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Abstract 
 

A G
3
-continuous path planner for wheeled nonho-

lonomic mobile robots is presented, where the path is a 

composite curve composed of a number of η
3
-splines 

segments. Based on the variable-length genetic algo-

rithm implemented in the architecture of island paral-

lel genetic algorithm (IPGA), the path planner auto-

matically selects the number and locations of a se-

quence of intermediate nodes aiming for collision-free 

shorter composite η
3
-spline path generation. The expe-

rimental result demonstrates the capability of the pro-

posed evolutionary path planner. 

 

1. Introduction 
 

Recently various researches of mobile-robots path 

planning using different path primitives and planning 

schemes in a given static environments has been pre-

sented in the literature, genetic algorithm in particular 

[1]-[6], [11]-[18]. In general, path planning in robotics 

can be formulated as nonlinear constrained optimiza-

tion problems in configuration or Cartesian space. Nu-

merical techniques are devised to solve the problems in 

different context. Among them, genetic algorithms (GA) 

has attracted a lot of attentions due to their parallel 

problem solving capability and adaptability for large 

scale hard combinatorial optimization problems, and no 

need to compute the gradients of the objective func-

tions. In addition, GA-based path planner has a merit of 

producing several alternative paths in a single run. 

Practically, the mechanical operation of robots gives 

severe demands of planed paths. For fuel efficiency, 

the shortest path is favored; however, under some cir-

cumstances, the robots can encounter a sudden change 

of direction, causing its speed drops dramatically, con-

suming more fuel. To prevent this, the path with conti-

nuous and limited curvature is necessary for smooth 

wheel motions. Furthermore, the continuity of the de-

rivatives of curvature also helps to eliminate the jerk 

effects generated from the sudden changes of accelera-

tion. Introducing proper primitive curve as path seg-

ments is useful to smooth path generation, and numer-

ous attempts of employing novel parametric curves (e.g. 

[1], [8], [12]) and splines  (e.g. [11]) to mobile robot 

path planning are shown. Among these, η
3
-splines pub-

lished by Piazzi et al [8] reveal its ability to superiorly 

approximate a rich class of practically useful, common-

ly used path primitives  in wheeled mobile robot path 

planning such as straight line segment, circular arc, 

clothoid (Conru spiral) [2]. More importantly, it can 

also be shown that the η
3
-splines can represent any se-

venth-order polynomial curve with third order geome-

tric continuity, denoted as G
3
 continuity [8] (conti-

nuous in position, curvature, and derivative of the cur-

vature).The superior features of η
3
-splines motivate us 

to apply it on path planning of wheeled mobile robots.  

To improve the efficiency of evolution toward feas-

ible paths, parallel genetic algorithm [14] was proposed 

as a viable means. Island parallel genetic algorithm 

(IPGA) [10] provides a path computing framework 

which allows for more flexibility in searching for useful 

solutions, since it includes several design parameters 

that can be tuned to improve actual and statistical per-

formance. As demonstrated in [7], IPGA may be well 

adapted for solving smooth path planning problems, 

since each island can exploit separate and distinct paths.  

In [7], IPGA is designed for discovery of paths resolv-

ing a bi-objective path-planning problem of generating 

a shortest collision-free paths in stationary obstructed 

environments, where a path is composed of a pre-

specified number of cubic spiral segments whose size 

and deflection angle (i.e. change of heading) are un-

known parameters to be optimized. For generating a 

composite path, the complexity of path planning in-

creases dramatically with the number of path segments 

(i.e. the number of waypoints, or the degrees of free-

dom). A larger number, though provides more flexibili-

ty, requires more computation time and memory [17], 

and could be harmful [4]. Deciding a priori adequate or 



optimal number of nodes satisfying the shortest length 

criterion is hard even in free environment. We have 

performed an extensive comparative simulation study 

of the number of waypoints on the success rate, path 

length, and speed of finding a feasible path for IPGA 

based composite η
3
-spline path planner in simple envi-

ronments. As an attempt to overcome the problem of 

decision of number of waypoints, a variable-length 

genetic algorithm, which adopts variable chromosome 

size for initial population, for IPGA-based path planner 

is proposed with the Pareto-based evolutionary multi-

objective optimization using IPGA, which can be 

shown to be robust to chromosome size within a speci-

fied range. Once the initial parameters, including the 

ranges of number of nodes, are set, the evolutionary 

path planner will self adjust via evolution, so that the 

number of nodes and the location of each node satisfy-

ing the required boundary constraints on the end points 

are automatically selected according to the environ-

ment map size, the locations of START and GOAL, the 

configuration, i.e. density (number and distribution) 

and geometric complexity of the obstacles. 

This rest of this paper is organized as follows. Sec-

tion II gives a brief introduction of the η
3
-splines, the 

primitive curve segments used in path planning. Sec-

tion III shows the implementation of proposed varia-

ble-length genetic algorithm. Section IV describes the 

implementation of IPGA. Section V presents our simu-

lations revealing the variations in the number of inter-

mediate nodes. Section VI gives the conclusion. 

