
Robotics and Autonomous Systems 52 (2005) 312–335

Practical and flexible path planning for car-like mobile
robot using maximal-curvature cubic spiral

Tzu-Chen Lianga, Jing-Sin Liua,∗, Gau-Tin Hungb, Yau-Zen Changb

a Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
b Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan, ROC

Received 29 September 2003; received in revised form 18 May 2005; accepted 23 May 2005
Available online 27 June 2005

Abstract

This paper presents a nonholonomic path planning method, aiming at taking into considerations of curvature constraint, length
minimization, and computational demand, for car-like mobile robot based on cubic spirals. The generated path is made up of at
most five segments: at most two maximal-curvature cubic spiral segments with zero curvature at both ends in connection with
up to three straight line segments. A numerically efficient process is presented to generate a Cartesian shortest path among the
family of paths considered for a given pair of start and destination configurations. Our approach is resorted to minimization via
linear programming over the sum of length of each path segment of paths synthesized based on minimal locomotion cubic spirals
linking start and destination orientations through a selected intermediate orientation. The potential intermediate configurations
are not necessarily selected from the symmetric mean circle for non-parallel start and destination orientations. The novelty of
the presented path generation method based on cubic spirals is: (i) Practical: the implementation is straightforward so that the
generation of feasible paths in an environment free of obstacles is efficient in a few milliseconds; (ii) Flexible: it lends itself
to various generalizations: readily applicable to mobile robots capable of forward and backward motion and Dubins’ car (i.e.
car with only forward driving capability); well adapted to the incorporation of other constraints like wall-collision avoidance
encountered in robot soccer games; straightforward extension to planning a path connecting an ordered sequence of target
configurations in simple obstructed environment.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Path planning problem[27] of autonomous mobile robots or vehicles (e.g. soccer robots), which the way mobile
robots are able to change directions are restricted[20], has been widely studied in recent years to meet a variety
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of environmental constraints. The essential topic is to generate a set of paths to join two distinct configurations
that meet certain path smoothness constraints. The common methodology for constructing feasible trajectories is
by assembling arcs of simple curves[23]. Theoretical shortest path with bounded curvature synthesized by circular
arcs of minimum radius tangentially connected by straight line segments was first presented to generate trajectories
[8,9,23–25,30]for different environmental restrictions. A complete characterization of path synthesized by arcs of
circle and straight line segments was addressed by[2], and shortest path by[9,30]. These studies concentrated on
finding the path with theoretical minimal length from a family of simple curves. They showed such kind of paths has
at most two cusps, where the robot changes its moving direction. However, its non-continuous curvature results in a
control difficulty: at the junction of a straight line and an arc, mobile robot needs to stop its wheel motion to make the
perfect tracking achievable[4]. For smoothing the discontinuity of the junction between line segment and circular
arc, the clothoid was used as a transition curve to result in a continuous-curvature path[3,4,26]. Scheuer and Laugier
[3] and Scheuer and Fraichard[4] incorporated a new constraint that the derivative of curvature is bounded into the
path planning problem to make the planned path smoother. Different from Dubins’ path, the curvature profile along
the path has a trapezoid shape and is continuous. Kanayama and Miyake[10] proposed a pair of clothoid curves (or
Cornu spirals), whose curvature varies linear with the arc length, to connect two straight lines to generate a smooth
shortest path for a maximum jerk, which has continuous curvature.

Various primitives of curves were proposed to generate paths with continuous curvature for autonomous naviga-
tion of mobile robots or autonomous vehicles to guarantee good drive characteristics and small trajectory tracking
errors in a wealth of work[10,12,15–17,20,21], e.g. B-spline[19], quintic polynomials for continuous curvature and
velocity[16], quintic G2-spline[18]. Nelson[12] presented two types of paths, Cartesian quintics for lane changing
maneuvers and polar splines for symmetric turns, which both can smoothly connect oriented straight line segments
with zero curvature.

Polynomial spirals in general[22] (for example, clothoid and cubic spiral) are useful for trajectory generation
because they provide a polynomial curvature profile that is easy to track, but are difficult to compute due to lack of
closed-form expressions. In particular, a cubic spiral, whose curvature is a cubic function of arc length, is cut by[1]
at its two inflection points to obtain a curve with zero curvature at both end-points. This portion of a cubic spiral
can connect two configurations that aresymmetric. A local path planning algorithm is presented for joining two
configurations which are not symmetric by two cubic spirals through an intermediate configuration, which is called
symmetric mean[1]. Path curvature and derivative of path curvature, or in physical terms the centripetal (lateral)
acceleration and the variation of it, are used as cost function for path optimization intended to maximize passenger
comfort.

However, some practical considerations, for example the bounded curvature constraint – a constraint in turning –
of car-like mobile robots[13,20], and the avoidance of polygonal obstacles in obstructed environments[14,23,28,29],
should be taken into consideration for a practical path planner. For moving inside a convex polygonal cell, a method
of planning a path composed of minimum turning radius circular arcs and line segments was presented[24] where
only a few boundary configurations have to be checked to avoid collision.

A path of low complexity[28], e.g. shorter path length and less number of reversals along the path, is preferred.
A high value of curvature to make the generated path shorter may violate the curvature constraint happens in case
the initial and end configurations are too close. Furthermore, the “smoothest” criterion makes the path overly long if
two configurations are very distant. Despite the above complexity and geometric consideration a for path generation,
also of main concern in the use of mobile robots is computational demand. In some applications like home care, there
is acute computational need for the mobile robot to instantaneously in response to newly acquired environmental
information. This demands a real-time generation of a feasible path on contemporary PCs, perhaps via an ordered
sequence of destination configurations.

However, cubic spiral, which is parametrized by a few number of parameters, provides enough degrees of freedom
to meet the curvature constraint. In this paper, we build on the work of[1] to present a practical and flexible path
planning approach, which can be applied to the vehicle with or without backward motion capability in bounded
plane, to remedy some drawbacks of cubic spiral path planning method[1]. A shortest path is generated from the
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family of bounded-curvature paths consisting of at most two cubic spirals in connection with up to three straight
line segments through a variation of potential intermediate configurations, notably not necessarily selected from the
symmetric means circle.

