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Abstract-The fast marching method (FMM) is a powerful tool 

in the problem of shortest path planning. However it is limited to 
be used on a completely known terrain. In this paper, given only 
start and goal in an unknown polygonal environment consisting 
only polygonal obstacles, we would utilize the technique of 
boundary following to develop a boundary following FMM 
(BFFMM) that could be applied well to an unknown terrain. 
Comparative simulation results in different environments with 
single or multiple convex and/or concave polygons show that the 
efficiency of BFFMM outperforms FMM. 

I. INTRODUCTION 

With the progress of the robot technology, more and 
more tasks could be processed by the robot automatically. One 
important part of the robotic applications is the autonomous 
navigation in terrains from a start position to a goal position by 
following a Euclidean distance shortest path. The field of robot 
path planning and navigation has been extensively studied by a 
lot of researchers for decades, and developments and evolution 
of plenty of various works, for example roadmap, cell 
decomposition, potential field methods, and constrained 
optimization techniques have been delivered in known static 
environments. In an environment in which the robot does not 
have a priori knowledge of the environment, sensor-based 
reactive navigation is widely used for robot navigation, where 
vision, sonar, laser range finder, ultrasonic sensors or their 
fusion are used. This method is suitable for local obstacle 
avoidance, since the goal may be out of the range of the 
sensors.  [7] formulated the path planning problem in uncertain 
environment as an adaptive optimal control of Markov decision 
process. A survey of earlier work on path planning in unknown 
environment is given in [3].Among them, the algorithms of 
Bug family are well-known robot navigation approach in an 
unknown 2D environment. Early work on this class of 
algorithm could be traced back to Shannon, Sutherland, 
Lumelsky, and so on [3]. Nowadays a variety of Bug-like 
algorithm has being studied and proposed, such as Bug1, Bug2, 
Alg1, Alg2, DistBug, LeaveBug etc.. Knowing only the target 
position that is specified by distance and direction relative to 
known start position of the robot, Bug family algorithms 
operate switching between two modes: (i) to move toward the 
goal and (ii) move along the borders of obstacles. In the first, 
the robot moves toward the target along the straight line until it 
reaches the target point or encounters the obstacle. If the robot 
encounters the obstacle, it follows its boundary until some 
leaving conditions are satisfied. Then the robot continues 
moving toward the target. The robot either reaches the target 

position or reports unreachable when there is no way 
connecting the start and the goal. The comparisons of the path 
length generated by some members in Bug family could be 
found in [1]. 

Fast marching method (FMM) has been applied to path 
planning problems recently [4], [8]-[11]. FMM, which could 
find the shortest path in a given completely known map [5], is 
employed as the path planner. As shown in [5] and other 
literature (e.g. [11]), FMM can generate a good curvature-
control, generally smooth and short path that is a numerically 
consistent approximation to the true shortest continuous path as 
the resolution of map is finer and finer. A disadvantage of 
FMM is that its area of search is large. The wider area of 
search, the more time of computation.  

This paper will propose a simple method of practical value 
for mobile robots to explore an initially unknown terrain to 
build its own map, which is a subset of global map (i.e. a 
partial map) through local sensor system, and to perform global 
path planning on this partial map with fast marching method 
(FMM). This paper will focus on boundary following [6], 
where a mobile robot moves along the borders of obstructed 
obstacles it encounter. The currently implemented version of 
navigation is inspired from the procedure of Bug algorithm. 
The way of exploring the unknown environment is through 
following the boundary of polygonal obstacles, so we call the 
new method as boundary following FMM (BFFMM). Our 
simulation shows that the efficiency of FMM is improved 
greatly at the cost of only a little increase of the path length. 

This paper is organized as follows. Section II describes 
the method to explore an unknown environment aiming to 
build a robot’s own partial map connecting start and goal, and 

 
Fig. 1. The scheme of BFFMM combining goal-directed exploration to build 
a robot’s own map and FMM path planning on the obtained partial map 



introduces FMM for path planning. In section III, we present 
two polygonal environments to test our approach. Finally, 
some discussions will be given in section IV. 

