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Abstract

This paper presents a nonholonomic path planning method, aiming at taking into considerations of curvature constraint, length
minimization, and computational demand, for car-like mobile robot based on cubic spirals. The generated path is made up of at
most five segments: at most two maximal-curvature cubic spiral segments with zero curvature at both ends in connection with
up to three straight line segments. A numerically efficient process is presented to generate a Cartesian shortest path among tt
family of paths considered for a given pair of start and destination configurations. Our approach is resorted to minimization via
linear programming over the sum of length of each path segment of paths synthesized based on minimal locomotion cubic spirals
linking start and destination orientations through a selected intermediate orientation. The potential intermediate configurations
are not necessarily selected from the symmetric mean circle for non-parallel start and destination orientations. The novelty of
the presented path generation method based on cubic spirals is: (i) Practical: the implementation is straightforward so that the
generation of feasible paths in an environment free of obstacles is efficient in a few milliseconds; (ii) Flexible: it lends itself
to various generalizations: readily applicable to mobile robots capable of forward and backward motion and Dubins’ car (i.e.
car with only forward driving capability); well adapted to the incorporation of other constraints like wall-collision avoidance
encountered in robot soccer games; straightforward extension to planning a path connecting an ordered sequence of targe
configurations in simple obstructed environment.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Path planning probleif27] of autonomous mobile robots or vehicles (e.g. soccer robots), which the way mobile
robots are able to change directions are restrif28§l has been widely studied in recent years to meet a variety
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of environmental constraints. The essential topic is to generate a set of paths to join two distinct configurations
that meet certain path smoothness constraints. The common methodology for constructing feasible trajectories is
by assembling arcs of simple cury@8]. Theoretical shortest path with bounded curvature synthesized by circular
arcs of minimum radius tangentially connected by straight line segments was first presented to generate trajectories
[8,9,23-25,307or different environmental restrictions. A complete characterization of path synthesized by arcs of
circle and straight line segments was addresse@hynd shortest path H9,30]. These studies concentrated on
finding the path with theoretical minimal length from a family of simple curves. They showed such kind of paths has
at most two cusps, where the robot changes its moving direction. However, its non-continuous curvature results in a
control difficulty: at the junction of a straight line and an arc, mobile robot needs to stop its wheel motion to make the
perfect tracking achievabld]. For smoothing the discontinuity of the junction between line segment and circular
arc, the clothoid was used as a transition curve to result in a continuous-curvatU@& 4] Scheuer and Laugier

[3] and Scheuer and Fraichdd] incorporated a new constraint that the derivative of curvature is bounded into the
path planning problem to make the planned path smoother. Different from Dubins’ path, the curvature profile along
the path has a trapezoid shape and is continuous. Kanayama and [Mi@hkeoposed a pair of clothoid curves (or

Cornu spirals), whose curvature varies linear with the arc length, to connect two straight lines to generate a smooth
shortest path for a maximum jerk, which has continuous curvature.

Various primitives of curves were proposed to generate paths with continuous curvature for autonomous naviga-
tion of mobile robots or autonomous vehicles to guarantee good drive characteristics and small trajectory tracking
errors in a wealth of workl0,12,15-17,20,21¢.9. B-splind19], quintic polynomials for continuous curvature and
velocity [16], quintic G-spline[18]. Nelson[12] presented two types of paths, Cartesian quintics for lane changing
maneuvers and polar splines for symmetric turns, which both can smoothly connect oriented straight line segments
with zero curvature.

Polynomial spirals in gener§22] (for example, clothoid and cubic spiral) are useful for trajectory generation
because they provide a polynomial curvature profile that is easy to track, but are difficult to compute due to lack of
closed-form expressions. In particular, a cubic spiral, whose curvature is a cubic function of arc length, [§ut by
at its two inflection points to obtain a curve with zero curvature at both end-points. This portion of a cubic spiral
can connect two configurations that asenmetric. A local path planning algorithm is presented for joining two
configurations which are not symmetric by two cubic spirals through an intermediate configuration, which is called
symmetric meaifl]. Path curvature and derivative of path curvature, or in physical terms the centripetal (lateral)
acceleration and the variation of it, are used as cost function for path optimization intended to maximize passenger
comfort.

However, some practical considerations, for example the bounded curvature corsiraimstraint in turning —
of car-like mobile robotfl3,20], and the avoidance of polygonal obstacles in obstructed environfiid28,28,29]
should be taken into consideration for a practical path planner. For moving inside a convex polygonal cell, a method
of planning a path composed of minimum turning radius circular arcs and line segments was pi@géntbdre
only a few boundary configurations have to be checked to avoid collision.

A path of low complexity{28], e.g. shorter path length and less number of reversals along the path, is preferred.
A high value of curvature to make the generated path shorter may violate the curvature constraint happens in case
the initial and end configurations are too close. Furthermore, the “smoothest” criterion makes the path overly long if
two configurations are very distant. Despite the above complexity and geometric consideration a for path generation,
also of main concern in the use of mobile robots is computational demand. In some applications like home care, there
is acute computational need for the mobile robot to instantaneously in response to newly acquired environmental
information. This demands a real-time generation of a feasible path on contemporary PCs, perhaps via an ordered
sequence of destination configurations.

