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Abstract- Theoretically both of Fast Marching Method (FMM) 

and A* SEARCH have the same time complexity of 
)log( NNO , where N is the number of grid points in a map, 

and  guarantee to find an optimal solution if this path exists. This 
paper examines the effect of alteration of resolution of map on the 
performance of path planning by A* and FMM on 2D rectangular 
grid environments. Our observations on the basis of comparative 
simulations in three test environments at different resolutions are 
that: A* is more focused and thus faster to generate a polygonal 
line (continuous but not smooth) path, while FMM generates a 
better curvature-control, generally smoother and shorter path 
that is a numerically consistent approximation to the true shortest 
continuous path as the resolution of map is finer and finer. The 
difference of path quality for these two methods is more 
significant as the resolution is finer. 

 

I. INTRODUCTION 

Point-to-point path planning of autonomous mobile robot, 
defined as finding a collision-free path linking a given start 
configuration to a goal configuration, has been extensively 
explored in last two decades. Many different methods 
achieving varying degrees of success in a variety of 
conditions/criteria of motion and environments have been 
developed (see e.g. [3], [24]). More recently, Fast Marching 
Method (FMM) introduced by Sethian [2], [4], [17]-[19] has 
received more attentions and has been applied to path planning 
problem in mobile robots or UAV (underwater autonomous 
vehicles) and many other research fields [5]-[7], [9]-[12], [15]-
[16], [27]-[28]. Before performing the FMM, we could 
preprocess the environment by utilizing the distance transform 
to compute the Euclidean distance transform of a given binary 
map image. For a given distance metric, the distance transform 
of an image produces a distance map of the same size. Each 
pixel in the image would be assigned a number that is the 
distance between that pixel and the nearest nonzero pixel of the 
image, then the distance map, similar to potential map, can be 
used as cost function for the Eikonal equation to avoid obstacle. 
The work of distance transform could be accomplished by 
Fast-Marching Method, but the Closest Point Transform (CPT) 
developed by Sean Mauch would achieve the same goal more 

efficiently [13, 14]. Many distance transform approaches 
involves the concept of Voronoi diagram [21]. 

Theoretically both of FMM and A* SEARCH have the same 
time complexity of )log( NNO , where N is the number of 
grid points in a map. Both are efficient to plan a shortest path 
in grid environment, where the path is represented as an (finite) 
ordered sequence of adjacent nodes corresponding to a 
piecewise linear curve connecting start and goal that minimizes 
the accumulated cost from start to goal found by the employed 
algorithm. In addition, both algorithms are complete [24], i.e. 
guarantee to find an optimal path if the path exists or report 
that no such path exist. Previous comparisons of FMM and A* 
for path planning on the basis of single resolution are: A* is 
more efficient [23], and path generated by FMM is smoother 
[25]. In addition, [10] pointed out that graph search algorithms 
are not consistent, while level set methods are consistent, i.e. as 
the grid is refined, the obtained solution converges to the true 
continuous solution. Through mobile robot path planning 
simulations in test grid environments at different resolutions, a 
path is generated by FMM or A* at each map resolution. The 
aim of this paper based on observations on the genrerated paths 
by these two methods is two-fold: on one hand, to verify the 
statements drawn from a single resolution of map in the 
existing literature, and on the other hand, to reveal their merits 
according to their real performance measured by some metric 
(for example, the number of points visited), and the differences 
between the quality (e.g. smoothness, overall  path length, 
convergence etc.) of the path generated by these two methods 
at different resolutions, although they all generate paths that 
are polygonal lines. More importantly, the effect of resolution 
of environment grid map, possiibly built from different devices 
(e.g. camera, laser scanner, satellite imaginery) [26] in regards 
to the precision with which the paths  must be generated, on 
path qualities is investigated. 

