
Collision-free Curvature-bounded Smooth Path Planning using
Composite Bezier Curve based on Voronoi Diagram

Yi-Ju Ho and Jing-Sin Liu, Member, IEEE

Abstract— In this paper, we present an obstacle avoiding
smooth path planning method based on Voronoi diagram and
composite Bezier curve algorithm which obtains the curvature
bounded path with small length. In our algorithm, a Voronoi
diagram is constructed according to the global environment.
The piecewise linear rough path in the Voronoi diagram which
keeps away from the obstacles is obtained by performing
Dijkstra’s shortest path algorithm. Dynamic programming is
employed to subdivide the nodes on the piecewise linear path
into control point subsequences to generate a collision free
composite Bezier curve which satisfies the curvature constraint
and approaches minimal path length.

Index Terms— smooth path planning, Voronoi diagram,
shortest path, Bezier curve, curvature constraint, dynamic
programming

I. INTRODUCTION

Path planning plays an important role in robotic and
automation fields for both static and dynamic environments
and many researchers have worked on it since 80’s. Many
techniques have been researched to utilize multiple path
schemes for different applications [1], [2], [3], [4], [5], [7],
[9], [10], [12]. These applicaions have been dealt within
two strategies: one strategy is to use a pre-known global
environment information and robot characteristics, while
another builds up local environment with sensor information
and using robot characteristics.

Voronoi diagram for partitioning a map is used in many
researches to build up a collision free path in both global [1]
and local environments [7], [10]. The resulting path is either
a piecewise linear path or a path smoothed with splines. If the
path is a piecewise linear path, the robots following the path
have to stop and restart frequently. This causes extra waste of
robot power and wear. In order to obtain a smooth path, many
curves have been introduced as path primitives. The smooth
path is constructed by connecting pieces of the primitive
curves. [3], [4] construct the path by connecting the way
points with splines, and the work in [2], [7], [9] construct
the path by Bezier curves. In [4], the authors propose a
path planning algorithm with path length by spline, but the
method has large time complexity.

Among these different curves, Bezier curve is more in-
tuitive due to its space property which we will express
particularly in next section. [2] uses a set of reference points

The research was partially supported by National Science Council under
Yi-Ju Ho and Jing-Sin Liu are with the Institute of

Information Science, Academia Sinica, Nangang, Taipei,
Taiwan 115, ROC. u882524@alumni.nthu.edu.tw,
liu@iis.sinica.edu.tw

as control points for one Bezier curves instead of using the
reference points as way points. We notice that for a set of
reference points, to connect them by taking each point as
a way point causes longer path length with comparing to
connect them by taking each point as a control point of
Bezier curves. If we take the reference points as control
points instead of way points, the curve path does not need
to pass all the reference points but only the end points of
the Bezier curves. This greatly reduces the path length and
retains the curve property. However, there may not exist such
a single Bezier curve of the reference points in complicated
environments filled with obstacles. In order to overcome this
problem, we use a composite Bezier curve instead of a single
Bezier curve.

In this paper, we propose an obstacle avoiding path
planning algorithm for car-like mobile robots which have
strict constraint on the curvature [5]. Many reseaches focus
on the curvature constrained path planning these years due
to the kinematic constraints of the car-like mobile robot.
The car-like mobile robot can only turn its orientation in
a range and results in maximal curvature the robot must
obey. If the planned path has curvature over the upper
bound, the mobile robot fails to follow the path. We employ
Voronoi diagram and composite Bezier curve to construct the
smooth path. The reference path is obtained by performing
Dijkstra’s shortest path algorithm on the Voronoi diagram.
Then a dynamic programming based algorithm is used to
subdivide the nodes on the reference path into subsequences
of control points ensuring that the corresponding composite
Bezier curve satisfies the curvature constraint and approaches
minimal path length.

We test our algorithm with and without curvature con-
straint by simulation. Our experimental results show that our
algorithm can obtain the collision free path which satisfies
the curvature constraint and approaches the minimal curve
length.

