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Abstract

We address two key issues of co-segmentation over mul-
tiple images. The first is whether a pure unsupervised al-
gorithm can satisfactorily solve this problem. Without the
user’s guidance, segmenting the foregrounds implied by the
common object is quite a challenging task, especially when
substantial variations in the object’s appearance, shape,
and scale are allowed. The second issue concerns the effi-
ciency if the technique can lead to practical uses. With these
in mind, we establish an MRF optimization model that has
an energy function with nice properties and can be shown to
effectively resolve the two difficulties. Specifically, instead
of relying on the user inputs, our approach introduces a co-
saliency prior as the hint about possible foreground loca-
tions, and uses it to construct the MRF data terms. To com-
plete the optimization framework, we include a novel global
term that is more appropriate to co-segmentation, and re-
sults in a submodular energy function. The proposed model
can thus be optimally solved by graph cuts. We demonstrate
these advantages by testing our method on several bench-
mark datasets.

1. Introduction

Figure-ground segmentation has long been a challeng-
ing problem in computer vision. Apart from the difficul-
ties in establishing an effective framework to divide the im-
age pixels intomeaningfulgroups, the notions of figure and
ground often need to be properly defined by providing either
user inputs,e.g., [10, 25, 28] or object models,e.g., [3, 19].
The idea of co-segmentation, first introduced by Rotheret
al. [26], is another possibility to more explicitly cast the
problem as simultaneously segmenting an image pair to lo-
cate theircommonforeground object. However, as is illus-
trated in Figure 1, the ambiguity of what the foregrounds
should be may still exist and can confuse a fully automated
approach to correctly segment the desired object. On the
other hand, by including more images containing the com-

Figure 1. While humans would easily identifyairplane (en-
closing with red boundary) is the common object between the two
images, the more consistent appearances in thesky areas (en-
closing with blue boundary) may cause an automatic segmentation
system to choose them as the more plausible foregrounds.

mon object, the co-segmentation formulation can become
more well-defined, but generally at the price of increasing
the appearance variations of the foregrounds as well as the
complexity to accomplish the task. The main focus of this
paper is to tackle the aforementioned difficulties in perform-
ing co-segmentation over two or more images.

Specifically, we aim to address two key issues of co-
segmentation: 1) Can a fully unsupervised approach sat-
isfactorily solve the problem? 2) Is there a general energy
minimization model to realize the co-segmentation process
with efficiency? In the first issue, one practical and often-
encountered scenario is that the appearance variations of
the common object are more substantial than those in some
areas of the backgrounds. (See Figure 1.) To overcome
the dilemma, most of the existing techniques [1, 6, 11, 21]
adopt an interactive scheme to guide the grouping process
through ambiguous situations. We instead consider aco-
saliencyprior in the proposed energy function, and estab-
lish an unsupervised co-segmentation algorithm. The con-
cept of saliency has been extensively studied by psychol-
ogists [14, 24, 27, 30]. Roughly speaking, it is related to
the areas that most people may focus on when seeing a
view. For co-segmentation, we are motivated to define a
co-saliency model to generate image regions that aresimi-
lar to each other across images, and meanwhile retain their
distinctness within each image. To that end, we adopt the
saliency results of Gofermanet al. [8], and then filter out



the areas that infrequently appear in most images. In the
second issue, we observe that an important factor in solv-
ing the co-segmentation problem is the establishment of a
suitable consistency measure between the foreground ar-
eas from any two different images. For those techniques
based on MRF, the consistency check is often carried out
by introducing a global term in the energy function,e.g.,
[11, 21, 26]. Such a global term is typically defined by the
similarity of two histograms from two potential foreground
areas. Since the number of possible foreground regions in
an image is two to the power of the number of superpix-
els (or pixels, in the extreme case), evaluating the global
term over all the possible foreground pairs becomes piv-
otal concerning efficiency. This aspect of consideration is
even more critical when more images are included for co-
segmentation. In our approach, we have proposed a new
and effective global term that satisfies thesubmodularcon-
dition [17]. The resulting energy minimization can thus be
optimally solved by the graph-cut algorithm [4].

Another aspect of our effort is to investigate how to come
up with a good feature representation for co-segmentation.
In particular, we focus on the global energy term for the rea-
son just described. As in our formulation the potential fore-
ground regions evaluated by the global term are represented
as histograms ofvisual words, it is constructive to explore
whether enforcing the clustering criterion to consider the
property that the images share a common object would re-
sult in a more effectivevocabulary. That is, we may prefer
that pixels (or sampled pixels) are grouped to form a visual
word owing to not only having similar descriptor values but
also spreading overdifferentimages. This point will be dis-
cussed in detail in Section 4. We summarize the main con-
tributions of this paper as follows:

• Introduce a co-saliency prior to make the unsupervised
co-segmentation possible.