The paper is organized as follows. In Section2, the cubic spiral method is briefly reviewed, and the notations used
in this paper are introduced. Section3 is the synthesis of continuous and bounded curvature paths based on minimal
locomotion cubic spirals linking start and destination orientation through a selected intermediate orientation. The
numerical procedure to find a path of minimal length via change of potential intermediate orientations is presented
in Section4. Other characteristics regarding the generalizations of the path planning method to various situations
will be presented in Section5, including allowable motion direction constraint and wall collision avoidance. Some
comparisons with[1] are also made. The last section is the conclusion.

2. Review of cubic spiral method

2.1. Notations and representation of a curve

In this paper, we follow most of notations of[1]. A triple q ≡ (x, y, θ) (or a posture of order one[20]) is to
represent a vehicle configuration where (x, y) is the position andθ is the heading. A directed curveΠ with finite
length� is defined by a triple:

Π ≡ (�, κ, q0) (1)

whereκ = dθ/ds : [0, �] → R is the curvature andq ≡ (x0, y0, θ0) is the initial configuration. The directionθ and
position (x, y) at arc lengths are defined by the integral equations describing the path starting from the initial
configuration (x0, y0, θ0):

θ(s) = θ0 +
∫ s

0
κ(t)dt, x(s) = x0 +

∫ s

0
cosθ(t)dt, y(s) = y0 +

∫ s

0
sinθ(t)dt (2)

wheres is defined as 0 at the initial point (x0, y0). A configurationq(s) = (x(s), y(s), θ(s)) is defined by this set of
simultaneous Eq.(2).

Remark. Note that a posture (of order two) may be defined as more generally (x, y, θ, κ) [22].

2.2. Cubic spiral

By definition, cubic spiral is a set of trajectories that the direction functionθ is a cubic polynomial of arc length.
A portion of cubic spiral can be cut at its two inflection points whose curvature values are zero. The curvature
function of this portion of cubic spiral with length� is represented as a quadratic function of arc lengths:

κ(s) = As(� − s)

whereA is a nonzero constant to be determined. Its angle, which describes how much the curve turns from the initial
orientation to final orientation, is denoted by

α = θ(�) − θ(0) (3)

From the first equation of(2) and the boundary conditions ats = 0, ands = �, we have (Lemma 2,[1]):

κ(s) = 6α

�3 s(� − s) (4)
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Fig. 1. Distance function of cubic spirals. The dashed vertical line corresponds to|α| = 180◦; left side of this line isα+ region and right side is
α− region[1].

If the length of a cubic spiral is 1, its size is given by (Lemma 3,[1]):

D(α) ≡ 2
∫ 1/2

0
cos

(
α

(
3

2
− 2t2

)
t

)
dt (5)

This function can only be computed numerically, and theD(α) chart is replotted inFig. 1. There is no closed form
to represent the size of a cubic spiral of arbitrary length. Since all cubic spirals are similar, a pre-calculatedD(α)
table can evaluate the relation of� andd = size(q1, q2) by α using the following equation (Proposition 8,[1]):

� = d

D(α)
(6)

2.3. Sketch of cubic spiral path planning method

2.3.1. Concept of symmetric configurations
For an arbitrary configurationq, [q] denotes its position (x, y), and (q) its directionθ. For a configuration pair

(q1, q2), the size is the distance between the two points [q1] and [q2], and the angle is the difference between the
two directions (q1) and (q2), i.e.:

size(q1, q2) ≡ d([q1], [q2]), angle(q1, q2) ≡ Φ((q2) − (q1)) (7)

where the angle-normalizing functionΦ is defined as

Φ(θ) ≡ θ − 2π

⌊
θ + π

2π

⌋
(8)

If the function angle is applied to a vector�v, it means

angle(�v) = atan 2(vy, vx) (9)

vx andvy are scalars denote thex andy components of�v, respectively. If these two functions are applied to a cubic
spiral, they are in fact applied to its two end-configurations.
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A configuration pair [q1, q2] is said to be parallel if (q1) = (q2). A configuration pair [q1, q2] is said to be symmetric
if

tan

(
θ1 + θ2

2

)
= y2 − y1

x2 − x1
, if x1 �= x2 and Φ

(
θ1 + θ2

2

)
= ±π

2
, if x1 = x2, y1 �= y2 (10)

A symmetric mean q of any configuration pair (q1, q2) is a configuration that both (q1, q) and (q, q2) are symmetric
pairs. All symmetric means of a configuration pair (q1, q2) forms a circle if (q1) �= (q2) or a line connecting (q1,
q2) if (q1) = (q2) (Proposition 3,[1]). The path planning algorithm of[1] is to choose one best symmetric meanq
as an intermediate configuration of (q1, q2) so as to minimize the sum of cost functions of the cubic spiral joining
the symmetric pair (q1, q) and the cubic spiral joining the symmetric pair (q, q2). Two smoothness criteria based
on minimization of the integration of centripetal force or the change of centripetal force are applied to optimize the
selection.

It is noted that the symmetric property is essential in this method because a cubic spiral can connect two symmetric
configurations.

