
A Comparative Study of Implementing Fast Marching
Method and A* Search for Mobile Robot Path
Planning in Grid Environment: Effect of Map

Resolution
Chia Hsun Chiang

Institute of Information
Science Academia Sinica

fetishist@gmail.com

Po Jui Chiang
Department of Electrical
Engineering, I-Shou
University

d90941006@ntu.edu.tw

Jerry Chien-Chih Fei
Department of Computer
Science, University of
Toronto

fei.jerry@gmail.com

Jin Sin Liu
Institute of Information

Science Academia Sinica
liu@iis.sinica.edu.tw

Abstract- Theoretically both of Fast Marching Method (FMM)

and A* SEARCH have the same time complexity of
)log(NNO , where N is the number of grid points in a map,

and guarantee to find an optimal solution if this path exists. This
paper examines the effect of alteration of resolution of map on the
performance of path planning by A* and FMM on 2D rectangular
grid environments. Our observations on the basis of comparative
simulations in three test environments at different resolutions are
that: A* is more focused and thus faster to generate a polygonal
line (continuous but not smooth) path, while FMM generates a
better curvature-control, generally smoother and shorter path
that is a numerically consistent approximation to the true shortest
continuous path as the resolution of map is finer and finer. The
difference of path quality for these two methods is more
significant as the resolution is finer.

I. INTRODUCTION

Point-to-point path planning of autonomous mobile robot,
defined as finding a collision-free path linking a given start
configuration to a goal configuration, has been extensively
explored in last two decades. Many different methods
achieving varying degrees of success in a variety of
conditions/criteria of motion and environments have been
developed (see e.g. [3], [24]). More recently, Fast Marching
Method (FMM) introduced by Sethian [2], [4], [17]-[19] has
received more attentions and has been applied to path planning
problem in mobile robots or UAV (underwater autonomous
vehicles) and many other research fields [5]-[7], [9]-[12], [15]-
[16], [27]-[28]. Before performing the FMM, we could
preprocess the environment by utilizing the distance transform
to compute the Euclidean distance transform of a given binary
map image. For a given distance metric, the distance transform
of an image produces a distance map of the same size. Each
pixel in the image would be assigned a number that is the
distance between that pixel and the nearest nonzero pixel of the
image, then the distance map, similar to potential map, can be
used as cost function for the Eikonal equation to avoid obstacle.
The work of distance transform could be accomplished by
Fast-Marching Method, but the Closest Point Transform (CPT)
developed by Sean Mauch would achieve the same goal more

efficiently [13, 14]. Many distance transform approaches
involves the concept of Voronoi diagram [21].

Theoretically both of FMM and A* SEARCH have the same
time complexity of)log(NNO , where N is the number of
grid points in a map. Both are efficient to plan a shortest path
in grid environment, where the path is represented as an (finite)
ordered sequence of adjacent nodes corresponding to a
piecewise linear curve connecting start and goal that minimizes
the accumulated cost from start to goal found by the employed
algorithm. In addition, both algorithms are complete [24], i.e.
guarantee to find an optimal path if the path exists or report
that no such path exist. Previous comparisons of FMM and A*
for path planning on the basis of single resolution are: A* is
more efficient [23], and path generated by FMM is smoother
[25]. In addition, [10] pointed out that graph search algorithms
are not consistent, while level set methods are consistent, i.e. as
the grid is refined, the obtained solution converges to the true
continuous solution. Through mobile robot path planning
simulations in test grid environments at different resolutions, a
path is generated by FMM or A* at each map resolution. The
aim of this paper based on observations on the genrerated paths
by these two methods is two-fold: on one hand, to verify the
statements drawn from a single resolution of map in the
existing literature, and on the other hand, to reveal their merits
according to their real performance measured by some metric
(for example, the number of points visited), and the differences
between the quality (e.g. smoothness, overall path length,
convergence etc.) of the path generated by these two methods
at different resolutions, although they all generate paths that
are polygonal lines. More importantly, the effect of resolution
of environment grid map, possiibly built from different devices
(e.g. camera, laser scanner, satellite imaginery) [26] in regards
to the precision with which the paths must be generated, on
path qualities is investigated.