• Establish a new global energy term to effectively solve
co-segmentation over multiple images.

• Propose a useful regularization term inK-means ob-
jective function to encourage gathering pixels with
similar appearance across different images.

2. Related work

Co-segmentation techniques most relevant to ours are
those heavily relying on the regularity of a global energy
term in their MRF model. Rotheret al. [26] and Mukherjee
et al. [21] respectively use theL1 and theL2 norm to mea-
sure the dissimilarity between foreground histograms. The
main drawback of both is that solving the whole model be-
comes NP-hard. Hochbaum and Singh [11] subsequently
propose a “reward” model that satisfies the submodular
condition and therefore can be efficiently solved by graph

cuts. However, the inner product of twounnormalizedhis-
tograms representing the reward model is hard to give a
meaningful explanation of why it yields a suitable simi-
larity measure. Namely, a large inner product value by
their model does not imply that the two unnormalized his-
tograms are more similar. In [29], without directly com-
paring two histograms, Vicenteet al. propose a new global
model to favor a co-segmentation result that all pixels asso-
ciated with a visual word are either uniformly from back-
ground or foreground. The criterion is reasonable when
the desired foregrounds of both images are indeed instances
of the same object with possible scale changes. It is not
clear if the model can be extended to handle more chal-
lenging backgrounds, viewpoint changes, and appearance
variations pertaining to the foreground object. While the
above methods [11, 21, 26, 29] all include a global term
in their MRF model and test on co-segmentation with only
two images containing identical or similar objects, Joulinet
al. [15] consider co-segmenting more than two images with
different instances from a more general concept of thesame
object class. Their formulation treats co-segmentation asa
two-cluster problem, and yields impressive results. How-
ever, since the goodness of clustering depends on the ac-
curacy in evaluating the similarity between every two local
patches (or superpixels), the framework seems to require
fine over-segmentation, say, around500 superpixels per im-
age to give satisfactory performances, and therefore results
in a less efficient implementation.

As is mentioned earlier, a number of co-segmentation
methods need user inputs to facilitate the process. The ap-
proaches by Mukherjeeet al. [21] as well as by Hochbaum
and Singh [11] both require providing some scribbles (sim-
ilar to those in GrabCut [25]). Instead of suggesting the
scribbles at first, Batraet al. [1] propose to guide the user
to input additional strokes on the area that is the hardest
to decide the pixel labels. Without relying on the scribble
cues, Cuiet al. [6] assume that one of the images is hand-
segmented. Rotheret al. [26] add a constant penalty for
assuming the background label to avoid the trivial solution
that all pixels are labeled as background. Joulinet al. [15]
divide pixels into two clusters, and let the user choose which
cluster is more likely to be the common object cluster.

In passing, we notice that more recently Chen [5] has
proposed a scheme to find the common salient objects be-
tween a pair of images by enhancing the similar and pre-
attentive patches. However, it appears to be hard to gener-
alize the formulation to the case of handling more than two
images. Also, Rahtuet al. [22] and Ramanathanet al. [23]
both take account of the saliency information in segmenting
meaningful objects from asingle image. Direct and feasi-
ble extensions of their approach to co-segmentation of two
or more images are not obvious in view of the difficulty in
sifting the saliency information from each image.
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3. Co-segmentation energy function

Given a set ofM images{Ii}Mi=1 for co-segmentation,
the foreground ofIi is simply the area containing an
instance of the common object. We apply the over-
segmentation technique provided in [7] to each image, and
partition Ii into ni superpixels. Then, the foreground and
the background ofIi can be approximately represented by
a binary label vectorxi ∈ {0, 1}ni. It follows that in the
context of the proposed MRF model, co-segmenting these
M images is to find the binary labels{xi}Mi=1 minimizing
the following energy function:

F ({xi}) =
∑

i

Li(x
i) + λ · E({xi})

=
∑

i

Li(x
i) + λ

∑

i,j

G(xi,xj , Ii, Ij) (1)

whereLi(x
i) is thewithin-imageMRF energy of the label-

ing xi on Ii, G(xi,xj , Ii, Ij) is thebetween-imageenergy
measuring the inconsistency betweenIi andIj under the
labelingsxi andxj , andλ weighs the importance of the
global energy termE({xi}). In what follows, we shall first
explain how the co-saliency prior is derived, and how to use
the information to construct{Li}. We then focus on the de-
tails ofG and its useful property to complete the proposed
energy minimization model.