2.3.2. Drawbacks
Kanayama and Hartman[1] proposed the use of cubic spirals, which is theoretically more meaningful than

the set of clothoids, to generate the “smoothest” path for wheeled mobile robots. For example, smoother motion
due to continuous curvature which is important for accurate tracking control, smaller maximal curvature which
is especially important when a faster motion is needed. The characteristics of continuous curvature and criterion
of minimal centripetal acceleration or minimal change of centripetal acceleration are indeed rational. There are,
however, two main drawbacks not suitable for practical use in certain situations. The cost functions of Kanayama
and Hartman[1] are for smoothness of paths based on either minimization of the integration of centripetal force or
the change of centripetal force; the length of the path and maximal (or minimal) curvature along the path are not
taken into consideration. As illustrated inFig. 2, for configurations pairs with the same relative position and relative
angle but varying size, the method generates similar “smoothest” path. However, the complexity of generated path
is not satisfactory: the length of path is overly long when the size is large, and the maximal curvature is too high
for turning when the size is small. Though Kanayama and Hartman[1] declared that this kind of configuration pair
can be joined by simple curve (specifically, one symmetric curve), but for some cases, for exampleq1 = [0, 0, 0] and

Fig. 2. Drawbacks of cubic spiral method based on symmetric mean: (a) curvature is large as the two locations are nearby, (b) infinite length
path is generated.
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q2 = [−a, 0, 0] configurations with the same horizontal heading but different positions, the simple curve may have
infinite length (as figure shows). These motivate this study to remedy the drawbacks, while preserving the merits
of the cubic spiral path planning method.

3. Generation of feasible paths using cubic spirals and line segments

The cubic spiral possesses nice properties suitable to be the primitive of trajectory generator of mobile robots. In
particular, it is extensible by line segments: a path can be made up of connecting together cubic spirals and straight
lines. Cubic spiral also has computational advantage in that it is parametrized by only a few number of parameters.
In this paper, we consider the family of paths consisting of (at most) two cubic spirals and up to three line segments.

3.1. Constraint of maximal curvature

In practice, a wheeled mobile robot has its minimal radius of turning which is constrained by wheel arrangement
[5–7]. This constraint may change dynamically according to driving velocity or control performance. Because
curvature of a straight line is zero, the curvature constraint of the path is imposed on the cubic spiral segment. We
use a constantκmax to describe the absolute value of maximal curvature of the planned path.

Consider a cubic spiral with an angleα (3). The curvature polynomial:

κ(s) = 6α

�3 s(� − s)

has the maximal (or minimal, ifα < 0) value at the middle points = �/2:

κmax = max(|κ(s)|) =
∣∣∣∣κ

(
�

2

)∣∣∣∣ = 3|α|
2�

= 3|α|D(α)

2d
(11)

Hence, a constraint of curvature can be written as

|κ(s)| ≤ κmax

It can be transformed to a size constraint of cubic spiral as

d ≥ 3|α|D(α)

2κmax
(12)

The minimald can be solved as a function ofα:

dmin(α) = 3|α|D(α)

2κmax
(13)

3.2. Minimal locomotion by compound maximal-curvature cubic spirals

Consider a mobile robot that can move forward and backward. We will present the computation of two connecting
maximal-curvature cubic spirals linking initial headingθ1 through a given intermediate orientationθm to a desired
orientationθ2 from q1 through a specified intermediate directionθm to achieve a goal direction given by (q2), with
the intermediate and end positions unspecified. This is called minimal locomotion by maximal-curvature cubic
spiral starting atq1, which has the smallest size for givenq1, θm, θ2 orientations. Since all cubic spirals are similar,
longer curvature-constrained cubic spirals for transition fromq1 throughθm to q2 can be constructed from minimal
locomotion
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Fig. 3. There are four cubic spirals from an initial configurationq1 to reach an intermediate direction (qm) with maximal (or minimal) curvature
value at their middle points.

Connecting an initial configurationq1 which has directionθ1 and an intermediate directionθm, there exist two
cubic spirals with maximal curvature. Angles of these two cubic spirals are

α+
c1 = Φ(θm − θ1), α−

c1 = −sgn(α+
c1)(2π) + α+

c1 (14)

where the angle of a cubic spiral is in the range [−2π, 2π]. If α+
c1 is positive, thenα−

c1 must be negative, and vice
versa. The above notation(14)assuresα+

c1∈ [−π, π] andα−
c1 outside this range, as shown inFig. 1. There are four

cubic spirals with maximal curvature, denoted by

(α+
c1)

+
, (α+

c1)
−
, (α−

c1)
+
, and (α−

c1)
−

(15)

that achieve each of both angles(14), where positive/negative sign outside the parenthesis means forward/backward
motion. An example of four cubic spirals with maximal curvature(15) is shown inFig. 3. Clearly, their traveling
distances are not the same due to different angles and motion directions.

For each of four cubic spirals(15), we can define:

(i) four intermediate configurationsq++
m , q+−

m , q−+
m , andq−−

m , respectively. The first superscript denotes the range
of the angle and the second superscript indicates forward or backward motion.

(ii) four vectors:

�v++
c1 ≡ [q++

m ] − [q1], �v+−
c1 ≡ [q+−

m ] − [q1], �v−+
c1 ≡ [q−+

m ] − [q1], �v−−
c1 ≡ [q−−

m ] − [q1]

(16)

(iii) four distances for each path as the length of each vector in(16):

d++
c1 ≡ dmin(α+

c1), d+−
c1 ≡ −dmin(α+

c1), d−+
c1 ≡ dmin(α−

c1), d−−
c1 ≡ −dmin(α−

c1) (17)

wheredmin(·) is always positive. Two of the above fourdc1 are negative corresponding to backward motion.

A similar treatment holds for the angleαc2 =Φ(θ2 − θm): there are four paths connectingqm and (q2) = θ2 with
corresponding vectors�v++

c2 , �v+−
c2 , �v−+

c2 , �v−−
c2 , and lengthd++

c2 , d+−
c2 , d−+

c2 , d−−
c2 .

As a result, for a given intermediate direction (θm), there are 16 different cubic spirals whose end direction is
(q2) = θ2 with maximal curvature. Only two of them lies on the symmetric means circle.



T.-C. Liang et al. / Robotics and Autonomous Systems 52 (2005) 312–335 319

Fig. 4. Sixteen different end positions with the same orientation reachable fromq1 through minimal locomotions. One of the cubic spirals (i: +,
j: +, k: +, l: −) is plotted to show the combination of minimal locomotion vectors.