In Section II, we outline A* SEARCH and FMM for shortest 
path planning. Section III presents the experimental results on 
both methods for altering the resolution of grid map. In Section 
IV, we make emperically comparisons of  the results followed 
by discussions of some possible ways of improving FMM. 
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II. REVIEW OF A* SEARCH AND FAST MARCHING 
METHOD 

To begin, a grid map (a two dimensional orthogonal grid of 
nodes) representing the flat terrain that the mobile robot will 
move is given. The nodes are either safe or forbidden and a 
start, a goal located in the map is given. A path of a point 
mobile robot from start to goal that minimizes a cost is to be 
found. In the following, we outline two search –based methods: 
A* and FMM that could search a shortest path, defined by an 
(finite) ordered sequence of nodes, linking the given pair of 
start and goal. 

A. A* SEARCH Algorithm [1] 
The idea of A* SEARCH is that each node is associated with 

a cost function 
 ( ) ( ) ( )f n g n h n� � ,  

where )(ng  is the cost from initial node to the current node 
and )(nh  is an estimated cost from the current node to the 
goal node. A* SEARCH generates and processes the successor 
nodes in a certain way. Whenever it looks for the next node to 
process, it employs heuristic function )(nh trying to choose 
the lowest cost node to process.The following algorithm 
summarizes A* SEARCH: 
A* Algorithm: 
1. Put the start node s  on a list called OPEN and 

compute )(sf . 
2. If OPEN is empty, exit with failure; otherwise continue. 
3. Remove from OPEN that node whose f value is smallest 

and put it on a list called CLOSED. Call this node n . 
Resolve ties for minimal f  values arbitrarily, but always 
in favor of any goal node. 

4. If n  is a goal node, exit with the solution path obtained by 
tracing back through the pointers; otherwise continue. 

5. Expand node n , generating all of its successors. If there 
are no successors, go immediately to 2. For each successor 

in , compute )( inf . 
6. Associate with the successors not already on either OPEN 

or CLOSED the f  values just computed. Put these nodes 
on OPEN and direct pointers from them back to n . 

7. Associate with those successors that were already on 
OPEN or CLOSED the smaller of the f  values just 
computed and their previous f  values. Put on OPEN 
those successors on CLOSED whose f  values were thus 
lowered, and redirect to n  the pointers from all nodes 
whose f  values were lowered.  

8. Go to 2.  
 

A* SEARCH operates in a way that it maintains two sets of 
nodes - OPEN and CLOSED. The OPEN list keeps track of the 
nodes that will be examined during path planning while 
CLOSED list holds the ones which will not be examined. 
Initially, OPEN list contains the initial node and CLOSED list 

stores the nodes that are unreachable (ex: obstacles in path 
planning problems). Each node also maintains a pointer to its 
parent node which is used for retrieving optimal solution in the 
end. A* SEARCH has a main loop that repeatedly gets the 
node with smallest )(nf  cost from the OPEN list until the 
goal node is obtained or cannot be reached. For each newly 
generated successor node, if it is already in OPEN or CLOSED 
list and the copy there has an equal or lower )(nf  estimate, 
then we can discard this newly generated node and move on. 
Otherwise we will remove the one with higher cost from the 
lists, and update )(nf , )(ng , and )(nh of  parent node of 
this newly generated node. Then store this node into OPEN list 
and return to the main loop. Note that )(ng  is calculated as the 
distance (cost) from previous node to the current node plus the 
distance already calculated before arriving to the previous node.  

The A* search algorithm relies heavily on heuristic function. 
An appropriate heuristic function determines whether the 
algorithm can execute efficiently and accurately. In order to 
find an optimal solution, the heuristic must be admissible. To 
be admissible, the heuristic function must never over-estimate 
the cost from one node to the goal node. 

B. Fast Marching Method (FMM) 

Isotropic Eikonal equation is the following first order PDE 
���� xxxu ),()( �

 
 ���� xxqxu ),()( � � � �������(1) 
�������� ����	����
���������	������	���	��	����������	����������

��	����� ���� 	��� ������  � � �	�� ���������As implicated in 
the robotic navigation, the formulation can be interpreted as 
isotropic front propagation or isotropic min-time optimal 
trajectory problems. In the control-theoretic context, the 
characteristic lines of equation (1) can be interpreted as the 
optimal trajectories.  