In Section II, we outline A* SEARCH and FMM for shortest
path planning. Section III presents the experimental results on
both methods for altering the resolution of grid map. In Section
IV, we make emperically comparisons of the results followed
by discussions of some possible ways of improving FMM.

978-1-4244-1953-1/07/$25.00 c2007 IEEE.

II. REVIEW OF A* SEARCH AND FAST MARCHING
METHOD

To begin, a grid map (a two dimensional orthogonal grid of
nodes) representing the flat terrain that the mobile robot will
move is given. The nodes are either safe or forbidden and a
start, a goal located in the map is given. A path of a point
mobile robot from start to goal that minimizes a cost is to be
found. In the following, we outline two search –based methods:
A* and FMM that could search a shortest path, defined by an
(finite) ordered sequence of nodes, linking the given pair of
start and goal.

A. A* SEARCH Algorithm [1]
The idea of A* SEARCH is that each node is associated with

a cost function
 () () ()f n g n h n� � ,

where)(ng is the cost from initial node to the current node
and)(nh is an estimated cost from the current node to the
goal node. A* SEARCH generates and processes the successor
nodes in a certain way. Whenever it looks for the next node to
process, it employs heuristic function)(nh trying to choose
the lowest cost node to process.The following algorithm
summarizes A* SEARCH:
A* Algorithm:
1. Put the start node s on a list called OPEN and

compute)(sf .
2. If OPEN is empty, exit with failure; otherwise continue.
3. Remove from OPEN that node whose f value is smallest

and put it on a list called CLOSED. Call this node n .
Resolve ties for minimal f values arbitrarily, but always
in favor of any goal node.

4. If n is a goal node, exit with the solution path obtained by
tracing back through the pointers; otherwise continue.

5. Expand node n , generating all of its successors. If there
are no successors, go immediately to 2. For each successor

in , compute)(inf .
6. Associate with the successors not already on either OPEN

or CLOSED the f values just computed. Put these nodes
on OPEN and direct pointers from them back to n .

7. Associate with those successors that were already on
OPEN or CLOSED the smaller of the f values just
computed and their previous f values. Put on OPEN
those successors on CLOSED whose f values were thus
lowered, and redirect to n the pointers from all nodes
whose f values were lowered.

8. Go to 2.

A* SEARCH operates in a way that it maintains two sets of
nodes - OPEN and CLOSED. The OPEN list keeps track of the
nodes that will be examined during path planning while
CLOSED list holds the ones which will not be examined.
Initially, OPEN list contains the initial node and CLOSED list

stores the nodes that are unreachable (ex: obstacles in path
planning problems). Each node also maintains a pointer to its
parent node which is used for retrieving optimal solution in the
end. A* SEARCH has a main loop that repeatedly gets the
node with smallest)(nf cost from the OPEN list until the
goal node is obtained or cannot be reached. For each newly
generated successor node, if it is already in OPEN or CLOSED
list and the copy there has an equal or lower)(nf estimate,
then we can discard this newly generated node and move on.
Otherwise we will remove the one with higher cost from the
lists, and update)(nf ,)(ng , and)(nh of parent node of
this newly generated node. Then store this node into OPEN list
and return to the main loop. Note that)(ng is calculated as the
distance (cost) from previous node to the current node plus the
distance already calculated before arriving to the previous node.

The A* search algorithm relies heavily on heuristic function.
An appropriate heuristic function determines whether the
algorithm can execute efficiently and accurately. In order to
find an optimal solution, the heuristic must be admissible. To
be admissible, the heuristic function must never over-estimate
the cost from one node to the goal node.