The rest of this paper is organized as below. Section II
introduces the preliminary for Bezier curve and Voronoi
diagram. Section III describes our algorithms: The Voronoi
diagram construction for irregular environment, the crowded
control point removal, the dynamic programming algorithm
to obtain the control point subsequences and Bezier curve
construction methods are described in the section. The ex-
perimental results are presented in section IV and section V
concludes this paper.

II. PRELIMINARY

In this section, we briefly introduce the definitions and
properties of the Bezier curve [11] and the Voronoi diagram
[13] .

A. Bezier Curve

A Bezier curve of degree n is represented by n+1 control
points P0, ..., Pn:

P (λ) =
n∑

i=0

Bn
i (λ)Pi, λ ∈ [0, 1], (1)

Bn
i (λ) =

(
n
i

)
(1− λ)n−iλi, i ∈ {0, 1, ..., n}. (2)

The curve segment starts at P0, ends at Pn and lies entirely
within the convex hull of the control points. We can use
these properties to construct composite Bezier curve to avoid
obstacles. This property guarantees that the Bezier curve
constructed by the control points also does not collide with
the obstacles. We will use this property in our dynamic
programming algorithm in section III.

Considering the Bezier curve of control points
{P0, P1, P2, ..., Pn}, the tangent at P0 must be given
by P1 − P0 and the tangent at Pn by Pn − Pn−1. The
second derivative at P0 must be determined by P0, P1 and
P2 and the one at Pn must be determined by Pn−2, Pn−1

and Pn. This property can be generalized for higher order
derivatives at the curve’s endpoints. In general, the rth
derivatives at the endpoint must be determined by its r
neighboring control points. This property is used to ensure
r degree continuity at the joins of the connections of Bezier
curves.

The curvatures (κ) of the Bezier curve is defined as
P ′

x(λ)P ′′
y (λ)−P ′

y(λ)P ′′
x (λ)

[P ′
x(λ)2+P ′

y(λ)2]3/2 where Px(λ) and Py(λ) are the x and
y coordinate of the Bezier curve respectively, see appendix
for details. The curvature at the end points of the Bezier
curve can also be defined as κ(0) = 2|(P1−P0)×(P2−P1)|

3|P1−P0|3 and

κ(1) = 2|(Pn−1−Pn−2)×(Pn−Pn−1)|
3|Pn−Pn−1|3 . In many path planning

algorithm, the κ values of two connected Bezier cruves at
the join are set to be zero to simplify calculation. For Bezier
curves, if the κ of the end points are zero, it means the
consequent three control points at the end point are collinear.
If we consider C1 continuity and curvature continuity (κ =
0) in connecting two Bezier curves, the last three control
points of the first curve and the first three control points of
the second curve are collinear. Take fig.1 for example. The
last control point of the Bezier curve Bi (Pn) and the first
control point of the Bezier curve Bi+1 (Q0) are the same
node to make the two Bezier curves connected. The equation
Pn − Pn−1 = Q1 − Q0 holds and the last three control
points Pn−2, Pn−1, Pn of Bi and the first three control points
Q0, Q1, Q2 of Bi+1 are collinear to make C1 and curvature
continuity.

B. Voronoi Diagram

Let P = {p0, p2, ..., pn} be a set of points in the two-
dimensional Euclidean plane. These are called the sites.

Fig. 1. C1 and Curvature Continuity for Bezier Curves

Partitioning the plane by assigning every point in the plane
to its nearest site forms the Voronoi region V (pi). V (pi)
consists of all the points at least as close to pi as to any
other site:

V (pi) = {x : |pi − x| ≤ |pj − x|∀ j 6= i}

The set of all points that have more than one nearest neighbor
form the Voronoi diagram V (P) for the set of sites. That any
point in the Voronoi region is closest to the site is an useful
property for obstacle avoiding path planning problem. Many
algorithms have been proposed for constructing the Voronoi
diagram and many researches study the application of it [13].