The key feature of Eikonal equation (1) is that their 
characteristic lines coincide with the gradient lines of the 
viscosity solution )(xu ; this allows the construction of single-
pass Fast Marching Method (FMM) [2], [4], [17]-[19] that 
solves the Eikonal equation in a stable and consistent manner. 
Under 4-connectivity 2D grid condition, using the first order 
finite difference upwind scheme to approximate the Eikonal 
equation����������	���������������������������	�������	�����
u to estimate actual (geodesic) distances in discrete domain: 
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where we assume the Cartesian grid with unit grid spacing; 

, ,,x y x yU � denotes the distance and speed at grid coordinate 

),( yx , respectively. If the discriminant of quadratic equation 
(2) is larger than zero, we solve the larger u  solution of the 
quadratic equation; else we set the value of u  with the 
following equation instead: 



 
},,,min{ 1,1,,1,1 ���� jijijijiij UUUUu �         (3) 

 
In the following, we present the algorithm to incarnate the 
front propagation of FMM. 
FMM Algorithm: 
Definition. The nodes in the grid map are classified into three 
categories 

1 Alive (or Known) is the set of all grid points at which 
the distance value u  has been reached and will not be 
changed; 
(a) Trial (or Near, Narrow band) is the set of next 

grid points to be examined/readjusted and for 
which an estimate U of u  has been computed 
using equation (2) or (3) only from Alive points. U 
may be changed later; 

2 Far is the set of all other grid points for which U  is 
not yet computed; 

Initialize 
4 Alive points: Let Alive be the set of starting grid point 

0p . Set  

0)()( 00 �� pupU  
5 Narrow Band points: Let Narrow Band be the set of 

all grid points neighboring to 0p  with initial values 

)()( ppU �� ; 
6 Far Away points: Let Far Away be the set of the rest 

of the grid points; set their value to �; 
Marching Forwards Loop 

1 Let min min( , )p i j�  be the Trial point with the 
smallest distance U; 

 
2 Move it from the Trial set to the Alive set (i.e. 

min min min min, ,i j i jU u� is frozen ); 

3 For each nearest neighbor ( , )i j  (4-connectivity in 

2D) of  � �minmin , ji : 
(b) If ( , )i j  is Far Away, add it to the Trial set and 

compute a first estimate U of u using equation  (2) 
or (3); 

(c) If ( , )i j  is Trial, update the distance ,i jU  using 
equation  (2) or (3); 

 
Note that only the Alive points are considered to solve 

Eikonal equation with upwind finite difference scheme. We 
examine neighbors of the point being examined and then select 
the suitable Alive ones. The movement of the front, opposite to 
the gradient, will point outward from the selected Alive point. 
As shown in the algorithm, FMM sweeps the front ahead in an 
upwind fashion by considering a set of points in narrow band 
around the existing front and march this narrow band forward, 
freezing the values of existing points and bringing new ones 
into the narrow band structure. (See Fig. 1 for an illustration of 
this process). The central idea of narrow band is to build an 
adaptive mesh around the propagation interface and perform 
computation only on these grid points. We make a tube 
containing all the points neighboring to the interface curve 
within some distance by calculating the signed distance 
function, points inside the frontier are with negative value and 
outside ones positive, and using that to select the points. The 
key is in the selection of which grid point in the narrow band to 
update with the help of heap operator. Using a min-heap 
structure for the Trial list, the algorithm computational 
complexity is )log( NNO  where N  is the number of grid 
points. An optimal path is generated by backtrack the points 
from goal to start via gradient descent by using the computed 
u values. The bend of the generated path would be affected by 
the gradient computation mask and resolution of the map, as 
we will see in simulations in Sec. 3. 

 

III. EXPERIMENTS 

The test environments shown in Fig. 2 consist of a free 
environment, a concavity obstacle, and a narrow passage. 

 
Fig. 1.  Illustration of Narrow Band Expansion in FMM. The blocks with 
blue shadow are inside the narrow band computation mask. 1: Far, distance 
has not yet been computed.  0:  Trial, distance is being computed but not set. 
-1: Alive, distance has been computed. 