II. METHODS OF GOAL-DIRECTED EXPLORATION AND 
NAVIGATION 

We make the following assumptions. The robot moves in a 
2D polygonal environment, arbitrarily populated with a set of 
static polygonal obstacles.  The robot is modeled as a point (by 
enlarging the obstacles to account for the robot size). The robot 
does not have a priori knowledge of the environment, except 
the location of START and GOAL. However, the robot is 
equipped with a sensory system capable of exploring the 
environment by measuring the distance and direction to an 
obstacle within the visibility range of the sensors. More 
specifically, the robot is equipped with a compass to detect the 
direction connecting the robot and the goal. It can record the 
coordinate of the hit point on which the robot first considers 
that it bumps the obstacle when the distance between the robot 
and the obstacle is below some threshold value. The aim is to 
navigate the robot in the environment to reach the GOAL. 

In this Section, we will introduce two building blocks of our 
scheme (See Fig. 1) for navigating the point robot in the 
unknown environment to the goal. The first thing for the robot 
is to build its own map via an exploration strategy, which is a 
partial map of the entire terrain. Given an unknown terrain, 
only the visible parts of the obstacles are represented by the 
sensory readings. A local obstacle avoidance system is used to 
avoid collision when an obstacle is encountered. Meanwhile, 
the robot would gather the map information around its 
neighborhood and record these data on a knowledge map. By 
the accumulation of the local data, the terrain would be partly 
built to obtain a partial map connecting start and goal as a 
global approximation of the entire terrain. Since our objective 
is navigation to a goal, this partial map is enough for path 
planning by fast marching method (FMM) to generate a 
shortest path from start to goal on it. 

A. Method of Navigation for Building Partial Map 
 
The following is the basic steps of our approach: 

 
● Goal Chasing Mode 
1.) From the start position, the robot move directly towards 

the goal G by following the line connecting START- 
 
GOAL, until either: 

a) The goal is reached. Algorithm stops. 
b) An obstacle is encountered. Record the hit point H 

and the direction to the goal D. Go to step 2, 
assuming a local obstacle avoidance by boundary 
following is enabled. 

● Boundary Following Mode 
2.) Perform counter-clockwise circumnavigation and step 

forward in the direction of the newly found free space 
direction d. 

3.) Repeat the step 2 until the direction d equal to G. Go to 
step 1. 

4.) If re-meet the hit point H for the first time, then change the 
circumnavigation direction from counter-clockwise to 
clockwise in step 2. Perform step 2-3 again. 

5.) If re-meet the hit point H for the second time, then report 
the target is unreachable. Algorithm stop. 

 
The number of directions the robot can traverse in a grid 

map is 8(see Fig. 2(a) for illustration). We use the sign of the 
difference between two 2-dimentional coordinates of the grids 
to assign one of the eight directions. As exploring, the robot 
would survey the eight neighboring grids around the grid that 
the point robot currently occupied. In boundary following 
mode, the robot records the direction D between the entering 
point and the goal, and in each step measures the location of 
the goal relative to the robot at that time, and search for a 
movable direction to go along. The direction of search could be 
clockwise or counter-clockwise. Because we have divided 
whole orientation into eight parts, the relative direction d 
between the goal and the robot would fall into one of these 
eight parts. While the d parallel to the D, the robot exits the 
boundary following mode and enters a new mode. By this 
procedure, the built partial map is less time-consuming to 
construct, requires less amounts of memory storage, and is 
well-suited for use with boundary following scheme. 

Unlike the case in Bug2 algorithm, our method does not 
keep a fixed start-goal line. As we can see from figure 2(b), the 
initial start-goal condition only gives us the initial direction to 
guide our robot to move forward. Later the robot would refresh 

 
Fig. 2(b). Illustration of the direction refreshing 

 
Fig. 2(a).  Illustration of the method to implement boundary following.
Where the blue dot represents the robot; the red dot represents the goal The
representative point of each grid is the centre of  grid. 



the robot-goal direction and adjust its orientation to advance. 
To gather more information about the boundaries of the 
environment, after the robot toured from the start to goal, we 
permute the start and goal and run the algorithm again so as to 
cover more area traversed by the robot. 