B. Fast Marching Method (FMM)

Isotropic Eikonal equation is the following first order PDE
���� xxxu),()(�

 ���� xxqxu),()(� � � �������(1)
�������� ����	����
���������	������	���	��	����������	����������

��	����� ���� 	��� ������ � � �	�� ���������As implicated in
the robotic navigation, the formulation can be interpreted as
isotropic front propagation or isotropic min-time optimal
trajectory problems. In the control-theoretic context, the
characteristic lines of equation (1) can be interpreted as the
optimal trajectories.

The key feature of Eikonal equation (1) is that their
characteristic lines coincide with the gradient lines of the
viscosity solution)(xu ; this allows the construction of single-
pass Fast Marching Method (FMM) [2], [4], [17]-[19] that
solves the Eikonal equation in a stable and consistent manner.
Under 4-connectivity 2D grid condition, using the first order
finite difference upwind scheme to approximate the Eikonal
equation����������	���������������������������	�������	�����
u to estimate actual (geodesic) distances in discrete domain:

	
� � 	
� �2 2

1, 1, , 1 , 1

2
,

max , ,0 max , ,0i j i j i j i j

i j

u U u U u U u U

�

 � � �

�

�(2)

where we assume the Cartesian grid with unit grid spacing;

, ,,x y x yU � denotes the distance and speed at grid coordinate

),(yx , respectively. If the discriminant of quadratic equation
(2) is larger than zero, we solve the larger u solution of the
quadratic equation; else we set the value of u with the
following equation instead:

},,,min{ 1,1,,1,1 ���� jijijijiij UUUUu � (3)

In the following, we present the algorithm to incarnate the
front propagation of FMM.
FMM Algorithm:
Definition. The nodes in the grid map are classified into three
categories

1 Alive (or Known) is the set of all grid points at which
the distance value u has been reached and will not be
changed;
(a) Trial (or Near, Narrow band) is the set of next

grid points to be examined/readjusted and for
which an estimate U of u has been computed
using equation (2) or (3) only from Alive points. U
may be changed later;

2 Far is the set of all other grid points for which U is
not yet computed;

Initialize
4 Alive points: Let Alive be the set of starting grid point

0p . Set

0)()(00 �� pupU
5 Narrow Band points: Let Narrow Band be the set of

all grid points neighboring to 0p with initial values

)()(ppU �� ;
6 Far Away points: Let Far Away be the set of the rest

of the grid points; set their value to �;
Marching Forwards Loop

1 Let min min(,)p i j� be the Trial point with the
smallest distance U;

2 Move it from the Trial set to the Alive set (i.e.

min min min min, ,i j i jU u� is frozen);

3 For each nearest neighbor (,)i j (4-connectivity in

2D) of � �minmin , ji :
(b) If (,)i j is Far Away, add it to the Trial set and

compute a first estimate U of u using equation (2)
or (3);

(c) If (,)i j is Trial, update the distance ,i jU using
equation (2) or (3);

Note that only the Alive points are considered to solve

Eikonal equation with upwind finite difference scheme. We
examine neighbors of the point being examined and then select
the suitable Alive ones. The movement of the front, opposite to
the gradient, will point outward from the selected Alive point.
As shown in the algorithm, FMM sweeps the front ahead in an
upwind fashion by considering a set of points in narrow band
around the existing front and march this narrow band forward,
freezing the values of existing points and bringing new ones
into the narrow band structure. (See Fig. 1 for an illustration of
this process). The central idea of narrow band is to build an
adaptive mesh around the propagation interface and perform
computation only on these grid points. We make a tube
containing all the points neighboring to the interface curve
within some distance by calculating the signed distance
function, points inside the frontier are with negative value and
outside ones positive, and using that to select the points. The
key is in the selection of which grid point in the narrow band to
update with the help of heap operator. Using a min-heap
structure for the Trial list, the algorithm computational
complexity is)log(NNO where N is the number of grid
points. An optimal path is generated by backtrack the points
from goal to start via gradient descent by using the computed
u values. The bend of the generated path would be affected by
the gradient computation mask and resolution of the map, as
we will see in simulations in Sec. 3.