However, cubic spiral, which is parametrized by a few number of parameters, provides enough degrees of freedom
to meet the curvature constraint. In this paper, we build on the wofk]db present a practical and flexible path
planning approach, which can be applied to the vehicle with or without backward motion capability in bounded
plane, to remedy some drawbacks of cubic spiral path planning mgtho#l shortest path is generated from the
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family of bounded-curvature paths consisting of at most two cubic spirals in connection with up to three straight
line segments through a variation of potential intermediate configurations, notably not necessarily selected from the
symmetric means circle.

The paper is organized as follows. In Sect®the cubic spiral method is briefly reviewed, and the notations used
in this paper are introduced. Secti®is the synthesis of continuous and bounded curvature paths based on minimal
locomotion cubic spirals linking start and destination orientation through a selected intermediate orientation. The
numerical procedure to find a path of minimal length via change of potential intermediate orientations is presented
in Section4. Other characteristics regarding the generalizations of the path planning method to various situations
will be presented in Sectidby including allowable motion direction constraint and wall collision avoidance. Some
comparisons witll] are also made. The last section is the conclusion.

2. Review of cubic spiral method
2.1. Notations and representation of a curve

In this paper, we follow most of notations §f]. A triple ¢= (x, y, ) (or a posture of order on0]) is to
represent a vehicle configuration whexey() is the position and is the heading. A directed curv& with finite
length? is defined by a triple:

T = (¢, «, qo) 1)

wherex = df/ds : [0, £] — R is the curvature ang = (xg, yo, 6o) is the initial configuration. The directiohand
position {, y) at arc lengths are defined by the integral equations describing the path starting from the initial
configuration o, yo, 60):

0(s) = 6p + /O ' Kk(r)dt, x(s) = xo + /0 ' coso(r)dr, y(s) =yo+ /O ' siné(r)dr (2)

wheres is defined as 0 at the initial pointd, yo). A configurationg(s) = (x(s), y(s), 6(s)) is defined by this set of
simultaneous Eq2).
Remark. Note that a posture (of order two) may be defined as more generallyy «) [22].

2.2. Cubic spiral

By definition, cubic spiral is a set of trajectories that the direction functiisra cubic polynomial of arc length.
A portion of cubic spiral can be cut at its two inflection points whose curvature values are zero. The curvature
function of this portion of cubic spiral with lengthis represented as a quadratic function of arc leagth

k(s) = As(€ — s)

whereA is a nonzero constant to be determined. Its angle, which describes how much the curve turns from the initial
orientation to final orientation, is denoted by

a =6(¢) — 6(0) 3

From the first equation ) and the boundary conditions &t 0, ands =¢, we have (Lemma 41]):

k(s) = %s(ﬁ —5) 4)
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Fig. 1. Distance function of cubic spirals. The dashed vertical line correspongst@80; left side of this line isx* region and right side is
a~ region[1].

If the length of a cubic spiral is 1, its size is given by (Lemm#L3B):

D(a) =2 /o e cos (oe (2 - 2t2> t) dr (5)

This function can only be computed numerically, andfi{e) chart is replotted irFig. 1. There is no closed form
to represent the size of a cubic spiral of arbitrary length. Since all cubic spirals are similar, a pre-calR(dated
table can evaluate the relationéndd = sizeg1, g2) by a using the following equation (Proposition[8]):

d
‘=@ ©

2.3. Sketch of cubic spiral path planning method

2.3.1. Concept of symmetric configurations

For an arbitrary configuration, [¢] denotes its positionx( y), and §) its directiond. For a configuration pair
(91, q2), the size is the distance between the two poigt$ &nd [g2], and the angle is the difference between the
two directions §1) and ?2), i.e.:

size@i, q2) = d([q1]. [¢2]), angleqa, q2) = @((92) — (91)) (7)

where the angle-normalizing functi@is defined as

0
DO) = 0 — 27 {”J ®)
2
If the function angle is applied to a vectarit means
angleg) = atan 2¢y, v,) 9)

v, andv, are scalars denote thendy components ob, respectively. If these two functions are applied to a cubic
spiral, they are in fact applied to its two end-configurations.
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A configuration pair§z, 2] is said to be parallelifg1) = (¢2). A configuration pairgs, ¢2] is said to be symmetric
if

.y S 6146 .
fan( 02 2oy Z£x; and o2 Lz I T —— 17 ¥2 (10)
2 X2 — X1 2 2

A symmetric mean g of any configuration pairg, ¢2) is a configuration that bothy{, ¢) and g, ¢2) are symmetric
pairs. All symmetric means of a configuration pajt,(q2) forms a circle if 1) # (¢2) or a line connectingq,
q2) if (1) = (¢2) (Proposition 3[1]). The path planning algorithm ¢1] is to choose one best symmetric mean
as an intermediate configuration @fi( g2) so as to minimize the sum of cost functions of the cubic spiral joining
the symmetric pairdi, ¢) and the cubic spiral joining the symmetric pajt §2). Two smoothness criteria based
on minimization of the integration of centripetal force or the change of centripetal force are applied to optimize the
selection.
Itis noted that the symmetric property is essential in this method because a cubic spiral can connect two symmetric
configurations.