B. Fast Marching Method 

Isotropic Eikonal equation is the following first order PDE 
Ω∈=∇ xxxu ),()( τ

 
 Ω∂∈= xxqxu ),()(           (1) 
where  τ  is the speed (or cost) function that is a function of local 
position, Ω  is the domain,  Ω ∂ its boundary. As implicated in 
the robotic navigation, the formulation can be interpreted as 
isotropic front propagation or isotropic min-time optimal 
trajectory problems. In the control-theoretic context, the 
characteristic lines of equation (1) can be interpreted as the 
optimal trajectories.  

The key feature of Eikonal equation (1) is that their 
characteristic lines coincide with the gradient lines of the 
viscosity solution )(xu ; this allows the construction of single-
pass Fast Marching Method (FMM) that solves the Eikonal 
equation in a stable and consistent manner. Under 4-
connectivity 2D grid condition, using the first order finite 
difference upwind scheme to approximate the Eikonal equation 
(1) in continuous domain yields a quadratic equation of u to 
estimate actual (geodesic) distances in discrete domain: 
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where we assume the Cartesian grid with unit grid spacing; 

, ,,x y x yU τ denotes the distance and speed at grid coordinate 

),( yx , respectively. If the discriminant of quadratic equation 
(2) is larger than zero, we solve the larger u  solution of the 
quadratic equation; else we set the value of u  with the 
following equation instead: 
 

},,,min{ 1,1,,1,1 +−+−+= jijijijiij UUUUu τ         (3) 
 
In the following, we present the algorithm to incarnate the 
front propagation of FMM. 
FMM Algorithm: 
Definition. The nodes in the grid map are classified into three 
categories 

1 Alive (or Known) is the set of all grid points at which 
the distance value u  has been reached and will not be 
changed; 
(a) Trial (or Near, Narrow band) is the set of next 

grid points to be examined/readjusted and for 
which an estimate U of u  has been computed 
using equation (2) or (3) only from Alive points. U 
may be changed later; 

2 Far is the set of all other grid points for which U  is 
not yet computed; 

Initialize 
4 Alive points: Let Alive be the set of starting grid point 

0p . Set  

0)()( 00 == pupU  
5 Narrow Band points: Let Narrow Band be the set of 

all grid points neighboring to 0p  with initial values 

)()( ppU τ= ; 
6 Far Away points: Let Far Away be the set of the rest 

of the grid points; set their value to ∞; 
Marching Forwards Loop 

1 Let min min( , )p i j=  be the Trial point with the 
smallest distance U; 

 
2 Move it from the Trial set to the Alive set (i.e. 

min min min min, ,i j i jU u= is frozen ); 

3 For each nearest neighbor ( , )i j  (4-connectivity in 

2D) of  ( )minmin , ji : 
(b) If ( , )i j  is Far Away, add it to the Trial set and 

compute a first estimate U of u using equation  (2) 
or (3); 

(c) If ( , )i j  is Trial, update the distance ,i jU  using 
equation  (2) or (3); 

 
Note that only the Alive points are considered to solve 

Eikonal equation with upwind finite difference scheme. We 
examine neighbors of the point being examined and then select 
the suitable Alive ones. The movement of the front, opposite to 
the gradient, will point outward from the selected Alive point. 
As shown in the algorithm, FMM sweeps the front ahead in an 
upwind fashion by considering a set of points in narrow band 
around the existing front and march this narrow band forward, 
freezing the values of existing points and bringing new ones 
into the narrow band structure. The central idea of narrow band 
is to build an adaptive mesh around the propagation interface 
and perform computation only on these grid points. We make a 
tube containing all the points neighboring to the interface curve 
within some distance by calculating the signed distance 
function, points inside the frontier are with negative value and 
outside ones positive, and using that to select the points. The 
key is in the selection of which grid point in the narrow band to 
update with the help of heap operator. Using a min-heap 
structure for the Trial list, the algorithm computational 
complexity is )log( NNO  where N  is the number of grid 
points. An optimal path is generated by backtrack the points 
from goal to start via gradient descent by using the computed 
u values. The bend of the generated path would be affected by 
the gradient computation mask and resolution of the map. 