III. EXPERIMENTS

The test environments shown in Fig. 2 consist of a free
environment, a concavity obstacle, and a narrow passage.

Fig. 1. Illustration of Narrow Band Expansion in FMM. The blocks with
blue shadow are inside the narrow band computation mask. 1: Far, distance
has not yet been computed. 0: Trial, distance is being computed but not set.
-1: Alive, distance has been computed.

Fig. 2 Test environments. (a) Free space. (b) Map with one concavity
obstacle. (c) Narrow passage

Fig. 3. Alter the resolution of a map. (a) The original map graph. (b) Map
with spacing 2 sampling. (c) Map with spacing 4 sampling

All the maps are uniformly discretized into an evenly
spaced 2D rectangular grid of nodes with binary values. The
nodes of the grid represent samples of the continuous
environment, in which 0 is assigned to nodes that obstacle
occupies; 1 to free node. This constructs a binary
representation of the flat terrain represented by nn� grid. Of
course, grey level representing level of difficulty or danger of
the grids surrounding the obstacles [25] or dangerous ground
along the way can be assigned so that the robot can move along
a path keeping away from the dangerous area. We assume the
mobile robot, modeled as a point, can move along each of 8
directions in orthogonal grid environments. In the following
experiments performed by A*, whenever a mobile robot
moving toward up, down, left, or right the cost is 1 and going
diagonally the cost is 2 and the heuristic used in A* is the
Euclidean distance between the current node and goal node.
Although this might not be the true distance between the two
nodes, it never overestimates the actual distance since it is the
shortest possible route.

To account for each environment whose map may be
built from various devices that have different ranges and
resolution, we vary the resolution of map and run the A* and
FMM again. To vary the resolution of a map from coarser to

finer discretizations, the method we adopt is regular sampling
with unique spacing. This is illustrated in Fig. 3. Fig. 3(a) is a

88� map. To lessen the amount of information grasped from
the map, we sampling the grid points by every interval k . For
example, in Fig. 3(b), we set 2�k , i.e. beginning from the
upper left of the map, the value of each upper left corner point
in the 22� red block will be sampled. If the value got is 0,
then the value represent the red block is 0; similarly, if the
value got is 1, then the value assigned to the red block is 1. Fig.
3(c) shows the case of 4k � . In implementation, to avoid the
confusion of selecting the start and goal point as the resolution
decreases, special characteristic points, such as corner or
centroid, in a map, are preferred (See Fig. 2 for reference). For
coarse resolution, the map size is reduced at the expense of
growing number of forbidden nodes. This could eliminate
some valid paths.

All tests are run on a PC with Intel Core 2 Duo 1.8GHz
microprocessor. The simulation results for visualization of the
generated path and the visited area for each method are plotted
in Fig.4 for free space, where two cases in free space are
simulated, and Fig. 5 for concavity obstacle and a narrow
passage between initial and goal. For free space, two cases
were run (see Fig.4). Case one is that (start, goal) pair lies on a
level line, and Case two is that (start, goal) pair lies on an
arbitrary line. For Case one (Fig.4(a)), the paths generated by
two methods are identical straight line, while in Case two (Fig.
4(b)) FMM will run nearly diagonal; however, A* would go
zigzag. For Fig 5(a) of the map with concavity, both FMM
and A* avoid the obstacle and reach the overcurtained goal. In
order to reach the goal in Fig. 2(c), the robot must make its
way through the narrow passage (note that the map resolution
for a successful search should be fine enough). Both FMM and
A* generate a path through the narrow passage (see Fig. 5(b)),
not trapped by the local minimum, which might happen in
potential field method [3]. Fig. 6 shows the coverage of search

Fig. 4. (a)Case 1: FMM and A* generate identical path in free space

Fig. 4(b). Case 2: FMM (left) generates a shorter path than A* (right) in
free space.