 
Fig. 2 Test environments. (a) Free space. (b) Map with one concavity 
obstacle. (c) Narrow passage 

 
Fig. 3.  Alter the resolution of a map. (a) The original map graph. (b) Map 
with spacing 2 sampling. (c) Map with spacing 4 sampling 



All the maps are uniformly discretized into an evenly 
spaced 2D rectangular grid of nodes with binary values. The 
nodes of the grid represent samples of the continuous 
environment, in which 0 is assigned to nodes that obstacle 
occupies; 1 to free node. This constructs a binary 
representation of the flat terrain represented by nn� grid. Of 
course, grey level representing level of difficulty or danger of 
the grids surrounding the obstacles [25] or dangerous ground 
along the way can be assigned so that the robot can move along 
a path keeping away from the dangerous area. We assume the 
mobile robot, modeled as a point, can move along each of 8 
directions in orthogonal grid environments. In the following 
experiments performed by A*, whenever a mobile robot 
moving toward up, down, left, or right the cost is 1 and going 
diagonally the cost  is 2  and the heuristic used in A* is  the 
Euclidean distance between the current node and goal node. 
Although this might not be the true distance between the two 
nodes, it never overestimates the actual distance since it is the 
shortest possible route.  

To account for each environment whose map may be 
built from various devices that have different ranges and 
resolution, we vary the resolution of map and run the A* and 
FMM again. To vary the resolution of a map from coarser to 

finer discretizations, the method we adopt is regular sampling 
with unique spacing. This is illustrated in Fig. 3. Fig. 3(a) is a 

88�  map. To lessen the amount of information grasped from 
the map, we sampling the grid points by every interval k . For 
example, in Fig. 3(b), we set 2�k , i.e. beginning from the 
upper left of the map, the value of each upper left corner point 
in the 22�  red block will be sampled. If the value got is 0, 
then the value represent the red block is 0; similarly, if the 
value got is 1, then the value assigned to the red block is 1. Fig. 
3(c) shows the case of 4k � . In implementation, to avoid the 
confusion of selecting the start and goal point as the resolution 
decreases,  special characteristic points, such as corner or 
centroid, in a map, are preferred (See Fig. 2 for reference). For 
coarse resolution, the map size is reduced at the expense of 
growing number of forbidden nodes. This could eliminate 
some valid paths. 

All tests are run on a PC with Intel Core 2 Duo 1.8GHz 
microprocessor. The simulation results for visualization of the 
generated path and the visited area for each method are plotted 
in Fig.4 for free space, where two cases in free space are 
simulated, and Fig. 5 for concavity obstacle and a narrow 
passage between initial and goal. For free space, two cases 
were run (see Fig.4). Case one is that (start, goal) pair lies on a 
level line, and Case two is that (start, goal) pair lies on an 
arbitrary line. For Case one (Fig.4(a)), the paths generated by  
two methods are identical straight line, while in Case two (Fig. 
4(b)) FMM will run nearly diagonal; however, A* would go 
zigzag.  For Fig 5(a) of the map with concavity,  both FMM  
and A* avoid the obstacle and reach the overcurtained goal. In 
order to reach the goal in Fig. 2(c), the robot must make its 
way through the narrow passage (note that the map resolution 
for a successful search should be fine enough). Both FMM and 
A* generate a path through the narrow passage (see Fig. 5(b)), 
not trapped by the local minimum, which might happen in 
potential field method [3]. Fig. 6 shows the coverage of search 

 
Fig. 4. (a)Case 1: FMM and A* generate identical path in free space 

 
Fig. 4(b). Case 2: FMM (left) generates a shorter path than A* (right) in 
free space. 

 
Fig. 5. (b) Simulation results of FMM and A* in narrow passage 

 
Fig. 5. (a)Simulation results of FMM and A* in environment with cavity
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Fig.6. The coverage of FMM and A* in test environments at different 
resolutions. 



space, i.e. percentage of the number of visited points before the 
solution is found  relative to total number of grid points as a 
measure of efficiency. Unlike running time, coverage is less 
dependent on the computer used in experiments but more on   
characteristicsof the method employed. 