2.3.2. Drawbacks

Kanayama and Hartmai] proposed the use of cubic spirals, which is theoretically more meaningful than
the set of clothoids, to generate the “smoothest” path for wheeled mobile robots. For example, smoother motion
due to continuous curvature which is important for accurate tracking control, smaller maximal curvature which
is especially important when a faster motion is needed. The characteristics of continuous curvature and criterion
of minimal centripetal acceleration or minimal change of centripetal acceleration are indeed rational. There are,
however, two main drawbacks not suitable for practical use in certain situations. The cost functions of Kanayama
and Hartmaijl] are for smoothness of paths based on either minimization of the integration of centripetal force or
the change of centripetal force; the length of the path and maximal (or minimal) curvature along the path are not
taken into consideration. As illustratedrig. 2, for configurations pairs with the same relative position and relative
angle but varying size, the method generates similar “smoothest” path. However, the complexity of generated path
is not satisfactory: the length of path is overly long when the size is large, and the maximal curvature is too high
for turning when the size is small. Though Kanayama and Harf{itjasteclared that this kind of configuration pair
can be joined by simple curve (specifically, one symmetric curve), but for some cases, for exaa|le0, 0] and
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Fig. 2. Drawbacks of cubic spiral method based on symmetric mean: (a) curvature is large as the two locations are nearby, (b) infinite length
path is generated.
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g2=[—a, 0, 0] configurations with the same horizontal heading but different positions, the simple curve may have
infinite length (as figure shows). These motivate this study to remedy the drawbacks, while preserving the merits
of the cubic spiral path planning method.

3. Generation of feasible paths using cubic spirals and line segments

The cubic spiral possesses nice properties suitable to be the primitive of trajectory generator of mobile robots. In
particular, it is extensible by line segments: a path can be made up of connecting together cubic spirals and straight
lines. Cubic spiral also has computational advantage in that it is parametrized by only a few number of parameters.
In this paper, we consider the family of paths consisting of (at most) two cubic spirals and up to three line segments.

3.1. Constraint of maximal curvature

In practice, a wheeled mobile robot has its minimal radius of turning which is constrained by wheel arrangement
[5-7]. This constraint may change dynamically according to driving velocity or control performance. Because
curvature of a straight line is zero, the curvature constraint of the path is imposed on the cubic spiral segment. We
use a constantyax to describe the absolute value of maximal curvature of the planned path.

Consider a cubic spiral with an anglg3). The curvature polynomial:

6o
k(s) = Z—ss(ﬁ — )

has the maximal (or minimal, & < 0) value at the middle point=¢/2:

<K>’ _ 3| _ 3| D(a) (11)

Kmax = Max(«(s)]) = > 2 2d

Hence, a constraint of curvature can be written as
[ (s)] < Kkmax

It can be transformed to a size constraint of cubic spiral as

3|a|D
4> D) 12)
2K max
The minimald can be solved as a function @f
3|a| D(a
dminfe) = 210(€) (139
max

3.2. Minimal locomotion by compound maximal-curvature cubic spirals

Consider a mobile robot that can move forward and backward. We will present the computation of two connecting
maximal-curvature cubic spirals linking initial headifgthrough a given intermediate orientatiég to a desired
orientationd, from ¢1 through a specified intermediate directigpnto achieve a goal direction given by, with
the intermediate and end positions unspecified. This is called minimal locomotion by maximal-curvature cubic
spiral starting a1, which has the smallest size for given 6, 62 orientations. Since all cubic spirals are similar,
longer curvature-constrained cubic spirals for transition feartnroughép, to g2 can be constructed from minimal
locomotion
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Fig. 3. There are four cubic spirals from an initial configuratjerio reach an intermediate directiafi{) with maximal (or minimal) curvature
value at their middle points.

Connecting an initial configuratiogy which has directio®; and an intermediate directidh,, there exist two
cubic spirals with maximal curvature. Angles of these two cubic spirals are

aly = @Om—01),  ag = —sgne)(2r) +afy (14)

where the angle of a cubic spiral is in the rang@f, 27]. If «; is positive, thenx_; must be negative, and vice
versa. The above notatig¢th4) assures:é“l €[—m, 7] andag; outside this range, as shownfig. 1 There are four
cubic spirals with maximal curvature, denoted by

@D @) (@) ", and @)™ (15)

that achieve each of both angldgl), where positive/negative sign outside the parenthesis means forward/backward
motion. An example of four cubic spirals with maximal curvat(t8) is shown inFig. 3. Clearly, their traveling
distances are not the same due to different angles and motion directions.

For each of four cubic spiral45), we can define:

(i) fourintermediate configurationg,*, ¢;~, ¢m™, andg;,”, respectively. The first superscript denotes the range
of the angle and the second superscript indicates forward or backward motion.
(ii) four vectors:
v =lam 1 —la), G =lam 1-la1l, Vo =lam'l—lal. Ve =lgm 1—[4d]
(16)
(i) four distances for each path as the length of each vect(it6y
d;?r = dmin(aé_l), dc—:i_1_ = _dmin(aé_l)’ dC_1+ = dmin(a;]_)9 dc]_ = dmln(ac]_) (17)
wherednmin(-) is always positive. Two of the above fod; are negative corresponding to backward motion.

A similar treatment holds for the angd@z D62 — em) there are four paths connecting and g2) =6, with
corresponding vectorrft2 Vs, Vga s Uey s and lengthd,t, dy, dot, do,

As a result, for a given intermediate directighyj, there are 16 different cubic spirals whose end direction is
(g2) =62 with maximal curvature. Only two of them lies on the symmetric means circle.