 



III. SIMULATION RESULTS 

Three environments shown in Figure 3 are used to test our 
approach. Figure 3(a) depicts the map originally created by 
Sankar, Figure 3(b) is the map with a single obstacle of zigzag 
boundary, and Fig. 3(c) is a rectangle with cavity. All maps are 
uniformly discretized into an evenly distributed 2D rectangular 
grid of nodes with binary values. The size of each map is 

100100 × . We assume that the mobile robot, modeled as a 
point, can navigate along each of 8 directions in rectangular 
grid environment for exploration, and can move along arbitrary 
direction for path planning. 

All the simulations are run with MATLAB on a PC with 
Intel Core 2 Duo 1.8 GHz microprocessor. For a quantitative 
comparison of BFFMM and FMM, we define two measures of 
performance. One is the percentage of area of search region of 
BFFMM in the exploration stage to build the map over the area 
searched by FMM.  The other is the path length generated by 
BFFMM as a percentage of the shortest path generated by 
FMM between start and goal. The simulation results are shown 
in Fig. 4, 5, where the blue spot represents the start point and 
the red one the goal. The cyan and the magenta part in the 
figures is the trace of the navigation path. The yellow zone is 
the region that is searched by FMM, and the red line and green 
line are the final paths planned, respectively, by BFFMM and 
FMM. From the examples shown in the Figure 4-5, it is seen 
that the proposed method could effectively reduce the search 
area of FMM. By goal-directed exploration, the robot which 
does not have its own map initially could hopefully establish a 
partial map, which is a channel connecting the start and end 
position and the path generated by BFFMM is bounded inside 
this channel. 

In order to display the performance of our approach in a 
whole, we randomly select 10 pairs of start and goal location 
on each of the two maps, and run the simulation with BFFMM 
and original FMM. In the result of that the algorithm of 
navigation is primitive, sometimes the start-goal pair generated 
may make the robot build a knowledge map with start and goal 
being unconnected, and the path planning could not be done to 
reach the goal. In addition, it may occur that the randomly 
generated start-goal pair would locate on a straight line without 
obstacle impeding them. So we threw off improper data and 
keep suitable one. Figure 6 and figure 7 are the statistic results 
 
 

 

    
(a)    (b) 

Fig. 4.  The comparison of search range in Sankar’s terrain, where the yellow 
part represents the search range. (a) BFFMM and the generated path          (b) 
FMM and the shortest path 

  
(a)     (b) 

Fig. 5.  The comparison of search range in zigzag terrain, where the yellow 
part represents the search range. (a)BFFMM and the generated path (b)FMM
and the shortest path 

 
                                  (a)                                                       (b) 
Fig. 7.  The comparison of search range and path length between BFFMM 
and FMM in Sankar’s terrain in 10 runs of randomly generated feasible 
(start, goal) pair. We normalize the performance of FMM to one as standard 
reference. (a)Raw data of performance. (b)The average performance 

  
 (a)    (b) 
Fig. 6. The comparison of search range in cavity terrain, where the yellow 
part represents the search range. (a) BFFMM and the generated path (b) 
FMM and the shortest path 

Fig. 3.  The environment we use to do simulation. (a) The Sankar’s terrain. 
(b) The zigzag terrain (c) The cavity terrain 



 
of the comparison on the area of search and the length of path 
produced by BFFMM and FMM. We set the performance of 
original FMM as 1, and use it as the reference to compare with 
the performance of improved one, BFFMM.  

Assuming known map, FMM could generate a shorter path 
than the path generated by BFFMM, and the ratio of path 
lengths by BFFMM over FMM is no less than 1. Referring to 
Figure 6(b) and 7(b), the increase of path length is about 10 
percent; however, the decrease of search area is over 70 
percent. In general, BFFMM generates a boundary following 
path consists of more turns that may be not easily followed by 
the mobile robot at improved efficiency on computation. 