 

IV. COMPARISONS AND DISCUSSIONS 

Comparing the paths generated by the grid planners FMM 
and A* in test environments uniformly discretized at different 
resolutions, a number of observations can be highlighted to 
reveal different aspects of the grid planners. 
 (a)Efficiency and memory storage 

From Fig. 6, we could find that the searching range of A* 
SEARCH is smaller than FMM by 20~30 percent. In some 
extreme case ( free map), the gap between them reaches nearly 
90 percent. Generally speaking, the decreasing rate of 
searching range by A* is larger than that by FMM while the 
resolution increases. These evidences solidify that A* 
SEARCH is more focused consumes less memory. With the 
aid of heuristic,  A* SEARCH concentrated its exploration 
around the optimal path.  A*would be more efficient than 
FMM on point-to-point path planning problem [23]. 

(b) Quality of generatedl path 
It is visually clear from simulation result of path planning 

in a map with obstacles (Fig. 5) at different resolutions that the 
paths produced by FMM are smoother, which was also 
observed in [15], [25]. We explain this phenomenon as follows. 
A* generates a path of polygonal line with slopes constrained 
by the 8 allowable directions, which is continuous but not 
curvature-continuous. FMM generates the optimal path by 
employing gradient descent to backtrack the nodes, whose 
direction is not constrained by the neighboring points around 
the point being processed to be the next candidate point. With 
this flexibility, FMM could have more path curvature control 
capability to comply with the kinematics of mobile robot.  
[16]-[17] presented a curvature-control FMM to control the 
curvature of generated path in advance.  

From Fig. 7 and Table, it is noted that the path generated by 
FMM is generically shorter than the ones generated by A* in 
each test environment.    As the resolution of grid map 
increases, the path length also increases, and the difference 
between the path length generated by the two methods is more 
evident. Especially under the swerve case, FMM saves more 
travel distance than A*. Note that the manipulation of 
resolution decreasing will result in loss of some information 
contained in original map and cause an irreversible location 
deviation (See Fig. 8). The effect disrupts the comparison of 
path lengths in grid map at different resolutions. 
(c)Convergence 

From Fig. 5 (and other simulations not shown here), we 
could find that while the grid spacing (i.e. resolution) becomes 
finer and finer, the path generated by FMM becomes smoother 
and smoother, by contrast, the path generated of A* changes 
little. This evidence solidifies that while the resolution rises, 
FMM could generate solutions convergent to the continuous 
solution of Eikonal equation (1). This is explained as follows. 
FMM produces a numerically consistent approximation to 
solution of continuous Eikonal equation [4], [10] 
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Thus FMM will generate a true collision-free shortest path 
(i.e. geodesic) as the resolution of the map become finer and 
finer. On the contrary, as mentioned in [17], A* SEARCH 

 
Fig.8.As the resolution goes from 44� (black), 33� (green) to 

22� (purple), the path deviates from AB , '' BA , to ""BA . 
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Fig. 7.  The path length  in different environments. 



algorithm, like Dijkstra method, does not converge to the 
continuous solution even the resolution becomes finer and finer. 
Instead, it produces the solution to the following PDE 

 
Max *, )( x y h Cu u �   
 

where h is the grid size. As h goes to zero, this does not 
converge to the solution of the continuous Eikonal equation (3). 
(d) Some possible ways to improve FMM 
These comparisons suggest that FMM is a useful method for 
high quality path planning. As a means of shrinking the 
searching area, one can attempt to add the heuristic function 
(as A* SEARCH) to FMM. However, the ordering breaks the 
monotone condition that is required by Fast Marching, so the 
errors would accumulate. Some literature mentioned that the 
error is tolerable [11, 12]. Other attempts to enhance the FMM 
are  
(i) Triangulate the map instead of rectangular grid environment 
to lessen the size of work space and then apply FMM [20]. 
Facing this more complicated situation, FMM could not work 
well directly in that the gradient vector may not coincide with 
the orientation of information propagation.  
(ii) According to [22], the time complexity of FMM could 
reach )(NO by use of cyclic untidy priority queue data 
structure instead of heap queue in current implementation. The 
cost is to include mistakes result from fail to select the real 
minimum value. 
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