Now consider two connecting cubic spirals linking initial headingθ1 through a given intermediate orientation
θm to a desired orientationθ2. Let the minimal locomotion vector of this composite cubic spiral be denoted by the
vector�vij,kl

c . It is defined by the addition of minimal locomotion vector of each of the two cubic spiral segments:

�vij,kl
c = �vij

c1 + �vkl
c2 = d

ij
c1n̂c1 + dkl

c2n̂c2, where the superscripti, j, k, l ∈ {+, −} (18)

whered
ij
c1, dkl

c2 are the corresponding minimum distances; ˆnc1, n̂c2 are the unit vectors representing forward motion
direction.Fig. 4shows the sixteen end locations of minimal locomotion of two connecting cubic spirals, where one
combination of minimal locomotion vectors is plotted explicitly.

3.3. Synthesis of feasible paths

Following cubic spiral path planning method[1], we adopt two cubic spirals for left or right turn to form parts
of a path. There are three zero curvature points at a two-cubic-spiral path. These three zero curvature points can be
extended by up to three straight line segments to enhance reachability of path. Thus, to connect a given configuration
pair at most five segments consisting of at most two cubic spirals and up to three straight line segments are used to
synthesize a feasible path. The five directions of each path segment are denoted by

θ1, θc1, θm, θc2, θ2 (19)

where the angles of cubic spiral segments are

θc1 ≡ Φ

(
θ1 + θm

2

)
, θc2 ≡ Φ

(
θm + θ2

2

)
(20)

with corresponding vectors:

�v1 = d1n̂1, �vc1 = dc1n̂c1, �vm = dmn̂m, �vc2 = dc2n̂c2, �v2 = d2n̂2 (21)

where the positive (forward) directions of the five vectors denoted by the unit vectors ˆn1, n̂c1, n̂m, n̂c2, n̂2 are known,
and the length of each vectord1, dc1, dm, dc2, andd2 remains undetermined. It is noted that positive (negative) value
of eachd denotes forward (backward) motion.
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A feasible combination of these vectors satisfy the following synthesis equation:

[q2] = [q1] + �v1 + �vc1 + �vm + �vc2 + �v2 (22)

which can be rewritten more explicitly as

[q2] = [q1] + d1�n1 + dc1�nc1 + dm�nm + dc2�nc2 + d2�n2 (23)

By definition(17), the constraints imposed on the two cubic spiral segments of a path are{
dc1 > d

ij
c1 if d

ij
c1 > 0, else

dc1 < d
ij
c1{

dc2 > dkl
c2 if dkl

c2 > 0, else

dc2 < dkl
c2

(24)

and the coefficientsd1, dm andd2, are free.

4. Shortest path synthesis based on cubic spiral primitive

The problem we address is to find a shortest path joining a given ordered pair of configurations (q1, q2) through
a specified intermediate orientation. The family of paths for length minimization is the family of curves assembled
by at most two cubic spirals and up to three straight-line segments. The path length is set as the cost function for
optimization of paths[2,7–9,14], while maximal value of curvature is set as a constraint.

As the configuration pair is parallel, the shortest path is the line segment connecting them. For nonparallel
configuration pair, to synthesize a shortest path through a specified intermediate orientation based on the cubic
spirals, the first step is to synthesize a curvature-constrained path through a specified intermediate orientation, but
without any length constraint imposed on the path generated. Then a minimization process is invoked to search a
shortest path from the paths generated, as the minimal length criterion is imposed.

4.1. Imposing the criterion of minimal length

The objective of this subsection is to formulate a minimal length solution of the family of feasible paths with
continuous and bounded curvature, composed of straight lines and cubic spirals, through a specified intermediate
orientation. Assumeθm and thusi, j, k, and l have been selected already. A cost function is associated with a
candidate path from this family of paths. It is defined as the length of path. By summing up for the length of each
segment, we obtain the expression for the length of a candidate path as

cost(Π) = |d1| + |dc1|
D(αi

c1)
+ |dm| + |dc2|

D(αk
c2)

+ |d2| (25)

whereαi
c1 andαk

c2 are defined in(14).
For this problem,d1, dc1, dm, dc2, andd2 should satisfy Eq.(23)subject to constraint(24)while minimizing cost

function(25). Becausedij
c1 anddkl

c2 have been chosen,D(αi
c1) andD(αk

c2) are constants now. The cost of minimal
locomotion is the constant:

cost(Πij,kl
θm

) = |dij
c1|

D(αi
c1)

+ |dij
c2|

D(αk
c2)

(26)
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This part of cost is constant and cannot be further reduced. We define:

d∗
c1 = dc1 − d

ij
c1, d∗

c2 = dc2 − dkl
c2 (27)

Then to minimize(25) is equivalent to minimize the reduced cost:

cost∗(Π) = cost(Π) − cost(Πij,kl
θm

) = |d1| + |d∗
c1|

D(αi
c1)

+ |dm| + |d∗
c2|

D(αk
c2)

+ |d2| (28)

And constraints(24)can be rewritten as

d∗
c1 > 0 if d

ij
c1 > 0, else d∗

c1 < 0, d∗
c2 > 0, if dkl

c2 > 0, else d∗
c2 < 0 (29)

4.2. Vectors that form a shortest path with given moving directions

Substituting(27) into (23), condition(23) for path assembling can be rewritten as

[q2] = [q1] + d1n̂1 + (dij
c1n̂c1 + d∗

c1n̂c1) + dmn̂m + (dkl
c2n̂c2 + d∗

c2n̂c2) + d2n̂2 (30)

Define the vector:

�vgoal = [q2] − [q1] − (dij
c1n̂c1 + dkl

c2n̂c2)︸ ︷︷ ︸
�vij,kl

c

(31)

Then by(30), (31)can be written equivalently as

�vgoal = d1n̂1 + d∗
c1n̂c1 + dmn̂m + d∗

c2n̂c2 + d2n̂2 (32)

where the lengthsd1, dm andd2 are free, and the signs ofd∗
c1 andd∗

c2 are pre-decided by constraints(29). To solve
the coefficients for a given�vgoal in (32), we define:

n̂+
∆ = n̂∆ and n̂−

∆ = −n̂∆, ∆ ∈ {1, c1, m, c2, 2} (33)