3.1. Co-saliency prior

Saliency detection is often formulated as the search of
the distinct areas in an image,e.g., [8, 12, 13] since human
eyes are easily attracted by the unusual things with respect
to the whole view. Our co-segmentation model assumes that
in most of the images{Ii}Mi=1, their detected salient areas
contain at least parts of the foreground object. The assump-
tion is reasonable as the object of interest usually has some
distinguishable appearances from the rest and draw one’s
attention. This will be termed as thedistinctnessproperty
within an image. On the other hand, therepeatednessprop-
erty among images is also important for co-segmentation.
Namely, we prefer that a salient area in an image can be
repeatedly detected in others. Based on these observations,
we consider the single-view saliency model of Gofermanet
al. [8], and concentrate on those parts of saliency maps that
frequently repeat in most images,i.e.,

Co-saliency= Saliency× Repeatedness.

LetSi andS̃i be the saliency and the co-saliency maps of
Ii, and their value at pixelj is denoted assij ands̃ij , respec-

tively. To obtain the co-saliency map̃Si, we adjust eachsij
by multiplying a weightwi

j that can be thought as the like-
lihood of repeatedness over{Ik}k 6=i. More specifically, we

Original images{Ii}

Saliency maps{Si}

Co-saliency maps{S̃i}
Figure 2. Saliency versus co-saliency. Within the second image to
the left, the can is salient. However, most pixels of that area have
less repeatedness weights due to that the can does not appearin
other images. It follows that the corresponding co-saliency map
would have smaller co-saliency values around that area.

focus on those image pixels whose saliency value is larger
than0.6 × simax wheresimax is the maximal saliency value
of Ii. And in such distinct areas, we sample a point every
five pixels and describe it by a SIFT feature [20]. Letgi

j be
the SIFT feature of pointj on imageIi. For eachgi

j, we
compute thedistanceto its most similar point on imageIk

by

d(gi
j , I

k) = min
l

‖gi
j − gk

l ‖. (2)

Thus, according to (2), eachgi
j is now associated with

M − 1 distances{d(gi
j , I

k)}k 6=i. We then average the first
half smallest distances to derivēdij , and use the sigmoid
function to define the weightwi

j by

wi
j =

1

1 + exp
(

−
µ−d̄i

j

σ

) (3)

whereµ andσ are the parameters related to the shape of the
sigmoid function. (µ = 0.8 andσ = 0.2 in all our experi-
ments.) While the above procedure yields only the weights
of the sampled points, the weights of all the remaining pix-
els of Ii can be approximated by interpolation from those
of their closest sampled points. Finally, we rescale the co-
saliency values of̃Si to [0, 1]. (See Figure 2.)
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3.2. Within-image MRF energy

We are now ready to define the within-image energy
Li(x

i) in (1) of binary labelingxi over superpixels{pi
j}

of Ii. Like in most of the conventional MRF models,Li

contains a data term and a pairwisesmoothnessterm. To
specify the two terms, we need two additional definitions.
The first pertains to the cost of labeling a superpixel, say,
pi
j as foreground, and is given by

αi
j =

∑

k∈p
i
j

τ − s̃ik (4)

whereτ is a parameter to be adjusted and its discussions
will be provided in Section 5.1. The second definition con-
cerns the cost of assigning different labels to two adjacent
superpixels. LetE i be the edge set that encodes the ad-
jacency relations of{pi

j} andβi
j,k be the cost of different

labels betweenpi
j andpi

k, (j, k) ∈ E i. In particular, we
have

βi
j,k =

∑

(l,m)∈Bi
j,k

exp

(

−
‖vi

l − vi
m‖2

2σ2
RGB

)

(5)

wherevi
l andvi

m are the respective RGB values of pixels
l andm, andBi

j,k includes all the pairs of adjacent pixels
across the boundary of superpixelspi

j andpi
k. (In our im-

plementationσRGB is set to20/256.) With (4) and (5), the
exact form ofLi(x

i) can then be stated as follows:

Li(x
i) =

ni
∑

j=1

αi
jx

i
j +

∑

(j,k)∈Ei

βi
j,kδ[x

i
j 6= xi

k] (6)

whereni is the total number of superpixels inIi, andδ is
an indicator function that outputs1 when the statement is
true. The fact thatβi

j,k > 0 for all (j, k) ∈ E i ensures the
following important regularity aboutLi(x

i).