 

2. The η
3
-splines 

 

All Following Piazzi et al [8], given two arbitrary 

configurations 
T
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where x(s),y(s), and θ(s) denote the coordinate and 

orientation, and   are the curvature and curvature deriv-

ative of the path at that point. By these two configura-

tions, a seventh-order polynomial of a G
3
-interpolating 

curve can be generated through: 
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where [0,1]s ∈  is a parameterization.  Besides 

the given terminal configurations, this seventh-order 

polynomial curve still has additional six degrees of 

freedom, which is stated through the η vector: 
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� . 

One way to reduce the degrees of freedom is by en-
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resulting in one family of the η
3
-splines with both ter-

minal points of zero curvature and zero derivative of 

curvature. The family has been numerically demon-

strated its capability in its effect of minimizing the 

maximal curvature, which is a heuristic measure of the 

maximal centrifugal force experienced along the path. 

Following the standard formulae given by Piazzi, 

this convention of choice in the η vector completely 

determines the primitive curve segment for further path 

planning in obstacles free environment. For the x-

coordinate coefficients, we have: 
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Similar formulae for the y-coordinate coefficients 

can be easily obtained by replacing cosθ to sinθ. 

 

3. The variable-length genetic algorithm 

for path planning 
 

3.1. Individual representation: variable-length 

chromosome 
 

Using η
3
-splines as path primitive, a composite path 

is composed of connected splines. A N+1 connected 

segments of η
3
-splines can be fully defined by N con-

trol points, including start and end terminal. One choice 

of chromosomes is the collection of N ordered control 

points represented as  

];...;;[ ,2,21,1 NNrrrp θθθ
���

= , 

where
i

r
�

 is the position vector of waypoint i, and θi is 

the tangent direction of the path at the waypoint I; i=1 

corresponds to start location, i=N corresponds to goal 

location. This results in a composite η
3
-spline curve 

which has continuity of position, curvature and curva-

ture derivative at the N intermediate nodes. Notably, N 



is not fixed a priori, but only given a range with upper 

and lower limits.  

 

3.2. Mutation, Crossover, and Selection 

 

 
The mutation operator is defined as the random per-

turbation of a randomly selected node within its allow-

able range of a randomly selected path [7]. The cros-

sover operator is defined as the random combination of 

intermediate nodes between two individual as shown in 

Fig. 1. In the beginning, two parent paths are randomly 

selected. Each parent breaks about a randomly selected 

crossover node into two path segments. Then two child 

paths are directly obtained by recombining broken 

segments with different permutation. Suppose the num-

bers of nodes of two parents are α, β (including start 

and goal). Then depending on the crossover nodes se-

lected, crossover produces two child paths with possi-

ble number of nodes between α+β-2 and 2. Note indi-

vidual can do crossover more than once, and if individ-

uals with more nodes do crossover more frequently, the 

total node number, also the average node number, 

grows, or vice versa, it decades.  

The quality of solution is, of course, proportional to 

total length of collision-free path segments, or it should 

be penalized otherwise. One approach to quantize the 

extent of penalty is the intrinsic cost function [4], simp-

ly summing up the lengths of all forbidden path seg-

ments; despite this, it only counts the amount of viola-

tion, lacking the ability for giving the directions of im-

provement. In order to accelerate the convergent 

process, the modified intrinsic cost proposed in [7] 

incorporated the penetration depth for its forbidden 

segment helps. The new intrinsic cost of an evaluated 

path gives a good measure of how difficult is to make 

this path collision-free, which is empirically shown to 

be a better fitness function [7]. For the bi-objective 

optimization, we use the fast non-dominance sorting 

method proposed by Deb [9] to rank both the total path 

length cost and the total modified intrinsic cost, gene-

rating the Pareto fronts to be selected by the rank-based 

selection operator. 

 

4. Parallelism of the genetic algorithm 
 

The trade-off between diversity and convergent 

speed is the most critical issue in genetic algorithms. In 

general, diversity can be enhanced by using high muta-

tion rate or low selection pressure but either degrades 

the convergent speed and solution quality. Conversely, 

high crossover rate and high selection pressure im-

proves the speed and quality, paid in low diversity, 

possibly low success rate. The island parallel genetic 

algorithm (IPGA) [10] is chosen as a means of allow-

ing a suitable balance of diversity and speed of conver-

gence. The parallelization scheme can also reduce the 

execution time [14]. 

IPGA starts with dividing the population into several 

isolated subpopulations, called islands; each evolves 

independently with different user-setting crossover and 

mutation rates, except exchanging a small portion of 

best individuals periodically via a common pool serv-

ing as a migration center. The parameters setting for 

each island are usually quite different in order to have 

high-diversity and high-convergent-speed evolution 

within different islands. While these islands exchange 

their individuals via migration, these ultimate evolution 

parameters is injecting into whole population. 