Define a setN of unit vectors:

N ≡ {n̂+
1 , n̂−

1 , n̂+
m, n̂−

m, n̂+
2 , n̂−

2 , n̂
j
c1, n̂

l
c2}, j, l = +, − (34)

and its corresponding setC of coefficients which are either positive or zero:

C ≡ {d+
1 , d−

1 , d+
m, d−

m, d+
2 , d−

2 , d
j
c1, d

l
c2} (35)

where

d∆ = d+
∆ − d−

∆, ∆ ∈ {1, m, 2}, and d
j
c1 = |d∗

c1|, dl
c2 = |d∗

c2| (36)

Then(32)becomes:

�vgoal = d+
1 n̂+

1 + d−
1 n̂−

1 + d
j
c1n̂

j
c1 + d+

mn̂+
m + d−

mn̂−
m + dl

c2n̂
l
c2 + d+

2 n̂+
2 + d−

2 n̂−
2 (37)

By this transformation, all unknown coefficients in(37) are positive or zero, and we have total eight unknowns to
be solved. The cost function(28)becomes:

cost∗(Π) = d+
1 + d−

1 + d
j
c1

D(αi
c1)

+ d+
m + d−

m + dl
c2

D(αk
c2)

+ d+
2 + d−

2 (38)
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Now the path length minimization can be formulated as a canonical form of linear programming problem:

maximize the linear function cost∗(Π) = cTx

(LP) subject to the linear constraintsAx = b, x ≥ 0

where

cT =
[
−1, −1, −1, −1, −1, −1, − 1

D(αi
c1)

, − 1

D(αk
c2)

]

x = [d+
1 , d−

1 , d+
m, d−

m, d+
2 , d−

2 , d
j
c1, d

l
c2]

T

A =
[

cosθ1 −cosθ1 cosθm −cosθm cosθ2 −cosθ2 sgn(dj
c1) · cosθc1 sgn(dl

c2) · cosθc2

sinθ1 −sinθ1 sinθm −sinθm sinθ2 −sinθ2 sgn(dj
c1) · sinθc1 sgn(dl

c2) · sinθc2

]

b = �vgoal

which can be solved by methods such as the simplex method[11] in a finite number of steps for the length of
each path segment to satisfy the path length optimization objective as well as the curvature constraint. Because the
optimal solution lies at one of the extreme points, it has only two non-zero elements, denoted asda anddb ∈ C.
Assumeda anddb ∈ C are solved together with a corresponding pair of independent vectors ˆna andn̂b ∈ N. Then
the optimal solution to linear programming problem (LP) can be represented as

�vgoal = �va + �vb = dan̂a + dbn̂b (39)

By Appendix A, da anddb are given by

da = ∥∥�vgoal
∥∥ −sinθ−

sin(θ+ − θ−)
, db = ∥∥�vgoal

∥∥ sinθ+

sin(θ+ − θ−)
(40)

where

θ+ = Φ(angle(n̂a) − angle(�vgoal)), θ− = Φ(angle(n̂b) − angle(�vgoal)) (41)

Without loss of generality, ˆna andn̂b are defined such thatθ+ is positive andθ− is negative. Then, by(39)–(41), the
length of each path segmentd1, dc1, dm, dc2 andd2 in (23) are solved to minimize(25). A more efficient method
based on some observations of the problem is presented inAppendix B.

4.3. Numerical procedure to find a shortest path

The procedure to find a shortest path joining two configurations is: search from all possible combination of
(at most) two cubic spirals and up to three straight line segments, and find the one that minimizes the cost(25).
Previous section has shown how to find the shortest path for a given intermediate orientationθm and given one of
its 16�vij,kl

c . To find the shortest path, using the procedure of previous section by varyingθm from −π to π and its
corresponding 16�vij,kl

c , the cost of each generated path is computed by the sum of generated five lengthsd. The
lowest cost path generated from this compute-and-compare procedure is the shortest path. The numerical procedure
including collision-checking (discussed in Section5.3) is summarized as follows: enumerating over all possible
combinations of two cubic spirals and three straight line segments through variations of intermediate configurations,
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Fig. 5. This figure shows how to synthesize a shortest path ifθm is given (zero in this case) and thusi, j, k, l have been decided. First the minimal
locomotion vector�vij

c1 + �vkl
c2 is computed to define the�vgoal. Then two vectors to be extended are selected from eight candidates. In this case,

�vl
c2 and�v+

1 are chosen. The resulting path (solid line) is composed of one straight line and two cubic spirals.

and finding the one that has shorter length and is collision free:

for θm = −π toπ step	θ

for i = +, −(αi
c1 = α−

c1, α
+
c1)

for j = +, −(DirectionC1 = Forward, Backward)

for k = +, −(αk
c2 = α−

c2, α
+
c2)

for l = +, −(DirectionC2 = Forward, Backward)

CheckCollision,

if yes, discard the path

if no, ComputeCost(25)

next

next

next

next

next

(42)

where increment	θ of numerical resolution can be chosen appropriately according to the requirements imposed.
Once a bestθm for which the cost attains the minimum is found from the numerical process(42), the composite

path of minimal length is generated.Fig. 5shows an example to demonstrate the synthesis procedure of a shortest
path via the synthesis of the vector�vgoal.

It is noted here that the selection of bestθm direction is not necessarily selected from the symmetric means circle for
non-parallel start and destination orientations (as[1] did), whose complete configuration (direction and orientation)
is specified. Examples of synthesized shortest paths fully lying in the constrained plane are shown inFigs. 6 and 7.