T.-C. Liang et al. / Robotics and Autonomous Systems 52 (2005) 312-335 319

O

o
8

Wi

Fig. 4. Sixteen different end positions with the same orientation reachablezirtmough minimal locomotions. One of the cubic spirais-(
J: +, k: +,I: =) is plotted to show the combination of minimal locomotion vectors.

Now consider two connecting cubic spirals linking initial headiaghrough a given intermediate orientation
Om to a desired orientatiofp. Let the minimal locomotion vector of this composite cubic spiral be denoted by the

vector?)éj”d. It is defined by the addition of minimal locomotion vector of each of the two cubic spiral segments:
Gk _ i gkl il M5 h h Lo _
& = Vg + Ve = dgyiict + deoiic2,  Where the superscripti, j, k, [ € {+, —} (18)

whered?,, d¥ are the corresponding minimum distanoes; i are the unit vectors representing forward motion
direction.Fig. 4shows the sixteen end locations of minimal locomotion of two connecting cubic spirals, where one
combination of minimal locomotion vectors is plotted explicitly.

3.3. Synthesis of feasible paths

Following cubic spiral path planning methgt], we adopt two cubic spirals for left or right turn to form parts
of a path. There are three zero curvature points at a two-cubic-spiral path. These three zero curvature points can be
extended by up to three straight line segments to enhance reachability of path. Thus, to connect a given configuration
pair at most five segments consisting of at most two cubic spirals and up to three straight line segments are used to
synthesize a feasible path. The five directions of each path segment are denoted by

617 9(:17 Gma 9C27 62 (19)

where the angles of cubic spiral segments are

O 6, 0 0
0clsa>(1; m), QCZEd)(m;Z) (20)

with corresponding vectors:

U1 = diny, Uc1 = dcafict, Um = dmim, Uc2 = dcofico, U2 = dohp (21)

where the positive (forward) directions of the five vectors denoted by the unit vagtdrs, iim, nc2, 712 are known,
and the length of each vect@y, dc1, dm, dc2, andds remains undetermined. It is noted that positive (negative) value
of eachd denotes forward (backward) motion.
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A feasible combination of these vectors satisfy the following synthesis equation:
[g2] = [q1] + V1 + Vc1 + Um + Ve2 + V2 (22)
which can be rewritten more explicitly as
[q2] = [q1] + din1 + dcafict + dmim + deotico + donia (23)
By definition (17), the constraints imposed on the two cubic spiral segments of a path are
dey > dY it Y >0, else
de1 < dy
deo > dY%, if d% >0, else
deo < d4,

(24)

and the coefficientdy, dny anddy, are free.

4. Shortest path synthesis based on cubic spiral primitive

The problem we address is to find a shortest path joining a given ordered pair of configuratien® through
a specified intermediate orientation. The family of paths for length minimization is the family of curves assembled
by at most two cubic spirals and up to three straight-line segments. The path length is set as the cost function for
optimization of path$2,7-9,14] while maximal value of curvature is set as a constraint.

As the configuration pair is parallel, the shortest path is the line segment connecting them. For nonparallel
configuration pair, to synthesize a shortest path through a specified intermediate orientation based on the cubi
spirals, the first step is to synthesize a curvature-constrained path through a specified intermediate orientation, bu
without any length constraint imposed on the path generated. Then a minimization process is invoked to search &
shortest path from the paths generated, as the minimal length criterion is imposed.

4.1. Imposing the criterion of minimal length

The objective of this subsection is to formulate a minimal length solution of the family of feasible paths with
continuous and bounded curvature, composed of straight lines and cubic spirals, through a specified intermediate
orientation. Assum#p, and thusi, j, k, and/ have been selected already. A cost function is associated with a
candidate path from this family of paths. It is defined as the length of path. By summing up for the length of each
segment, we obtain the expression for the length of a candidate path as

|deal [

— + |dml| +
D(og) D(a’éz)

cost(T) = |d1| + + |d2| (25)

whereo’; andaX, are defined ir{14).

For this problemg, dc1, dm, dc2, anddz should satisfy Eq(23) subject to constrair{4) while minimizing cost
function (25). Becausely; anddX, have been chosem(ck,) and D(aX,) are constants now. The cost of minimal
locomotion is the constant:

ity _ Mgl gl (26)
i k
D(agy)  Dlagp)

cost(1, ") =
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This part of cost is constant and cannot be further reduced. We define:

dy=da—dy),  dip=de—df (27)
Then to minimizg(25) is equivalent to minimize the reduced cost:
_ ij,kl | Cl| |d:;ﬁ2|
cost'(I7) = cost(T) — cost(T, ") = |d1| + Dlety) + |dm| + Db + |do| (28)
%2

And constraint§24) can be rewritten as

df >0 if d% >0, else d <0, >0, if d%>0, else df <0 (29)
4.2. Vectors that form a shortest path with given moving directions

Substituting(27) into (23), condition(23) for path assembling can be rewritten as
[92] = [91] + dii1 + (dhiicr + dipfica) + dmiim + (dEsiica + digica) + dafiz (30)
Define the vector:
Vgoal = [42] — [q1] — (dihiic1 + dibitca) (31)
Then by(30), (31) can be written equivalently as
Ugoal = d11 + dgyfic1 + dmiim + daoiic2 + daiip (32)

where the lengthdy, dm andd; are free, and the signs gf; anddg, are pre-decided by constrair{9). To solve
the coefficients for a giveigoa in (32), we define:

Al =ia andsi, = —ia, Ae{lclm,c2 2 (33)
Define a seN of unit vectors:
N = (if, Ay, iy, s iy iy s iy, ko), o=+, — (34)

and its corresponding s€tof coefficients which are either positive or zero:

C={d}, dy,df dy, df, dy, dly, dy) (35)
where

dy=df —d;, Ae{lm, 2}, and dcl = |d], dl, = |d%)| (36)
Then(32) becomes:

Vgoal = df i + dy AT + dLiily + diih + dig + digily + df S + dy iy (37)

By this transformation, all unknown coefficients(8i7) are positive or zero, and we have total eight unknowns to
be solved. The cost functiq28) becomes:
dj d.,
cost(IT) = df +dj + )+d mtdm+ 5 o)
e e2

+df +d; (38)
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Now the path length minimization can be formulated as a canonical form of linear programming problem:
maximize the linear function cogtiT) = c'x
(LP) subject to the linear constraintsAx = b, x>0
where

1 1

CT= _1’_17_17_19 _ls _1’_71'7_7](
D(agy)  D(agy)

_ _ _ T
x=[df,dy ,di, dmy d3  dy  dly, de)

A [cos@l —Cc0sf1 CO0SHy —C0sH, CO0SHr —COoSHr sgn@'él)-cos@cl sgnéléz)-cosecg

sind; —sind; sinfy, —sind, sinf> —sinbo sgn(igl)~sinecl sgn@é2)~sin9<;2

b= ?)goal

which can be solved by methods such as the simplex mditiddn a finite number of steps for the length of

each path segment to satisfy the path length optimization objective as well as the curvature constraint. Because th
optimal solution lies at one of the extreme points, it has only two non-zero elements, dendieanaisi, € C.
Assumed, anddy € C are solved together with a corresponding pair of independent vegi@sdyy € N. Then

the optimal solution to linear programming problem (LP) can be represented as

VUgoal = Va + Up = dalla + dbilp (39)

By Appendix A d; andd, are given by

. —sing~ . sing™
= s —— = S ————— 4
da ||U903|H sin@+ — 9_)’ dp vaoaln sin@+ — 6-) (40)
where
6" = d(angle(in) — anglefgoa)). 6~ = d(angle(ib) — anglefgoal) (41)

Without loss of generality; s andriy, are defined such that is positive and~ is negative. Then, b§89)—(41) the
length of each path segmefit, dc1, dm, dc2 anddz in (23) are solved to minimiz€25). A more efficient method
based on some observations of the problem is presen#&gdendix B

4.3. Numerical procedure to find a shortest path

The procedure to find a shortest path joining two configurations is: search from all possible combination of
(at most) two cubic spirals and up to three straight line segments, and find the one that minimizes {&8&).cost

Previous section has shown how to find the shortest path for a given intermediate oriehtadioth given one of

its 16 T)Ej’]d. To find the shortest path, using the procedure of previous section by vakyifigm —x to = and its
corresponding 1(1'»?’”, the cost of each generated path is computed by the sum of generated five l&nitls

lowest cost path generated from this compute-and-compare procedure is the shortest path. The numerical procedul
including collision-checking (discussed in Secti®sd) is summarized as follows: enumerating over all possible

combinations of two cubic spirals and three straight line segments through variations of intermediate configurations,
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Fig. 5. This figure shows how to synthesize a shortest pathié given (zero in this case) and thijg k,  have been decided. First the minimal
locomotion vecton";’cf1 + B’é’z is computed to define th&oa. Then two vectors to be extended are selected from eight candidates. In this case,
7/02 andﬁzr are chosen. The resulting path (solid line) is composed of one straight line and two cubic spirals.

and finding the one that has shorter length and is collision free:

foroyn = —mtom stepAd
fori = +, —(aly = gy, ory)
for j = +, —(DirectionC; = Forward Backward)
fork = +, — (X, = ag,, o)
for! = +, —(DirectionC, = Forward Backward)
CheckCaollision,

if yes, discard the path (42)
if no, ComputeCost(25)
next
next
next
next
next

where incremenf\6 of numerical resolution can be chosen appropriately according to the requirements imposed.
Once a bedi, for which the cost attains the minimum is found from the numerical pro@&ysthe composite
path of minimal length is generatdgig. 5shows an example to demonstrate the synthesis procedure of a shortest
path via the synthesis of the vect@yal.
Itis noted here that the selection of b@gidirection is not necessarily selected from the symmetric means circle for
non-parallel start and destination orientationg{4slid), whose complete configuration (direction and orientation)
is specified. Examples of synthesized shortest paths fully lying in the constrained plane are shigsnGrand 7

4.4. A shortcut for search

If we set the minute incrememtd =0.0873 in(42), for example, which is approximately 5then 1152 cases
are searched to find a best one. In the case of a mobile robot that can move forward-and-backward in a free plane,
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O

Fig. 6. An example of generated shortest paths. Each path has thegauimet different ).

a cubic spiral with angle outside the rangerd, 7] seldom appears as a segment of shortest path, since intuitively
backing up often increases the traveling length. The supporting reason is that: for a feasible path containing a cubic
spiral with angle outside the range#, 7], then in most cases there exists at least one shorter path with angle inside
the range -, 7]. This observation can be employed to reduce the execution time by searching only the subset of
paths with angle within|x, 7]. Following are the details of the argument.