Property 1 The within-image MRF energyLi(x
i) defined

in (6) is submodular.

3.3. Global energy term

In evaluating the global energy termE({xi}) in (1),
like [11, 21, 26], we represent each superpixel by an un-
normalized histogramh. It follows that the summation of
the histograms of all the superpixels within an area also
forms this area’s representation. Given a binary labeling
xi over imageIi, the implied foreground and background
can be respectively represented by

Hi
f =

ni
∑

k=1

hi
kx

i
k and Hi

b =

ni
∑

k=1

hi
k(1− xi

k). (7)

We further denote the histogram ofIi as

Hi =

ni
∑

k=1

hi
k = Hi

f +Hi
b. (8)

From (1), establishing the global term can be reduced to
specifying the between-image energyG(xi,xj , Ii, Ij). We
observe that good co-segmentation results often share two
important attributes—not only the foregrounds are similar
to each other but also each of them should be dissimilar to
its respective background. We thus define

G(xi,xj , Ii, Ij) = ‖Hi
f−H

j
f‖

2
2−

∑

k∈{i,j}

ck1‖H
k
f−ck2H

k
b‖

2
2

(9)
wherec∗1 decides the influence of the dissimilarity, andc∗2 is
to balance the foreground and the background histograms;
otherwise, directly comparing these two un-normalized his-
tograms may not be reasonable, since their corresponding
areas can be of very different sizes. Note that the dis-
similarity measure in (9) is between the entire foreground
and background areas, which is different from the pairwise
terms ofLi in (6) measuring only the local dissimilarities
between superpixels. For simplicity, we assume hereafter
c∗1 andc∗2 are respectively set to the same valuesc1 andc2.

By substitutingHi
b = Hi −Hi

f into (9), and taking the
definition ofHi

f in (7), we obtain

G(xi,xj , Ii, Ij) = C − 2
∑

l,m

〈

hi
l ,h

j
m

〉

xi
lx

j
m+

2c1c2(1 + c2)×
∑

k∈{i,j}

nk
∑

l=1

〈

hk
l ,H

k
〉

xk
l +

(1− c1(1 + c2)
2)×

∑

k∈{i,j}

∑

l,m

〈

hk
l ,h

k
m

〉

xk
l x

k
m

(10)

whereC is a constant term. Indeed the first three terms in
the RHS of (10) satisfy the submodular condition. Whether
G is a submodular function only depends on if the coeffi-
cient1−c1(1+c2)

2 of the last term is not greater than 0. We
let c1 = 1

(1+c2)2
so thatG can be submodular, and mean-

while assume a simpler form. Finally, by settingc = c2
1+c2

,
G(xi,xj , Ii, Ij) becomes

C − 2
∑

l,m

〈

hi
l ,h

j
m

〉

xi
lx

j
m + 2c×

∑

k∈{i,j}

nk
∑

l=1

〈

hk
l ,H

k
〉

xk
l .

(11)
From (11), we find that the global energy term in

Hochbaum and Singh [11] is a special case of our model
whenc = 0 (i.e., c2 = 0). On the other hand, whenc is set
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Vocabulary A

Vocabulary B

Figure 3. Two examples of visual vocabularies.K-means clustering with the proposed regularization term would more likely yield vocab-
ulary A, which, compared with vocabulary B, is more compact and has two representative visual words (clusters).

to 1, it implies thatc1 is close to 0, and the proposed model
is close to that based onL2 norm used in [21]. Indeed, by
introducing only one extra parameter in our approach, we
are able to establish a more appropriate global energy term,
and effectively tackle co-segmentation over more than two
images, which is a much more complicated problem than
co-segmenting an image pair.

Property 2 The total energy functionF defined in (9) is
submodular, and hence the proposed energy minimization
can be optimally solved by the graph-cut algorithm.