4.4. A shortcut for search

If we set the minute increment	θ = 0.0873 in(42), for example, which is approximately 5◦, then 1152 cases
are searched to find a best one. In the case of a mobile robot that can move forward-and-backward in a free plane,
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Fig. 6. An example of generated shortest paths. Each path has the same (q2) but different [q2].

a cubic spiral with angle outside the range [−π, π] seldom appears as a segment of shortest path, since intuitively
backing up often increases the traveling length. The supporting reason is that: for a feasible path containing a cubic
spiral with angle outside the range [−π, π], then in most cases there exists at least one shorter path with angle inside
the range [−π, π]. This observation can be employed to reduce the execution time by searching only the subset of
paths with angle within [−π, π]. Following are the details of the argument.

Assume the shortest path contains one segment of cubic spiral with an angleα− outside the range [−π, π], then

d ≥ dmin(α−) (43)

whered is the size of the cubic spiral. The length of this portion of path is

�α− = d

D(α−)
(44)

On the other hand, there is another cubic spiral path with angleα+ inside the range [−π, π] also steers the vehicle
to the same direction, without violating the maximal curvature constraint. Two cases need to be investigated:

Fig. 7. Another example of generated shortest paths. Each path has the same [q2] but different (q2).
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• Case 1:d ≥ dmin(α+)In this case, an alternative path can be constructed by a single cubic spiral with angleα+

and sized. The path length is

�α+ = d

D(α+)
(45)

By Fig. 1, for any two anglesβ1 andβ2 with |β1| < π and|β2| < π, we have

D(β1) > D(β2) > 0 (46)

Thus,

d

D(α+)
<

d

D(α−)
, i.e. �α+ < �α− (47)

A shorter cubic spiral path with angleα+ and sized is found to replace the one with angleα− and sized.
• Case 2:d ≤ dmin(α+)

The alternative path can be constructed by a single cubic spiral with angleα+ and sizedmin(α+) and two
connecting straight lines. The path length is computed as

�α+ = dmin(α+)

D(α+)
+ (dmin(α+) − d)

1

cos
(

α+
2

) (48)

Then�α+ ≥ �α− , if

dmin(α+)

D(α+)
+ (dmin(α+) − d)

1

cos
(

α+
2

) − d

D(α−)
≥ 0 (49)

The above condition(49)can be rearranged compactly as

1
D(α+) + S(α+)

1
D(α−) + S(α+)

≥ d

dmin(α+)
(50)

Multiplying both side of(50)by the positive parameterdmin(α+)/dmin(α−), we get

1
D(α+) + S(α+)

1
D(α−) + S(α+)

dmin(α+)

dmin(α−)
≥ d

dmin(α−)
(51)

Fig. 10plots the value of LHS of(51). By the assumption, RHS of(51)must be larger than or equal to 1, but from
Fig. 10, when|α+| < 139◦, all values of LHS of(51)are less than 1. Furthermore, only when (d/dmin(α−)) < 1.0734,
(51)is possible to hold. The region where�α+ ≥ �α− is shown in the gray area ofFig. 10. Apparently it is a relatively
small region. Therefore, it is concluded that the case that cubic spiral with angleα− cannot be replaced by one with
correspondingα+ seldom occurs.

This completes the argument behind the observation: a shorter path is very often found to replace the original
cubic spiral with angleα− (seeFig. 11). Thus, cubic spirals with angleα− seldom appear as segments of a shortest-
length path. This suggests a shortcut for path generation: for a mobile robot that can move forward and backward in
free space, there is no need to check theα−

c1 andα−
c2 cases in path generation. This can reduce half of computational

load with little length optimization sacrifice.
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5. Other characteristics

Some other features of this path planning method are discussed in this section. Our shortest path planning method
can be generalized to various situations: It is applicable to mobile robots without backward motion capability. It
also has simple wall-collision avoidance abilities.

5.1. Dubin’s car (forward motion only): comparisons with [1]

The path planning algorithm is designed for the vehicle which can drive both forward and backward. However,
with little and straightforward modification it also can be applied to nonholonomic mobile robots that can drive
forward only (i.e. Dubin’s car). The modification is: let DirectionC1 and DirectionC2 be forward, and replaceN
andC by

Nf ≡ {�n+
1 , �n+

m, �n+
2 , �n+

c1, �n+
c2}, Cf ≡ {d+

1 , d+
m, d+

2 , d+
c1, d

+
c2} (52)

In addition, when solving(39), the requirement for positive solution (ofda anddb) is

θ+ <
π

2
and θ− > −π

2
(53)

For Dubins’ car (i.e. admitting only forward motion), a solution of (�va, �vb) satisfying(39)might not exist for certain
θm and�vij,kl

c , so that the algorithm is failed to generate a path. To avoid choosing such a case, its cost is set to be an
extremely large value.

Figs. 8 and 9show the planned paths for Dubin’s car for the same end configurations ofFigs. 6 and 7, respectively.
For comparisons, both our approach and[1] are shown in the same plot. It is clear that our approach generates a
path of minimum radius of turning and very often is much shorter, while[1] generates a smoothest but much longer
path and violates the curvature constraint. Detailed comparisons are tabulated inTables 1 and 2.

Fig. 8. Example of path planning for Dubin’s car forFig. 6. Each path has the same goal direction (q2) but different [q2]: (a) our approach, (b)
[1], and (c) a sampled path (path 6) of (a) and (b).
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Fig. 9. Example of path planning for Dubin’s car forFig. 7. Each path has the same goal position [q2] but different (q2): (a) our approach, (b)
[1], and (c) a sampled path (path 6) (a) and (b).

Fig. 10. The numerical value of LHS of(51).
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Fig. 11. This figure shows the generation of an alternative path byα+ cubic spiral (dashed line) to replace anα− one (dotted line) ifd < dmin(α+).
The shorter path is made up of two straight line segments and anα+ cubic spiral.