III. PROPOSED ALGORITHM

For given start point and destinated point, the problem is to
design an obstacle-avoiding smoothing path and the maximal
curvature is below a given upper bound. Our algorithm is a
four step method. The first step is to generate a continuous
piecewise linear path by piecewise straight lines. The nodes
on the piecewise linear path are used as control points for the
composite Bezier curve. The second step is to remove the
crowded control points to further reduce the length. The third
step is to subdivide the control points into subsequences such
that each convex hull of the subsequences does not collide
with the obstacles and the curve length of the composite
Bezier curve will approaches the shortest. The last step
is to generate the composite Bezier curve by adding extra
control points into the subsequences to meet the kinematic
constraints.

A. Initialization: Piecewise Linear Path along Voronoi Dia-
gram

For irregular obstacles, we divide the boundaries of each
obstacle into segments and the end points of each segment
are the sites of Voronoi diagram. Then we construct a
Voronoi diagram basing on the sites, as shown in fig.2(a).
Consequently, as shown in fig.2(b), all edges of the Voronoi
diagram colliding with the obstacles are removed from the
diagram. We connect the source and destination to the
corners of the remaining Voronoi regions in which the source
and destination node are located and the newly created edges
can not collide with the obstacles. We then use Dijkstra’s
shortest path algorithm to obtain the shortest path in the
remaining diagram. The resulting path is the piecewise linear
path that has better clearance to surrounding obstacles. The
nodes on the path are the control points for piecewise Bezier
curves.

Fig. 2. (a). Voronoi diagram with sites on the boundaries of the obstacles
(b). Voronoi diagram without edges colliding with the obstacles

B. Shortening by Control Point Removal

We sample a number of nodes on the piecewise linear
path as the control points for Bezier curves. We notice
that the crowded control points often result in longer curve
length. As shown in fig.3(a), the crowded control points
Pk, Pk+1, Pk+2 attract the Bezier curve closer to them and
result in longer curve length. If we remove the crowded
control points carefully, we can reduce the curve length and
retain the curve shape, as shown in fig.3(b). For the sampled
control point sequence, the first control point and the last
control point are non-removable since they’re the source and
destination nodes. For other control points in the sequence,
we determine whether there are nearby control points which
can be removed from the sequence. Take fig.3(a) for example,
if Pk is the base control point being processed, we remove
the consequent control points Pk+1, Pk+2 which are all close
to Pk within a threshold ε and fig.3(b) shows the resulting
sequence after removal. The crowded control point removal
algorithm is shown in fig.4.

C. Control Point Subdivision

After removing the crowded control points, the third step is
to subdivide the remaining control points into subsequences
and each subsequence contains ordered control points for a
Bezier curve. As the characteristic of Bezier curve, the curve
segment will lie entirely in the convex hull of the control
points. In order to obtain a collision free composite Bezier
curve, we have to subdivide the control points into ordered
subsequences such that the convex hull of each subsequence
does not collide with the obstacles. There are many solutions
to subdivide the control points to satisfy the collision free
constraint. Take fig.5 for example, we want to design a
path travelling from P0 to P6 with P0, P1, ...P6 as control

Fig. 3. (a). Bezier curve with crowded control points. (b). Shorter Bezier
curve with crowded control points removed

Algorithm : Crowded Control Point Removal
Input : Control Point Sequence {P1, P2, Pk+1, ...Pn−1}

Distance Threshold ε
1. Pbase = P1

2. for Pt = Pbase+1 to Pn−1 begin
2. if (

p
(Ptx − Pbasex)2 + (Pty − Pbasey)2 ≤ ε) begin

3. remove Pt from Si;
4. end if
5. else begin
6. Pbase = Pt;
7. Goto line 2;
8. end
9. end for

Fig. 4. Crowded Control Point Removal Algorithm

points. In order to avoid collision, we have to make sure the
convex hull of the control points for each subsequence does
not collide with the obstacles. In fig.5(a), we subdivide the
control points into two ordered subsequences, {P0, P1, P2}
and {P2, P3, P4, P5, P6}, while in fig.5(b), we subdivide the
control points into three ordered subsequences, {P0, P1, P2},
{P2, P3, P4}, and {P4, P5, P6}. The composite Bezier curves
formed by the two different subdivisions are both collision
free. However, the path length of fig.5(a) is shorter than the
one of fig.5(b). In this paper, we utilize dynamic program-
ming to subdivide the control points into an ordered set of
subsequences and the corresponding composite Bezier curve
will have shortest curve length.

