s))〉ds (23)

where
∂

∂ui

X
′

(u(s), v(s)) =
∂

∂ui

(Xuu
′

+Xvv
′

)

∂

∂vi
X

′

(u(s), v(s)) =
∂

∂vi
(Xuu

′

+Xvv
′

)

(24)

Therefore, the gradient of energy function E is [25,26,30]

∇E = (Eu0
, Eu1

, · · · , Eun
, Ev0

, Ev1
, · · · , Evn

) (25)

where Eui
and Evi

are the partial derivative of energy
function E, by [25], we have ∇E(ui, vi) is a decreasing
direction.

To compute the locally shortest path for robot motion
on a non-flat terrain, we would apply the gradient descent
method with the energy of geodesic path . The description
for gradient descent method with the energy of geodesic path
is

qn+1 = qn − βn∇E(qn), ∀n ∈ N (26)

where βn > 0 is called step size and ∇E is the gradient of
E and ∇E(qn) is

∇E(qn) = ∇E(γ(un, vn)) = ∇(
1

2

∫ qg

qs

‖
∂

∂s
X(un, vn)‖

2ds)

(27)
Obviously, the sequence {qn} is bounded. Moreover,

(−∇E(qn)) is a descent direction. Now, we are going to
show that E will converge to a stationary point. For the
convergence, we assume that the gradient of energy function
E satisfies a Lipschitz continuous with exists a constant
C > 0, such that

‖∇E(qn+1)−∇E(qn)‖ ≤ C‖qn+1 − qn‖, ∀qn+1, qn (28)

Now consider the expansion of E. From [27,29,31], we have

‖E(qn+1)−E(qn)−〈∇E(qn), qn+1−qn〉‖ ≤
C

2
‖qn+1−qn‖

2

(29)
For applying the gradient descent method (26), too large βn

could cause divergence. Thus, we fixed βn ∈ (0, 1], start
with βn = β = 1 and β < 2

C
[28]. Applying (26) into (29),

we obtain [27,28,29,31]

E(qn+1) ≤ E(qn) + 〈∇E(qn), qn+1 − qn〉+
C

2
‖qn+1 − qn‖

2

(30)

where (qn+1) is satisfied (26), it lead to

E(qn+1) ≤ E(qn)−β‖∇E(qn)‖
2+

β2C

2
‖∇E(qn)‖

2 (31)

after shift, we have

‖∇E(qn)‖
2 ≤

E(qn)− E(qn+1)

β(1− βC
2 )

(32)

sum of ‖∇E(qn)‖
2, we obtain

n+1
∑

i=0

‖∇E(qn)‖
2 ≤

E(q0)− E(qn+1)

β(1− βC
2 )

(33)

which can be rewritten as [27,28,29,31]

lim
n→∞

∇E(qn) = 0 (34)

From this, we deduce that the energy of function E is
convergent with the gradient descent method. On the other
hand, [28] also showed that E(qn) is decreasing and conver-
gent. Furthermore, by [25,26], we can obtain ∇E(ui, vi) →
0 with qn+1 = qn when n is large enough, that isthe
robot eventually reach the goal qg along the geodesic path
direction, and the energy is decreasing from the start to its
local minimum at the target.

IV. SIMULATION

For our simulations in this section, the map is the
smoothing, free-obstacle convex terrain surface locally,
as Fig. 1 and Fig. 2 depict. Three different routes from
start position (0,0,0)1,to fixed target on two different
three-dimensional maps for geodesic path planning, where
the sign ”+” and the ”�” denote start and target in the
sample maps, respectively. Dotted line indicates a computed
shortest path. The target is set as (2.5,1,5) for Fig. 1 and
(2,2,0) for Fig. 2, respectively.

Fig. 1. The robotic route hails from initial (0,0,0) to target that at upper
region on the terrain suface

The shortest path Fig. 3 seems to downhill by initial (0,0,0)
to target (1.5,3.5,-30), which is distinct from Fig. 1 and Fig.
2. Even though Fig. 1 and Fig. 2 display the routes on the
same terrain, one route goes like as an uphill climbing with
elevation change, while the other route goes straight without
elevation change. That is exactly shortest path for robot

1(x, y, z) is represented as Euclidean coordinate space
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Fig. 2. The robotic route to target in alignment with respect to initial
position (0,0,0)

moves to target, due to geodesic is a curve on parametric
surface generalizing the notion of a shortest path between a
given start and target in the planar environment. Note that
it is only true locally, in other word, the robot path could
not make sure a shortest path globally. In general setting,
discrete piecewise paths joining an ordered list of sub-targets
is a concise way for planning in a global environment map,
e.g., chosen by human control i.e.

T =

n+1
∑

i=1

‖Ti − Ti−1‖ (35)

where T , Ti and n + 1 indicate target, sub-targets and a
number of segment or node control respectively. Thus, the
robot could move from start to target sequentially along
a series of segmented connections via sub-targets using
geodesic by prop. 2.5, thus guaranteeing a shortest path
segment in each movement. However, coming to grips with
amid the problems by power consumption effectiveness
and safe navigation of mobile robot in dangerous terrain
or region in practice, discrete piecewise geodesic path is
a way of overcoming the problem of power consumption
constraint and avoiding dangeous region in authentic
situation simultaneously, while maintaining a shortest
distance of each movement toward target.

Fig. 3. The robotic route hails from initial (0,0,0) to target that at lower
region on the terrain surface

V. CONCLUSIONS

In this study, we have introduced the locally shortest path
planning for mobile robot motion on a non-flat terrain using
geodesic approach, and used a gradient descent method with

energy function of geodesic path curve to solve numerically
the nonlinear geodesic equation with boundary condition and
robot dynamics. The gradient descent method with geodesic
path energy function satisfying certain Lipschitz conditions
achieves local target convergence along a geodesic path.
Although shortest path planning for robot motion is ensure-
donly locally, discrete piecewise path segements connecting
an ordered list of sub-targets specified by human or other
heuristics can enable perfoming global path planning in the
presence of obstacles to reach a target in 3D geometric
workspace. For future extensions of the work presented in
this paper, we will study the power consumption effective-
ness for safe path planning in more complex 3D envrionment,
in addition to improvement in both numerical analysis and
computation of shortest path.
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