Table 1
Compare the length and maximal curvature of the paths forFig. 8

Path Our approach [1]

Length No. of lines Maximal curvature Length Maximal curvature

1 1581.604 2 0.005 (Given) 2835.669 2.4325E−03
2 1259.333 2 1996.644 2.7439E−03
3 1268.956 2 2054.655 2.6745E−03
4 1586.517 2 2902.866 2.5194E−03
5 1902.475 2 2710.05 2.0543E−03
6 1581.592 2 2835.241 2.4185E−03
7 1259.342 2 1996.43 1.9297E−03
8 1268.841 2 2054.41 2.6793E−03
9 1586.428 2 2902.403 2.3779E−03

10 1902.409 2 2709.564 3.1801E−03

Table 2
Compare the length and maximal curvature of the paths ofFig. 9

Path Our approach [1]

Length No. of lines Maximal curvature Length Maximal curvature

1 2305.699 2 0.005 (Given) 3746.283 1.5864E−03
2 1932.876 2 1171.6 5.0841E−03
3 1095.285 2 1240.915 3.7182E−03
4 1088.594 2 1436.491 3.1819E−03
5 1178.998 2 1324.303 3.5598E−03
6 1475.22 2 3534.677 1.7786E−03
7 1808.361 1 3988.471 1.7970E−03
8 2108.055 2 3968.48 2.1618E−03
9 2237.158 2 3995.483 2.8484E−03

10 2267.943 1 3891.327 4.4055E−03

It is noted that the length of second path solved by[1] is smaller than the path solved by our approach.
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5.2. On wall-collision avoidance

In practice, there may exist regions where mobile robot is prohibited for passing to keep a distance away from
human or machinery in the workcell. For example, in robot soccer game mobile robots move in a workspace
bounded by wall-like boundaries and there are moving obstacles in the workspace. Our cubic spiral based path
planning method is flexible to incorporate the space/positional constraints so that many acceptable wall collision-
free paths for mobile robots can be efficiently generated. In what follows, we consider wall collision avoidance by
introducing an additional term in the cost function.

A wall-type obstacle in a planar environment is described as a straight line segment equation

ax + by = c, (x, y) ∈ [xl, xu] × [yl, yu] (54)

In general, it is difficult to know whether and where a cubic spiral intersects with a line or not, since there are
infinitely many points along the curve itself that needs to be checked. To achieve real-time performance for collision
avoidance, we make some approximations in the following. There are six points on generated path that can be
readily computed whenC is solved. The six points are

p0 = [q1], p1 = p0 + �v1, p2 = p1 + �vc1, p3 = p2 + �vm, p4 = p3 + �vc2,

p5 = p4 + �v2 = [q2] (55)

wherepi ≡ (pix, piy). Some of these points may be identical, because somed’s are zero.
Note that the initial and goal points (p0 andp5) are collision-free, so they must lie on the same side of wall. Thus,

all we have to check are if

O(p0) · O(pi) > 0, for i = 1, 2, 3, 4 (56)

where we define:

O(p) = ax + by − c (57)

Then all six points defined in(55)are collision-free.
For checking whether a generated path, which is made up of straight line and cubic spiral segments, collides

with the walls, we should check separately the collision of straight line segments and cubic spiral segments with
the walls. For checking the collision of a straight line segment of a path with a wall(54), it suffices to check if two
endpoints of straight line segment are on the same side of wall. On the other hand, for collision checking of a cubic
spiral segment with a wall, we should compute the coordinate of selected points on a cubic spiral by generalized
Fresnel integral equation(2), whose integration is a major computational burden[22]. Instead, we implement a
simplified method, where only a few points are to be checked, to allow a simple runtime approximate collision
checking, as described below.

Consider a cubic spiral with sizedc1, angleα and direction�v. As shown inFig. 12, three straight line segments,
whose total length equals the length of cubic spiral, are generated to approximately fit a cubic spiral. Length of the
two end line segments is supposed the same and is denoted bylc1, while the middle line segment has direction�v
with lengthhc1. Then

dc1

D(α)
= hc1 + |dc1 − hc1|S(α), S(α) ≡ 1

cos
(

α
2

) (58)

Rearranging the above equation, we obtain

hc1

dc1
=

1
D(α) − sgn(dc1 − hc1)S(α)

1 − sgn(dc1 − hc1)S(α)
(59)
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Fig. 12. This figure shows how to generate two more check pointsp∗
1 andp∗

2 from p1 andp2. Note thatp∗
1 will replacep1 in checking Eq.(46),

butp∗
2 will not replacep2. This is becausep∗

2 lies betweenp2 andp3, and we need only check two endpoints of a straight line.

lc1 = |dc1 − hc1|
2 cos

(
α
2

) (60)

FromFig. 12, the two more junctions of line segments are used as check points, whose coordinates are computed
by

p∗
1 = p1 + lc1 · �n1, p∗

2 = p2 − lc1 · �nm (61)

These two points are close to the original cubic spiral, and check them can be a good approximation of collision
detection of this segment. Checking the additional two points of(61) or original end points is dependent on the
motion direction change of the path. Furthermore, note that this two more check points are collinear with the two
straight line segments that connect with this cubic spiral. For a line segment it suffices to check its two end points
to know whether the collision with a wall happens or not. Therefore, the number of check points for approximately
checking if a cubic spiral colliding with a wall in(42) is five or less. This shortcut is effective for eliminating most
unqualified paths, where some examples of generated collision-free paths fully lying in the constrained plane are
demonstrated inFig. 13. The average runtime is 0.3804 s.

5.3. Comparison with [1]

The family of paths used in[1] is continuous-curvature (“smoothest”) paths composed of two cubic spirals
connecting two configurations through an intermediate configuration selected from a symmetric mean, which
restricts the flexibility of path planner to incorporate other practical considerations like path length, curvature
constraint, obstacle avoidance that we considered here. Instead, the family of paths we considered is made up
of at most two curvature-constrained cubic spirals and up to three line segments connected via an intermediate
orientation, which achieves a minimal length for shortest path among this family of curvature-constrained paths.
The configuration reachability is enlarged. For example, the unattainable case ofFig. 2(b) by [1] mentioned in
Section2.3.2is now solved inFig. 14by our approach.