The principle of boundary following exploration is to track 
the boundary of obstacles as possible. The influence of the 
boundary outside the current boundary is tested by the map 
with multi-obstacles as shown in figure 10. The experiment 
result is shown in figure 11-(a) and 11-(b). From figure 11-(a), 
goal-directed exploration takes a route of following the outer 
contour of the obstacles. This phenomenon is resulted from 
that the number of turning direction in exploration is only eight, 
and the robot only selects to circumvent the boundary of 
obstacles clockwise or counter-clockwise. This makes the 
robot could not find the possible shorter route in the inner free  
space among obstacles and the serrate profiles of the obstacles 
make the robot follow a path with longer length. Compared to  
BFFMM, the case of FMM in figure 11-(b) length is large and 
in general the ratio of path length between BFFMM and FMM 

 

 
 
is larger than foregoing results. The average ratio of path 
length increases by about 10 percent. However the average 
ratio of search range still holds at the same level. This 
elucidates that our method is distinctly robust in keeping small 
search range under multi-obstacles environment. 

All the BFFMM above are implemented with counter 
clockwise (CCW) search precedence. As a comparison, we 
also implement the BFFMM with clockwise (CW) search 
precedence. Refer to figure 13.From figure 13(b) and 13(c), the 
performance is a little better than figure 11, but this does not 
mean that the clockwise search precedence is better than 
counter clockwise search precedence. The environment setting 
such as the laying and shape of obstacles is an important 
limiting factor in the performance. 

 

 
            (a)    (b) 
Fig. 9.  The comparison of search range and path length between BFFMM
and FMM in cavity terrain in 10 runs of randomly generated feasible (start,
goal) pair. We normalize the performance of FMM to one as standard
reference. (a)Raw data . (b)The average performance. 

 
                             (a)                                                         (b) 
Fig. 8.  The comparison of search range and path length between BFFMM
and FMM in zigzag terrain in 10 runs of randomly generated feasible (start,
goal) pair. We normalize the performance of FMM to one as standard
reference. (a)Raw data . (b)The average performance. 
 

  
                   (a)                                                        (b) 
Fig. 11. The comparison between the paths produced by BFFMM and FMM. 
(a) The red line is the path produced by BFFMM.    (b)The green line is the 
path produced by FMM. 

 
Fig. 12. The comparison of search range and path length between BFFMM 
and FMM in a map with many obstacles in 10 runs of randomly generated 
feasible (start, goal) pair. We normalize the performance of FMM to one as 
standard reference. (a)Raw data . (b)The average performance. 

 
Fig. 10.  The environment with multi-obstacles to test the effect of the 
boundary of the obstacles on the path produced. 



IV. DISCUSSIONS 

Based on the performed simulations, we could conclude that 
the method we proposed extends the applicability of FMM 
from globally known static grid environments to unknown 
static grid environments. It is an effective way to reduce the 
computational cost of path planning by FMM with a little 
degradation of path quality. The path length and the area of 
search may be varied by the environment and the location of 
start-goal pair, in general the efficiency is improved by 
boundary following. Based on the partial map built in goal-
directed exploration stage with limited sensor system of the 
robot, a boundary following path could be planned successfully 
by FMM in an initially unknown terrain. Notwithstanding the 
significant efficiency improvement, BFFMM cannot be 
guaranteed to succeed in all situations. If this partial map 
building procedure could not establish a knowledge map with 
start and goal being connected, then the FMM path planning 
would be unable to proceed in this built partial map. We could 
believe that the algorithm of navigation could succeed to 
connect the start and goal if all the obstacles are convex, while 
it may fail as non-convex obstacles exist. In the future, we 
would study on the reform of the algorithm of navigation. 
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APPENDIX 

Table I lists the set of the start and the goal pairs randomly 
generated in our simulation, where the number couples are the 
coordinates of the start and the goal. On the 100100×  grid 
map, ( )1,1  is the lower left corner and ( )100,100  is the upper 
right corner. 

TABLE I 
10  RANDOMLY GENERATED PAIRS OF  START AND  GOAL FOR SIMULATIONS 

 

 
 (a) 

  
            (b)     (c) 
Fig. 13. Performance comparison between FMM and BFFMM with 
clockwise search order in Multi-Obstacles environment.. (a) The red line is 
the path produced by BFFMM with clockwise search order. The start and 
goal is the same as in figure 11. (b) The raw data (c) The average 
performance . 