Fig. 5. (a). Subdivide the control points into S0 = {P0, P1, P2}, S1 =
{P2, P3, P4, P5, P6} for two Bezier curves (b). Subdivide the control
points into S0 = {P0, P1, P2}, S1 = {P2, P3, P4}, S2 = {P4, P5, P6}
for three Bezier curves

The problem we want to solve is then modeled as below:
Let P0, P1, ...Pn be an ordered control point sequence. We
want to subdivide the control points into ordered subse-
quences S0, S1, ..., Sm, and the last node in Si−1 is the
first node in Si to make the resulting curves connected. The
convex hull of each subsequence can not collide with the
obstacles and the maximal curvature of the corresponding
Bezier curve is less than the given upper bound. We want to
choose one subsequence division with shortest curve length.

Let collide(i, j) denotes whether the convex hull of the

control points {Pi, Pi+1, ...Pj} collides with the obstacles.

collide(i, j) =

true, if collide(i, j − 1) = true or

edge PkPj collides with obstacles
∃k, i ≤ k < j

false, otherwise
(3)

If the convex hull collides with the obstacles, the value of
collide(i, j) is true, otherwise the value of collide(i, j)
is false. With the collide(i, j) value, we can determine
whether a solution is feasible. By observation, we know
that the convex hull of {Pi, Pi+1, ..., Pj−1} is entirely in the
convex hull of {Pi, Pi+1, ..., Pj−1, Pj}. Thus, if the convex
hull of {Pi, Pi+1, ..., Pj−1} collides with the obstacles, the
convex hull of {Pi, Pi+1, ..., Pj} also collides with the
obstacles. For simplification, we use a (n + 1) × (n + 1)
array to store the collide(i, j) values for n+1 control points
and the collide(i, j) values for all (i, j), 0 ≤ i, j ≤ n are
calculated.

In order to make the curvature of the Bezier curve less
than the given upper bound, the maximal curvature of the
Bezier curve must be determined. Because there is no close
form solution to the maximal curvature, the curvature value
at each position of the Bezier curve must be calculated. The
curvature is calculated by the equation expressed in section
II. Let κ(i, j) denote the maximal curvature of the Bezier
curve constructed by the control points Pi, Pi+1, ...Pj−1, Pj .
We notice that some extra control points are needed to make
the composite Bezier curve C1 and κ continuous, thus, the
curvature calculation must take these extra control points into
concern. The extra control point addition will be introduced
later. We will calculate the κ values for all (i, j), ∀i < j.
To accelerate the calculation, we will set κ(i, j) to inf if
collide(i, j) is true.

Let Pix denote the x position, Piy denote the y position
of the control point Pi and κub denote the curvature upper
bound. We define F (i, j) as the approximated shortest curve
length among all subdivision solutions from point Pi to Pj ,
i.e.

F (i, j) = min{|Pi − Pj |, F (i, k) + F (k, j) ∀i < k < j}
(4)

where

|Pi − Pj | =

inf, if collide(i, j) == true or

|κ(i, j)| > κub√
(Pix − Pjx)2 + (Piy − Pjy)2),

otherwise

(5)

The control point subdivision algorithm is shown in fig.6.
We use e(i, j) to denote the entry in the array with in-
dex (i, j). Each e(i, j) is a five tuple entry with value
(val, r1, c1, r2, c2). val is the F (i, j) value of the entry,
(r1, c1) and (r2, c2) denote the indexs of the entries by
which we use to obtain the F (i, j). If F (i, j) is calculated
by |Pi−Pj |, then (r1, c1) equals to the current entry’s index
(i, j). We calculate the entry’s value from (0, 1), (1, 2), ..., to
(0, n) diagonally. After all entries’ values are calculated, the

Algorithm : Control Point Subdivision
Input : Control Point Sequence {P0, P1, ...Pn}