Fig. 5. (b) Simulation results of FMM and A* in narrow passage

Fig. 5. (a)Simulation results of FMM and A* in environment with cavity

������
���

�

!�

"�

#�

$�

���

� %��� ����� �%��� !���� !%���

&��������'�
�(��	�

��
��
��
��
�)
��
��
�
��

�

)* �''

+�,�	�

�

!�

"�

#�

$�

���

� %��� ����� �%��� !���� !%���

&��������'�
�(��	�

�
��
��
��
��
)
��
��
�
�

)* �''

&�����+������

�

!�

"�

#�

$�

���

� %��� ����� �%��� !���� !%���

&��������'�
�(��	�

�
��
��
��
��
)
��
��
�
�

)* �''

Fig.6. The coverage of FMM and A* in test environments at different
resolutions.

space, i.e. percentage of the number of visited points before the
solution is found relative to total number of grid points as a
measure of efficiency. Unlike running time, coverage is less
dependent on the computer used in experiments but more on
characteristicsof the method employed.

IV. COMPARISONS AND DISCUSSIONS

Comparing the paths generated by the grid planners FMM
and A* in test environments uniformly discretized at different
resolutions, a number of observations can be highlighted to
reveal different aspects of the grid planners.
 (a)Efficiency and memory storage

From Fig. 6, we could find that the searching range of A*
SEARCH is smaller than FMM by 20~30 percent. In some
extreme case (free map), the gap between them reaches nearly
90 percent. Generally speaking, the decreasing rate of
searching range by A* is larger than that by FMM while the
resolution increases. These evidences solidify that A*
SEARCH is more focused consumes less memory. With the
aid of heuristic, A* SEARCH concentrated its exploration
around the optimal path. A*would be more efficient than
FMM on point-to-point path planning problem [23].

(b) Quality of generatedl path
It is visually clear from simulation result of path planning

in a map with obstacles (Fig. 5) at different resolutions that the
paths produced by FMM are smoother, which was also
observed in [15], [25]. We explain this phenomenon as follows.
A* generates a path of polygonal line with slopes constrained
by the 8 allowable directions, which is continuous but not
curvature-continuous. FMM generates the optimal path by
employing gradient descent to backtrack the nodes, whose
direction is not constrained by the neighboring points around
the point being processed to be the next candidate point. With
this flexibility, FMM could have more path curvature control
capability to comply with the kinematics of mobile robot.
[16]-[17] presented a curvature-control FMM to control the
curvature of generated path in advance.

From Fig. 7 and Table, it is noted that the path generated by
FMM is generically shorter than the ones generated by A* in
each test environment. As the resolution of grid map
increases, the path length also increases, and the difference
between the path length generated by the two methods is more
evident. Especially under the swerve case, FMM saves more
travel distance than A*. Note that the manipulation of
resolution decreasing will result in loss of some information
contained in original map and cause an irreversible location
deviation (See Fig. 8). The effect disrupts the comparison of
path lengths in grid map at different resolutions.
(c)Convergence

From Fig. 5 (and other simulations not shown here), we
could find that while the grid spacing (i.e. resolution) becomes
finer and finer, the path generated by FMM becomes smoother
and smoother, by contrast, the path generated of A* changes
little. This evidence solidifies that while the resolution rises,
FMM could generate solutions convergent to the continuous
solution of Eikonal equation (1). This is explained as follows.
FMM produces a numerically consistent approximation to
solution of continuous Eikonal equation [4], [10]

TABLE PATH LENGTH COMPARISON
(�	��-��.	��

���������

/�,������	�

(�	��-��.	�����

+���,�	��

(�	��-��.	���������

������
����.��

)*� �'')*� �''�)*� �''