Assume the shortest path contains one segment of cubic spiral with anvangleside the range{r, =], then

d > dmin(e™) (43)
whered is the size of the cubic spiral. The length of this portion of path is

b — d
“ 7 Do)

On the other hand, there is another cubic spiral path with arigiaside the rangefr, =] also steers the vehicle
to the same direction, without violating the maximal curvature constraint. Two cases need to be investigated:

(44)

Fig. 7. Another example of generated shortest paths. Each path has the;spoue flifferent g2).
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e Case 14 > dmin(a)In this case, an alternative path can be constructed by a single cubic spiral withv&ngle
and sized. The path length is

d
€a+ - m (45)
By Fig. 1, for any two angle$; andg2 with |81| < 7 and|B2| < r, we have
D(B1) > D(B2) > O (46)
Thus,
d
i.e fy+ < Ly 47

D) = D(a-)’

A shorter cubic spiral path with angle" and sized is found to replace the one with angte and sized.
e Case 2d < dmin(a™)
The alternative path can be constructed by a single cubic spiral with afighed sizedmin(e™) and two
connecting straight lines. The path length is computed as

O = dmin(a+) + (dmin(a+) _ d)i (48)
D(a™) cos(%)
Thent,+ > £,-, if
dmin(e") N 1 d
——— + (dmi —d — 0 49
D) + (dmin(@™) )COS(O‘;) D(a-) = (49)
The above conditio49) can be rearranged compactly as
1 +
oeny T S™) d
D(tj)_t*) o > prap (50)
m + (C( ) min
Multiplying both side of(50) by the positive paramet@nin(o)/dmin(e™), we get
1

% + S(at) dmin(@™) ~ dmin(a™)

Fig. 10plots the value of LHS of51). By the assumption, RHS ¢51) must be larger than or equal to 1, but from
Fig. 10 when|a™| < 139, all values of LHS of51)are less than 1. Furthermore, only whenifgi(c ™)) < 1.0734,
(51)is possible to hold. The region whetg- > £,- is shown in the gray area Bfg. 10 Apparently itis a relatively
small region. Therefore, it is concluded that the case that cubic spiral with@ngiannot be replaced by one with
corresponding:* seldom occurs.

This completes the argument behind the observation: a shorter path is very often found to replace the original
cubic spiral with angle.~ (seeFig. 11). Thus, cubic spirals with angte~ seldom appear as segments of a shortest-
length path. This suggests a shortcut for path generation: for a mobile robot that can move forward and backward in
free space, there is no need to checkdfiganda ., cases in path generation. This can reduce half of computational
load with little length optimization sacrifice.
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5. Other characteristics

Some other features of this path planning method are discussed in this section. Our shortest path planning metho
can be generalized to various situations: It is applicable to mobile robots without backward motion capability. It
also has simple wall-collision avoidance abilities.

5.1. Dubin’s car (forward motion only): comparisons with [1]

The path planning algorithm is designed for the vehicle which can drive both forward and backward. However,
with little and straightforward modification it also can be applied to nonholonomic mobile robots that can drive
forward only (i.e. Dubin’s car). The modification is: let Directiéh and DirectionC; be forward, and repladd
andC by

Nt = {i7, figh, 7y, iy, figy), Ct = {df . d, dy . dfy. d) (52)
In addition, when solving39), the requirement for positive solution (@f anddy) is

+_ 7 - il
0 <2and0 > > (53)
For Dubins’ car (i.e. admitting only forward motion), a solution @, (Vp) satisfying(39) might not exist for certain
Om and?)i;”kl, so that the algorithm is failed to generate a path. To avoid choosing such a case, its cost is set to be an
extremely large value.

Figs. 8 and $how the planned paths for Dubin’s car for the same end configuratiéigo® and 7respectively.
For comparisons, both our approach ghpare shown in the same plot. It is clear that our approach generates a
path of minimum radius of turning and very often is much shorter, wWhijlgenerates a smoothest but much longer

path and violates the curvature constraint. Detailed comparisons are tabul@sdades 1 and 2

/\}

End Posture: (1352 629 pi)

our approach J

Start Posture: (2000 1100 0)

()

Fig. 8. Example of path planning for Dubin’s car fieig. 6. Each path has the same goal directigs) put different [;2]: (a) our approach, (b)
[1], and (c) a sampled path (path 6) of (a) and (b).
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Start Posture: (2000 1100 0)

\

our approach [1]

End Posture: (2000 1900 pi/6)

Fig. 9. Example of path planning for Dubin’s car feig. 7. Each path has the same goal positigs] put different g2): (a) our approach, (b)
[1], and (c) a sampled path (path 6) (a) and (b).

Do) a dnlO)

06 %4.5(0_#) e .‘// 1
D(er) '
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02 f i g
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0 20 40 60 80 100 120 140 160 180

+
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Fig. 10. The numerical value of LHS ¢1).
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(d (@) —d)—
si

d_(a)

min

N d(@)

. min

Fig. 11. This figure shows the generation of an alternative padit loybic spiral (dashed line) to replace@n one (dotted line) iff < dmin(a*).
The shorter path is made up of two straight line segments and anbic spiral.