Curvature upper bound κub

Output : Control Point Subsequences {S1, S2, ...Sm}
1. calcCollide(); //calculate the collide(i, j)
2. for k = 1 to n begin
3. for i = 0 to n− k begin
4. j = i + k
5. e(i, j).val = inf
6. if (!collide(i, j) and |κ(i, j)| ≤ κub) begin
7. e(i, j).val =

p
(Pix − Pjx)2 + (Piy − Pjy)2

8. (e(i, j).r1, e(i, j).c1) = (i, j)
9. end if
10. for l = i + 1 to j − 1 begin
11. if (e(i, l).val + e(l, j).val < e(i, j).val) begin
12. e(i, j).val = e(i, l).val + e(l, j).val;
13. (e(i, j).r1, e(i, j).c1) = (i, l);
14. (e(i, j).r2, e(i, j).c2) = (l, j);
15. end if
16. end for
17. end for
18. end for
19. Backtrace the best solution from e(0, n) to
20. obtain the subsequences S1, S2..., Sm

Fig. 6. Control Point Subdivision Algorithm

entry (0, n) represents the best solution how we subdivide
the control points. We backtrace the solutions from (0, n) to
obtain the subsequences of control points.

D. Smoothing by Control Point Addition and Bezier Curve
Construction

Let S0, S1, ...Sm denote the resulting ordered subse-
quences obtained by control point subdivision algorithm (see
fig.6) and each Si contains the control points used for a
Bezier curve. The last step in our algorithm is to construct
Bezier curves according to the control point subsequences.

To be generalized to high order continuity, Si,extra =
{Pi,extra1, Pi,extra2, ...} depending on the connection
continuity requirements are imposed on the compos-
ite Bezier curve. The imposed extra control points
Pi,extra1, Pi,extra2, ... must lie entirely in the convex hull
of subsequence Si. In this paper, we only consider the C1
continuity and curvature continuity in connecting two Bezier
curves. For the set of ordered subsequences {S0, S1, ..., Sm},
suppose the Bezier curve of Si is connected to the Bezier
curve of Si−1 at Plast. In order to make the composite Bezier
curves C1 and curvature continuous, two extra control points
Pl1, Pl2 are added before the Plast in Si−1 and two extra
control points Pa1, Pa2 are added after Plast in Si. The
control points are added such that Pl1, Pl2, Plast, Pa1 and
Pa2 are collinear and Pa1 − Plast equals Plast − Pl2. Fig.7
demonstrates the basic concept. After the extra control points
are added in each subsequence, we construct the Bezier curve
for each subsequence as the composite Bezier path.

Map Name VS-Path S-Path VD-Path CBKNB-Path (ε = 10) CBKB-Path (ε = 10, κub = 0.1)
length time length max |κ| time length time length max |κ| time length max |κ| time

map1 2092.8317 0.01 2166.9562 217.4668 0.03 2477.7541 0.87 2400.5220 9.272 8.46 2400.8811 0.07553 590.33
map2 1324.902020 0.00 1440.7240 53.1997 0.01 1567.9098 1.25 1536.8078 0.1341 4.12 1539.3106 0.0802 365.10

TABLE I
PATH COMPARISON : VS-PATH, S-PATH, VD-PATH, CBKNB-PATH AND CBKB-PATH. THE TIME UNIT IS SECOND.

Fig. 7. Extra control point addition in subsequence Si−1 and Si

IV. EXPERIMENTAL RESULT

Instead of building our algorithm into real robots, we use
software simulation to test our algorithm. We use the C++
programming language in Linux operating system with 2.4
GHz cpu and 1G Byte memory. We test several maps which
need sharp turns in the trajectory.

The maps be tested are shown in fig.8 and fig.10. For each
map, we construct five kind of paths. The first path is the
globally shortest piecewise linear path in visibility graph[4],
called VS-Path (shown as the straight line in maps). The
second one is to smooth the VS-Path by spline [4] (S-Path),
the third path is the shortest piecewise linear path along the
Voronoi diagram (called VD-Path). The fourth path is the
composite Bezier curve without curvature bounded which
is obtained by our general DP algorithm (called CBKNB-
Path). The last path is the composite Bezier curve with
curvature bounded which is constructed by our algorithm
(called CBKB-Path). We compare the path length of the
VS-Path, S-Path, VD-Path, CBKNB-Path and CBKB-Path.
The curvatures of the composite Bezier curves which are
constructed with/without considering curvature constraint are
also compared. The experimental results for the maps are
listed in Table.I.