"�*"�� 01������ 01������ %1��"�#� %%�#�0!� ""�211�� "0��1�%�

%�*%�� "1������ "1������ 2"�$2��� 2��%20�� %#�"%%$� %"�0��#�

#�*#�� %1������ %1������ $1�%!#1� $"�"%$2� #2���!2� #"�1�"%�

2%*2%� 2"������ 2"����������"!#����%���!�� $"�2#1#� $"�!1#��

���*��� 11������ 11�������"1��%"!��"���$!����!�1�!����$�00%��

�!�*�!� ��1��������1�������$��!1#���##�$!����0#�012���0%�#$���

'�
�

��3��

�%�*�%� �"1�������"1������!!0�1%0��!�$�2�����#1�%01���#��212��

2 2

x yu u c� �

Thus FMM will generate a true collision-free shortest path
(i.e. geodesic) as the resolution of the map become finer and
finer. On the contrary, as mentioned in [17], A* SEARCH

Fig.8.As the resolution goes from 44� (black), 33� (green) to

22� (purple), the path deviates from AB , '' BA , to ""BA .

(�	��-��.	�����4�������	�5����	����������
����

������

%������

��������

�%������

!�������

� %��� ����� �%��� !���� !%���
&��������'�
�(��	�

(
�	
��
-
��
.	
�

)* �''

(�	��-��.	�����4�������	�5����	����+�,�	��

������

%������

��������

�%������

!�������

!%������

� %��� ����� �%��� !���� !%���
&��������'�
�(��	�

(
�	
��
-
��
.	
�

)* �''

(�	��-��.	�����4�������	�5����	����&�����+�������

������

%������

��������

�%������

!�������

� %��� ����� �%��� !���� !%���
&��������'�
�(��	�

(
�	
��
-
��
.	
�

)* �''

Fig. 7. The path length in different environments.

algorithm, like Dijkstra method, does not converge to the
continuous solution even the resolution becomes finer and finer.
Instead, it produces the solution to the following PDE

Max *,)(x y h Cu u �

where h is the grid size. As h goes to zero, this does not
converge to the solution of the continuous Eikonal equation (3).
(d) Some possible ways to improve FMM
These comparisons suggest that FMM is a useful method for
high quality path planning. As a means of shrinking the
searching area, one can attempt to add the heuristic function
(as A* SEARCH) to FMM. However, the ordering breaks the
monotone condition that is required by Fast Marching, so the
errors would accumulate. Some literature mentioned that the
error is tolerable [11, 12]. Other attempts to enhance the FMM
are
(i) Triangulate the map instead of rectangular grid environment
to lessen the size of work space and then apply FMM [20].
Facing this more complicated situation, FMM could not work
well directly in that the gradient vector may not coincide with
the orientation of information propagation.
(ii) According to [22], the time complexity of FMM could
reach)(NO by use of cyclic untidy priority queue data
structure instead of heap queue in current implementation. The
cost is to include mistakes result from fail to select the real
minimum value.

ACKNOWLEDGMENT

This research was supported by National Science Council
under contract NSC 96-2221-E-001-018-MY2.

REFERENCES
[1] N. Nilsson, Problem-solving methods in artificial intelligence, McGraw-

Hill, New York, 1971.
[2] D. Adalsteinsson, and J.A.,Sethian, “A Fast level set method for

propagating interfaces,” Journal of Computational Physics, vol. 118,
pp.269-277, 1995.

[3] Jean Claude Latombe, Robot motion planning, Kluwer Academic
Publishers, 1991.

[4] J. A. Sethian, Level Set Methods, Evolving interfaces in geometry, fluid
mechanics, computer vision, and materials science, Cambridge
University Press,1999.

[5] Santiago Garrido, Luis Moreno, Mohamed Abderrahim, Fernando Martin,
“Path planning for mobile robot navigation using Voronoi diagram and
fast marching”, Proceedings of the 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Beijing, China, October 9-
15, 2006.

[6] Santiago Garrido, Luis Moreno, Dolores Blanco, “Voronoi diagram and
fast marching applied to path planning”, Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, Oriando, Florida,
May 2006.

[7] Santiago Garrido, Luis Moreno, Dolores Blanco, Fernando Martin, “Log
of the inverse of the distance transform and fast marching applied to path
planning,” Proceedings of the 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Beijing, China, October 9-15, 2006.