Obviously, the performance is affected by four fac-

tors: the number of migrants, the migration interval, the 

selection and the replacement algorithm. Too large 

number and too small interval will break the isolation 

among islands, implicating poor diversity. 

 

5. Experimental result 
 

The path planner is implemented in the program-

ming language C++, and the results are dumped into 

text-based file for further processing. Our current im-

plementation of IPGA is composed of three equal-sized 

islands, which differ in settings of mutation rate and 

crossover rate, and migrates ten-percent of the total 

population size every five generations. Consequently, 

with sub-population size of 100 individuals in each 

island while a total of 30 individuals, 10 for each island, 

migrates in the given migration period. Moreover, in 

order to preserve diversity, three islands are configured 

as high mutation rate, high crossover rate, and balanced 

one respectively. Maximum number of generations is 

set as 50. 

To demonstrate the capability of the path planner 

based on island parallel variable-length GA, six maps 

 

 

Fig. 1 Variable-length crossover operation 



with different size, which are tested in [4] by fixed –

length GA, are examined again to characterize the be-

havior.  An evolutionary path planner like the one pro-

posed in this paper may not be complete, i.e. it is likely 

that the planer could not discover an acceptable path in 

one run even if such a path does exist. However, an 

evolutionary path planner is possible to discover more 

than one alternative path. Here we present some se-

lected simulation results shown in Fig. 2 to Fig. 7, 

where the shown paths may be of different number of 

intermediate nodes. The simulation results of proposed 

evolutionary multi-objective path planning scheme are 

summarized below: 

 

 

 

 

 

 
 

5.1. Evolution Characteristics 

 

To avoid excessive computation and longer conver-

gence, the setting of range of gene length for initial 

population is between 4 and 10 (including start and end 

terminals). The initial population consisting of variable 

length chromosome is generated randomly, and an ex-

ample is shown in Fig. 8. With avg(L),the average 

length of all paths, min(L), the minimum length of 

“feasible” paths, and avg(M), the average modified 

intrinsic cost of all paths in a simulation run, simulation 

results of six maps are listed from Fig. 9 to Fig. 14. As 

summarized in [4], map II reveals the highest difficulty 

which optimal successful rate and path length are met 

with larger gene length. Fig. 8 compares the average of 

converged gene length among these maps; for complex 

maps, e.g. map II, the converged value is higher than 

the others. Vice versa, the simpler one, e.g. map III, 

shows lower value. 
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Fig. 8 The average gene length for six maps 

 

Fig. 7 Paths discovered in Map VI, 600x600 

 

Fig. 6 Paths discovered in Map V, 600x600 

 

Fig. 5 Paths discovered in Map IV, 600x600 

 

Fig. 4 Paths discovered in Map III, 600x500 

 

Fig. 3 Paths discovered in Map II, 600x300 

 

Fig. 2 Paths discovered in Map I, 600x300 



 

 

 

 

 

 

 

 

5.2. Robustness 

 

The variable-length GA shows superior robustness 

on the initial setting of gene length. This robustness 

makes the proposed evolutionary path planner based on 

island parallel variable-length GA preferable to other 

non-evolutionary path planning algorithms which may 

require a manual setting of the number of waypoints.  

In order to examine this property, map II is chosen to 

be demonstrated with four different initial gene length 

sets:       S1: 3~5, S2: 6~9, S3: 10~13, S4: 17~20. 
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Fig. 15 Convergence of gene length for map II with 

different initial setting of range of gene length 

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Generation

 avg(L)

 min(L)

 avg(M)

 

Fig. 14 Evolution  of costs for  Map VI 
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Fig. 13 Evolution of costs for Map V 
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Fig. 12 Evolution  of costs for Map IV 
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Fig. 11 Evolution  of costs for Map III 
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Fig. 10 Evolution of costs for Map II 

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Generation

 avg(L)

 min(L)

 avg(M)

 

Fig. 9 Evolution of costs for Map I 



The convergence of gene length during the evolution 

is shown in Fig. 15. It can be observed that the range of 

initial genetic length is not a critical parameter but af-

fects diversity and convergent speed of the evolution 

process. However, too high or too low initial gene 

length setting in these maps will cause either a longer 

converging process or worse, failing to find feasible 

paths in given generations. But if evolving enough gen-

erations, the convergent gene length depends only on 

the map feature, thus revealing the robustness to varia-

tion in initial gene length setting.  

 

6. Conclusion 
 

To plan a collision-free shorter composite η
3
-splines 

path in static environment, the selection of waypoints is 

important. This paper presented an IPGA based path 

planner that automatically selects the number and loca-

tions of intermediate nodes. The chromosome size (or 

the number of intermediate nodes of composite curve) 

is not fixed a priori, but is self-adjusting according to 

the complexity of environment through the variable-

length evolution rules, resulting in a more robust path-

planner. Compared to our work [4] using fixed-length 

IPGA on the same problem, variable-length scheme 

offers a more robust and efficient approach to discover 

one or multiple alternative reasonable good paths in a 

variety of environments 
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