In the experiments, we notice that the path length of the
S-Path is close to the global minimal. However, since the
S-Path is to connect the control points on the VS-Path by
splines, it is difficult to guarantee that the resulting path does
not collide with obstacles. In the experimental results, the S-
Paths for map1 and map2 both collide with the obstacles if
the extra control points are not inserted carefully. It is also
difficult for spline to satisfy the curvature constraint. This is
one of the reason why we study Bezier curve for the path
planning problem.

The curvatures of the CBKNB-Path and CBKB-Path for
map1 and map2 are shown in fig.9(a),9(b),11(a) and 11(b).
We notice that the CBKB-Path differs from the CBKNB-
Path at a portion of the composite Bezier curve. Most of

the Bezier curves on the path retain unchanged to maintain
short path length and the curvature violating Bezier curves
and its neighboring Bezier curves are modified to decrease
the maximal curvature. It’s not clear for map1 since the
maximal curvature changes from 9.272 to 0.07553. However,
from map2, one can see that the changed Bezier curves are
close to the violating ones, as shown in the circle in fig.10.
Our algorithm modified the sharp Bezier curve using two
flat Bezier curves. The different curvatures are shown in the
circle in fig.11(a) and fig.11(b). It shows that our algorithm
can obtain a curvature bounded smooth path with short path
length while taking the VD-Path as skeleton.

Fig. 8. Map1

Fig. 9. (a). Curvature of CBKNB-Path for map1. There is a sharp turn in
the Bezier curve and it violates the curvature constraint. (b). Curvature of
CBKB-Path for map1. The Bezier curve satisfies the curvature constraint.

Fig. 10. Map2

Fig. 11. (a). Curvature of CBKNB-Path for map2. The circle part is
the portion of the Bezier curve which violates curvature constraint. (b).
Curvature of CBKB-Path for map2. The circle part is the modified portion
of the Bezier curve to ensure curvature constrained.

V. CONCLUSION AND FUTURE WORK

We develop an obstacle avoiding path planning algorithm
based on Voronoi diagram and composite Bezier curve. Our
algorithm can obtain a curvature bounded path with near
shortest curve length while taking the Voronoi diagram as
reference skeleton.

Our future work will focus on two topics. The first topic
is to adopt our algorithm into real world applications, such
as ball passing problem in Robot Soccer Game or grand
challenge problem. The second one is to further improve
our algorithm. Although our algorithm can achieve the short
path length and curvature bounded path when the control
points are determined, the control point generation method
greatly affects the path planning result. Our next topic will
focus on the control point refinement to obtain even shorter
path length satisfying different kinematic constraints. In [8],
we adopt simulated annealing algorithm for this issue and
obtain good results.

REFERENCES

[1] Priyadarshi Bhattacharya and Marina L. Grvrilova, ”Voronoi diagram
in optimal path planning”, in 4th IEEE International Symposium on
Voronoi Diagrams in Science and Engineering, 2007, pp.38-47.

[2] Ji-wung Choi, Renwick E. Curry and Gabriel Hugh Elkaim, ”Obstacle
Avoiding Real-Time Trajectory Generation and Control of Omnidirec-
tional Vehicles”, in American Control Conference, 2009.

[3] Trajano Alencar de Araujo Costa, Armando Morado Ferreira and Max
Suell Dutra, ”Parametric Trajectory Generation for Mobile Robots”,
ABCM Symposium Series in Mechatronics, Vol.3, 2008, pp.300-307.

[4] Halit Eren, Chun Che Fung and Jeromy Evans, ”Implementation of
the Spline Method for Mobile Robot Path Control”, in 16th IEEE In-
strumentation and Measurement Technology Conference, Vol.2, 1999,
pp.739-744.