The path planner of[1] is mainly for mobile robots with forward motion in free space, while our method is
applicable to mobile robots with or without backward motion capability within wall-like boundaries. As compared
to our method,Figs. 8 and 9clearly show that longer paths are generated by the method[1], while the use of line
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Fig. 13. Examples of the wall-collision avoidance path planning.

Fig. 14. Our approach generates a feasible path, while[1] cannot for the case of two end configurations with opposite headings ofFig. 2(b).

segments as part of the path is essential for synthesis of shorter paths. For computational efficiency, the runtime of
both [1] and our approach is of the same order of magnitude, but[1] is a little faster in all simulations (0.0351 s
versus 0.0461 s on average forFig. 8, and 0.0340 s versus 0.0451 s on average forFig. 9) that we have performed
in (Centrino) PM-1.6 GHz, 512 MB laptop PC.

6. Conclusion

For generation of paths linking two configurations for wheeled mobile robots with turning radius lower bounded,
this paper considers the family of curvature-constrained curves constituted by (at most) two cubic spirals to achieve
reorientation, in connection with (up to) three straight line segments at inflection points of cubic spirals for length
minimization. The reachability is enlarged due to the addition of line segments as parts of the cubic spiral path.
For nonparallel configuration pair, a shortest path generation method searches a length-minimizing path from all
feasible paths of the family generated by linear programming optimization over the length of each path segment via
the selection of potential intermediate configurations, which are not necessarily selected from the symmetric mean.
For efficiency enhancement, a faster search of feasible and smooth path is also presented at the expense of little
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optimization loss. The easy-to-implement method lends itself to various generalizations. It is applicable to mobile
robots with or without backward driving capability. Furthermore, it is flexible to incorporate simplified collision
checking to rapidly generate wall-collision avoidance paths, at the expense of increasing the resulting path length,
for autonomously navigating a mobile robot in a constrained plane, e.g. robot soccer game. As is clear, applying
iteratively our approach also allows a straightforward extension to efficiently planning a feasible path connecting
an ordered sequence of target configurations in simple obstructed environment. Simulation results are shown to
demonstrate across a wide range of situations under various constraints. Extensive simulations with comparisons to
existing planning methods will be conducted in the future work. Furthermore, we will apply our cubic spiral path
planning method to dynamic environment where multiple objects are moving simultaneously, such as the situations
encountered in robot soccer game[31].
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Appendix A. Notes of S(α)

It is often needed to represent a known vector�v0 by two unit vectors ˆn1 andn̂2 in our discussion. As shown in
Fig. A1, let the angle between ˆn1 and�v0 is γ1; �v0 and n̂2 is γ2. Assumeγ1 �= γ2. Two lengthsd1 andd2 can be
solved from the identity:[

v0x

v0y

]
=

[
cosγ1 cosγ2

sinγ1 sinγ2

] [
d1

d2

]

as

d1 = ‖�v0‖ −sin(γ2)

sin(γ1 − γ2)
, d2 = ‖�v0‖ sin(γ1)

sin(γ1 − γ2)

Fig. A1. Represent a known vector�v0 by two independent vectors�n1 and�n2. γ1 andγ2 are angles between (�n1, �v0) and (�v0, �n2).



T.-C. Liang et al. / Robotics and Autonomous Systems 52 (2005) 312–335 333

If the decomposition is symmetric, orγ2 =−γ1 we have the simple solution:

d1 = d2 = ‖�v0‖ sin(γ1)

sin(2γ1)
= ‖�v0‖ 1

2 cos(γ1)

and

d1 + d2 = ‖�v0‖ 2 sin(γ1)

sin(2γ1)
= ‖�v0‖ 1

cos(γ1)

which is the form ofS(α).

Appendix B. Faster method

This appendix presents a faster method to find which two constraints, i.e. which two rows ofA, forms the extreme
point.

Let

Θ ≡ {Angle(angle(�n) − angle(�vgoal)) : �n ∈ N}
and defineθmp is the minimal positive element ofΘ, θMn the maximal negative element ofΘ, θvmp the vice minimal
positive element ofΘ, andθMn is the vice maximal negative element ofΘ.

There are three cases to be examined:

(i) None of he corresponding�n’s of bothθmp andθMn is �nj
c1 or �nl

c2, then

θ+ = θmp andθ− = θMn

(ii) One of the corresponding�n of θmp or θMn is �nj
c1 or �nl

c2, then we should checkθvmp or θvMn to compare which
solution is maximal. Two possible combinations of solutions could exist in this case:

θ+ = θvmp and θ− = θMn, or θ+ = θmp and θ− = θvMn

(iii) The corresponding�n’s of θmp andθMn are�nj
c1 and�nl

c2, one more combination of solution:

θ+ = θvmp and θ− = θvMn

should be checked.

Therefore, in total at most four combinations of solutions are examined to find the extreme point.
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[2] P. Soùeres, J. Laumond, Shortest path synthesis for a car-like robot, IEEE Trans. Automat. Contr. 41 (5) (1996) 672–688.
[3] A. Scheuer, Ch. Laugier, Planning sub-optimal and continuous-curvature paths for car-like robots, in: Proceedings of the 1998 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Victoria, BC, Canada, October 1998, 1998, pp. 25–31.
[4] A. Scheuer, Th. Fraichard, Collision-free and continuous-curvature path planning for car-like robots, in: Proceedings of the 1997 IEEE

International Conference on Robotics and Automation, Albuquerque, New Mexico, April 1997, 1997, pp. 867–873.
[5] A.M. Shkel, V.J. Lumelsky, On calculation of optimal paths with constrained curvature: the case of long paths, in: Proceedings of the 1996

IEEE International Conference on Robotics and Automation, Minneapolis, MN, April 1996, 1996, pp. 3578–3583.
[6] A.M. Shkel, V.J. Lumelsky, Curvature-constrained motion within a limited workspace, in: Proceedings of the 1997 IEEE International

Conference on Robotics and Automation, Albuquerque, New Mexico, April 1997, 1997, pp. 1394–1399.



334 T.-C. Liang et al. / Robotics and Autonomous Systems 52 (2005) 312–335
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