[8] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sciences
USA, Vol. 93, pp 1591-1595, February 1996.

[9] R. Kimmel and J.A. Sethian, “Optimal algorithms for shape from shading
and path planning,” Journal of Mathematical Imaging and Vision, vol.14,
pp.237-244, 2001.

[10] Laurent D. Cohen and Ron Kimmel, “Global minimum for active contour
models: A minimal path approach”, International Journal of
Computation Vision, vol. 24, no.1, pp. 57-78, 1997.

[11] Gabriel Peyre and Laurent Cohen, “Heuristically driven front
propagation for geodesic paths extraction”, Proceedings of VLSM’05,
Springer LNCS, pp.173-184, Oct. 2005.

[12] Gabriel Peyre and Laurent Cohen, “Landmark-based geodesic
computation for heuristically driven path planning”, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2229-2236,
June 2006.

[13] Sean Mauch, “A Fast Algorithm for Computing the Closest Point and
Distance Transform”, Tech. Rept. CalTech, Dec. 2000

[14] Sean Mauch, “David Breen: A Fast Marching Method of Computing
Closest Points”,
http://www.cco.caltech.edu/~sean/closestpoint/closept.html

[15] Clement Petres, Yan Pailhas, Pedro Patron, Yvan Petillot, Jonathan
Evans, David Lane, ”Path planning for autonomous underwater vehicles”,
IEEE Trans. Robotics, vol. 23, no. 2, pp. 331-341, Apr. 2007

[16] Clement Petres, Yan Pailhas, Yvan Petillot, David Lane, “Underwater
path planning using fast marching algorithms,” Oceans-Europe 2005, pp.
814-819, 2005.

[17] J.A. Sethian, “Fast algorithm for optimal control, anisotropic front
propagation and multiple arrivals,” Proceedings of the International
Congress Mathematicians, Beijing vol. 3, 735--746, 2002.

[18] J.A. Sethian, and A. Vladimirsky, “Ordered upwind methods for static
Hamilton-Jacobi equations,” Proceedings of the National Academy of
Sciences, vol. 98, 11069-11074, 2001.

[19] R. Kimmel, J.A. Sethian, “Computing geodesic paths on manifolds,”
Proceedings of the National Academy of Sciences, pp. 8431-8435, 1998.

[20] Marcin Novotni, and Reinhard Klein, “Computing geodesic distances on
triangular meshes,” WSCG 2002, pp. 341-348.

[21] Mikhail J. Atallah, Algorithms and theory of computation handbook,
CRC PRESS, Chap. 36, 1999

[22] Liron Yatziv, Alberto Bartesaghi, Guillermo Sapiro, ”O(N)
Implementation of the Fast Marching Algorithm”, Journal of
Computational Physics , vol. 212, pp. 393-399, 2006.

[23] Daniel Livingstone, Robert McDowell, “Fast marching and fast driving:
combining off-line search and reactive A.I.,” GAME-ON 2003.

[24] S. Lavalle, Planning algorithms, Cambridge University Press, New York,
2006.

[25] P. Melchior, B. Orsoni, O.Lavialle, A.Poty and A. Oustaloup,
“Consideration of obstacle danger level in path planning using A* and
fast-marching optimization: comparative study,” Signal Processing,
vol.11, pp.2387-2396, 2003.

[26] P. Tsiotras and E. Bakolas, “A hierarchical on-line path-planning scheme
using wavelets,” European Control Conference, Kos, Greece, July 2007.

[27] M.S. Hassouna, A.E. Abdel-Hakim and A. Farag, “Robust robotic path
planning using level sets,” IEEE Int. Conf. Image Processing, pp.473-476,
2005.

[28] R. Kimmel and J.A. Sethian, “Optimal algorithm for shape from shading
and path planning,” J. Math. Imaging and Vision, vol.14, no.3, pp.237-
244, 2001.