[5] H. Delingette, M. Hebert, K. Ikeuchi, ”Trajectory Generation with
Curvature Constraint based on Energy Minimization”, in IEEE/RSJ
International Workshop on Intelligent Robots and Systems, 1991,
pp.206-211.

[6] S. Fortune, ”A sweepline algorithm for Voronoi diagrams”, Proceed-
ings of the second annual symposium on Computational geometry,
1986, pp.313-322

[7] El-Hadi Guechi, Jimmy Lauber and Michel Dambrine, ”On-line
moving-obstacle avoidance using piecewise Bezier curves with un-
known obstacle trajectory”, in 16th Mediterranean Conference on
Control and Automation, 2008, pp.505-510.

[8] Yi-Ju Ho and Jing-Sin Liu, ”Simulated Annealing based Algorithm for
Smooth Robot Path Planning with Different Kinematic Constraints”,
in 25th Symposium On Applied Computing, 2010.

[9] Jung-Hoon Hwang, Ronald C. Arkin and Dong-Soo Kwon, ”Mobile
robots at your fingertip: Bezier curve on-line trajectory generation for
supervisory control”, in IEEE International Conference on Intelligent
Robots and Systems, Vol.2, 2003, pp.1444-1449.

[10] Shahin Mohammadi and Nima Hazar, ”A Voronoi-Based Reactive
Approach for Mobile Robot Navigation”, Advances in Computer
Science and Engineering, Springer Berlin Heidelberg, Vol.6, 2009,
pp.901-904.

[11] M.E. Mortenson, ”Geometric modeling”, 2nd edition, John Wi-
ley&Sons, 1997.

[12] K. Nagatani, Y. Iwai and Y. Tanaka, ”Sensor Based Navigation for
car-like mobile robots using Generalized Voronoi Graph”, in IEEE
International Conference on Intelligent Robots and Systems, Vol.2,
2001, pp.1017-1022.

[13] A. Okabe, B. Boots and K. Sugihara, ”Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams”, 2nd edition, John
Wiley&Sons, 2000.

APPENDIX

The path length and curvatures of the Bezier curve are
calculated by its functional representation. We introduce the
functional representation for a Bezier curve in the appendix.
A Bezier curve P (λ) of degree n is represented by n + 1
control points P0, ..., Pn:

P (λ) =
n∑

i=0

Bn
i (λ)Pi, λ ∈ [0, 1], (6)

Bn
i (λ) =

(
n
i

)
(1− λ)n−iλi, i ∈ {0, 1, ..., n}. (7)

and consequently, we derive the P ′(λ) as below:

d

dλ
Bn

i (λ) = B
′n
i (λ) = n(Bn−1

i−1 (λ)−Bn−1
i (λ)) (8)

d

dλ
P (λ) = P ′(λ) =

n−1∑
i=0

Bn−1
i (λ){n(Pi+1 − Pi)} (9)

Let Qi = n(Pi+1 − Pi) , we derive the P ′′(λ) as below:

d

d2λ
P (λ) =

d

dλ
P ′(λ) =

d

dλ
{

n−1∑
i=0

Bn−1
i (λ)Qi} = (10)

n−2∑
i=0

Bn−2
i (λ){(n− 1)Qi+1 −Qi} = (11)

n−2∑
i=0

Bn−2
i (λ){n(n− 1)(Pi+2 − 2Pi+1 + Pi)} (12)

Now we obtain the functional representation for the Bezier
curve, its first and second derivatives. We can then calculate
the curvature for a single point on the curve with argument
λ as:

κ(λ) =
P ′

x(λ)P ′′
y (λ)− P ′

y(λ)P ′′
x (λ)

(P ′
x(λ)2 + P ′

y(λ)2)
3
2

(13)

The P ′
x(λ) and P ′

y(λ) are the x value and y value of
the derivative P ′(λ) respectively. Similarly, the P ′′

x (λ) and
P ′′

y (λ) are the x value and y value of the second derivative
P ′′(λ) respectively. We use this functional representation to
calculate the curvature value for each single point on the
curve instead of using forward differencing method. Also,
the functional representations of P ′(λ) and P ′′(λ) are used
to ensure C1 and C2 continuities.