Table 1

Compare the length and maximal curvature of the pathEifpr8

Path Our approach [1]

Length No. of lines Maximal curvature Length Maximal curvature

1 1581.604 2 0.005 (Given) 2835.669 2.43288B
2 1259.333 2 1996.644 2.743983
3 1268.956 2 2054.655 2.674583
4 1586.517 2 2902.866 2.519483
5 1902.475 2 2710.05 2.0543B3
6 1581.592 2 2835.241 2.418583
7 1259.342 2 1996.43 1.9297B3
8 1268.841 2 2054.41 2.6793B3
9 1586.428 2 2902.403 2.377983

10 1902.409 2 2709.564 3.1804H3

Table 2

Compare the length and maximal curvature of the pathsgfo

Path Our approach [1]

Length No. of lines Maximal curvature Length Maximal curvature

1 2305.699 2 0.005 (Given) 3746.283 1.58641B
2 1932.876 2 1171.6 5.0841B3
3 1095.285 2 1240.915 3.718283
4 1088.594 2 1436.491 3.181983
5 1178.998 2 1324.303 3.5598B3
6 1475.22 2 3534.677 1.778683
7 1808.361 1 3988.471 1.797683
8 2108.055 2 3968.48 2.1618B3
9 2237.158 2 3995.483 2.848483

10 2267.943 1 3891.327 4.405583

It is noted that the length of second path solvedjyis smaller than the path solved by our approach.
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5.2. Onwall-collision avoidance

In practice, there may exist regions where mobile robot is prohibited for passing to keep a distance away from
human or machinery in the workcell. For example, in robot soccer game mobile robots move in a workspace
bounded by wall-like boundaries and there are moving obstacles in the workspace. Our cubic spiral based path
planning method is flexible to incorporate the space/positional constraints so that many acceptable wall collision-
free paths for mobile robots can be efficiently generated. In what follows, we consider wall collision avoidance by
introducing an additional term in the cost function.

A wall-type obstacle in a planar environment is described as a straight line segment equation

ax + by = ¢, (x, y) € [x1. xu] x [y1. yul (54)

In general, it is difficult to know whether and where a cubic spiral intersects with a line or not, since there are
infinitely many points along the curve itself that needs to be checked. To achieve real-time performance for collision
avoidance, we make some approximations in the following. There are six points on generated path that can be
readily computed whef is solved. The six points are

po = [q1], p1= po+ 1, p2 = p1+ Ve, p3 = p2 + Um, pa = p3+ Ve,
ps = pa+ V2 = [q2] (55)

wherep; = (pix, piy). Some of these points may be identical, because stsrae zero.
Note that the initial and goal pointsd andps) are collision-free, so they must lie on the same side of wall. Thus,
all we have to check are if

O(po) - O(pi) > 0, fori=1,234 (56)
where we define:
O(p) =ax+by—c (57)

Then all six points defined i(65) are collision-free.

For checking whether a generated path, which is made up of straight line and cubic spiral segments, collides
with the walls, we should check separately the collision of straight line segments and cubic spiral segments with
the walls. For checking the collision of a straight line segment of a path with g§%¢@)lit suffices to check if two
endpoints of straight line segment are on the same side of wall. On the other hand, for collision checking of a cubic
spiral segment with a wall, we should compute the coordinate of selected points on a cubic spiral by generalized
Fresnel integral equatiof®), whose integration is a major computational burd2?). Instead, we implement a
simplified method, where only a few points are to be checked, to allow a simple runtime approximate collision
checking, as described below.

Consider a cubic spiral with siz&1, anglex and directiorv. As shown inFig. 12, three straight line segments,
whose total length equals the length of cubic spiral, are generated to approximately fit a cubic spiral. Length of the
two end line segments is supposed the same and is denoted tile the middle line segment has direction
with length/c1. Then

de

1
——=h de1 — he1lS(@), S(@) = —F— 58
D() c1+ |de1 — healS(@) (@) COS(%) (58)
Rearranging the above equation, we obtain
hey ﬁ — sgn@c1 — hc1)S(a) (59)

da 11— sgn@er— he)S(a)
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Fig. 12. This figure shows how to generate two more check ppijgnd p; from p1 andp,. Note thatp} will replacep; in checking Eq(46),
but p3 will not replacep,. This is because; lies betweem, andps, and we need only check two endpoints of a straight line.

|dc1 - hcl|

2cos(%) (60)

le1=

FromFig. 12 the two more junctions of line segments are used as check points, whose coordinates are computed
by

pi = p1+lca-na, ps=p2—lc1-im (61)

These two points are close to the original cubic spiral, and check them can be a good approximation of collision
detection of this segment. Checking the additional two point®df or original end points is dependent on the
motion direction change of the path. Furthermore, note that this two more check points are collinear with the two
straight line segments that connect with this cubic spiral. For a line segment it suffices to check its two end points
to know whether the collision with a wall happens or not. Therefore, the number of check points for approximately
checking if a cubic spiral colliding with a wall i42) is five or less. This shortcut is effective for eliminating most
unqualified paths, where some examples of generated collision-free paths fully lying in the constrained plane are
demonstrated ifrig. 13 The average runtime is 0.3804 s.

5.3. Comparison with [1]

The family of paths used ifil] is continuous-curvature (“smoothest”) paths composed of two cubic spirals
connecting two configurations through an intermediate configuration selected from a symmetric mean, which
restricts the flexibility of path planner to incorporate other practical considerations like path length, curvature
constraint, obstacle avoidance that we considered here. Instead, the family of paths we considered is made u
of at most two curvature-constrained cubic spirals and up to three line segments connected via an intermediate
orientation, which achieves a minimal length for shortest path among this family of curvature-constrained paths.
The configuration reachability is enlarged. For example, the unattainable c&sg @b) by [1] mentioned in
Section2.3.2is now solved irFig. 14by our approach.

The path planner ofl] is mainly for mobile robots with forward motion in free space, while our method is
applicable to mobile robots with or without backward motion capability within wall-like boundaries. As compared
to our methodFigs. 8 and Ilearly show that longer paths are generated by the mdfljpd/hile the use of line



T.-C. Liang et al. / Robotics and Autonomous Systems 52 (2005) 312-335 331

Fig. 13. Examples of the wall-collision avoidance path planning.

ICSM

End Posture: (1500 1000 0) i

Start Posture: (2000 1000 0)

Cubic Spiral
End Posture: (1500 1000 0) Start Posture: (2000 1000 0)
o —a—

Fig. 14. Our approach generates a feasible path, tileannot for the case of two end configurations with opposite headirfgig/ 02(b).

segments as part of the path is essential for synthesis of shorter paths. For computational efficiency, the runtime of
both[1] and our approach is of the same order of magnitude[1jus a little faster in all simulations (0.0351 s
versus 0.0461s on average fég. 8 and 0.0340 s versus 0.0451 s on averagé-fgr 9) that we have performed

in (Centrino) PM-1.6 GHz, 512 MB laptop PC.

6. Conclusion

For generation of paths linking two configurations for wheeled mobile robots with turning radius lower bounded,
this paper considers the family of curvature-constrained curves constituted by (at most) two cubic spirals to achieve
reorientation, in connection with (up to) three straight line segments at inflection points of cubic spirals for length
minimization. The reachability is enlarged due to the addition of line segments as parts of the cubic spiral path.
For nonparallel configuration pair, a shortest path generation method searches a length-minimizing path from all
feasible paths of the family generated by linear programming optimization over the length of each path segment via
the selection of potential intermediate configurations, which are not necessarily selected from the symmetric mean.
For efficiency enhancement, a faster search of feasible and smooth path is also presented at the expense of little
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optimization loss. The easy-to-implement method lends itself to various generalizations. It is applicable to mobile
robots with or without backward driving capability. Furthermore, it is flexible to incorporate simplified collision
checking to rapidly generate wall-collision avoidance paths, at the expense of increasing the resulting path length,
for autonomously navigating a mobile robot in a constrained plane, e.g. robot soccer game. As is clear, applying
iteratively our approach also allows a straightforward extension to efficiently planning a feasible path connecting
an ordered sequence of target configurations in simple obstructed environment. Simulation results are shown tc
demonstrate across a wide range of situations under various constraints. Extensive simulations with comparisons t
existing planning methods will be conducted in the future work. Furthermore, we will apply our cubic spiral path
planning method to dynamic environment where multiple objects are moving simultaneously, such as the situations
encountered in robot soccer gafBé].
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Appendix A. Notes of S(«)

It is often needed to represent a known vea@ipby two unit vectors:1 andrn in our discussion. As shown in
Fig. Al, let the angle betweem "‘andig is y1; vg andny is y2. Assumey1 # y2. Two lengthsd; andd, can be
solved from the identity:

VOx COSy1 COSy2 dq
voy | | sinyr sinya | | da
as

- - sin(y1)
—_—, dy = |lvoll =———
sin(1 — y2) sin(1 — y2)

Fig. ALl. Represent a known vectdy by two independent vectorg andri,. y1 andy, are angles betweeri{, 7o) and @o, 7i2).
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If the decomposition is symmetric, ¢p = —y1 we have the simple solution:

- . sin(n) -
d :d = —_— =
1=d2 = |lvoll sin@n) llvoll 2 cosfn)
and
L, 2sin(1) . 1
d1+dy = — = —
1+ d2 = |lvoll sin@) llvoll cost)

which is the form ofS(«).

Appendix B. Faster method

This appendix presents a faster method to find which two constraints, i.e. which two réayswhs the extreme
point.
Let

® = {Angle(anglef) — anglefgoal) : 7 € N}

and defin@™P is the minimal positive element @, ?M" the maximal negative elementf 6'™P the vice minimal
positive element ob, andoM" is the vice maximal negative element®f
There are three cases to be examined:

(i) None of he correspondings of bothé™ andéM" is 7i/, or iL,,, then
6t =M™ andy~ = oM"

(i) One of the corresponding of 6™ or 6M" is 71/, or jiL.,, then we should chead®™ or §*M" to compare which
solution is maximal. Two possible combinations of solutions could exist in this case:

ot =6"" ando~ =™, or 6T =6™ andg~ =o"™M"
(iii) The corresponding’s of 6™ andéM" aresi., andiiL,, one more combination of solution:
6" =6 and 6 ="M
should be checked.

Therefore, in total at most four combinations of solutions are examined to find the extreme point.
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