4. Learning visual vocabulary

Our discussions in the previous section point out that the
histogram representation of a superpixel plays an important
role in formulating the global energy term. Since such a his-
togram is simply composed of the frequencies of the visual
words [18], how these words are derived should, in turn, be
a key factor. In our implementation, we have considered
two different schemes. The first is standard that the visual
words (clusters) are obtained by carrying outK-means clus-
tering over sampled pixels, and it indeed gives satisfactory
implementation of our method. In addition, we also explore
the assumption that the images contain instances of a com-
mon object in the clustering process. Suppose for the mo-
ment that in each imageIi we have a regionRi intersecting
the underlying foreground. (Ri will be discussed in Sec-
tion 5.2.) We then consider devising a clustering scheme to
prefer: 1) across-image, similar pixels of{Ri} assigned to a
same cluster should come from as many different images as
possible, and 2) within-image, similar pixels ofRi should
fall into the same cluster. Clearly, the set of visual words
containing pixels from{Ri} would become morerepresen-
tativeandcompact. (See Figure 3 for an illustration.)

So, the other clustering scheme used in our implementa-
tion is to take account of the above two useful properties. To
this end, we add a regularization term in theK-means ob-
jective function by utilizing the effects ofL1 andL2 norm.
As described in [2], anL1-norm regularization term tends
to concentrate values on several entries of a vector while
anL2-norm regularization term instead spreads values over
whole entries. Suppose that we uniformly sampleJ pixels
from each image, and represent each pixel by a SIFT fea-
ture vectorz. To cluster all these pixels over{Ii}Mi=1 into
K visual words, we consider an assignment tableA of size
M × J ×K, and the following optimization problem:

min
{µ

k
}K
k=1

,A

K
∑

k=1

M
∑

i=1

J
∑

j=1

(‖zi,j − µk‖ ·Ai,j,k)+

η ×
K
∑

k=1

√

√

√

√

√

M
∑

i=1





∑

j∈Ri

Ai,j,k





2

subject to Ai,j,k ∈ {0, 1},
∑

k
Ai,j,k = 1, ∀i, j

(12)

where{µk} are the cluster centers andη controls the influ-
ence of the regularization term. (η = 4 in all our experi-
ments.) The justification of the regularization term in (12)
can be best understood by first marginalizingA overRi to
obtain anM ×K matrix. Now, each column of the matrix
records the frequencies of a specific visual word (cluster)
appearing in theM images. While theL2 norm signaled by
taking a square root is to make this visual word spread over
all images, theL1 norm implied by the outmost summation
is to derive a compact set of visual words. For convenience,
we will call this anL1,2 regularization term.
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Num. of Without global term K-means K-means+ L1,2Dataset
images

[15]
Saliency Co-Saliency Saliency Co-Saliency Saliency Co-Saliency {c2, τ}

Cars front 6 87.65% 77.01% 79.01% 83.27% 88.50% 88.04% 90.78% 90.46%
Cars back 6 85.10% 76.22% 77.63% 79.72% 81.86% 85.34% 85.76% 85.76%

Bike 30 63.30% 70.90% 72.38% 75.06% 76.67% 75.52% 76.76% 76.60%
Cat 24 74.40% 83.06% 79.80% 85.78% 86.36% 86.34% 86.68% 86.68%

Plane 30 75.90% 85.91% 86.22% 86.58% 86.80% 86.92% 87.66% 87.21%
Face 30 84.30% 78.54% 78.96% 84.41% 85.51% 85.08% 87.27% 85.76%
Cow 30 81.60% 88.40% 88.71% 91.25% 91.30% 91.10% 91.36% 90.92%

Horse 30 80.10% 78.72% 76.59% 85.30% 86.00% 85.57% 86.36% 84.36%
Gnome 4 89.29% 93.56% 93.28% 95.21% 95.00% 95.29% 95.12%

Table 1. Co-segmentation accuracy. The results by our method, measured in the pixel accuracy, are reported in the rightmost seven columns.
When the global energy termE in (1) is included, visual words can be obtained either byK-means or byK-means withL1,2 regularization.

Analogous toK-means clustering, we adopt an EM pro-
cedure to find{µk}

K
k=1 andA in (12). In E-step, we first re-

laxAi,j,k to [0, 1] so that an NP-hard problem can be trans-
formed into a convex optimization problem. We then use
thecvx toolbox [9] to solveA, and discretize its entries to
{0, 1} by settingAi,j,k to 1 if k = argmaxl Ai,j,l and0,
otherwise. In M-step, we computeµk by the mean of the
feature vectors of the pixels assigned to clusterk.

5. Experimental results

For the sake of comparison, we test our method with
the challenging datasets used in [15] which contain the
Weizman horses and MSRC database. We also include the
Gnome dataset in our experiments as it contains images
with large illumination and viewpoint changes of the same
object. Figure 4 shows some examples of these images and
the co-segmentation results. (Note that the images in Weiz-
man horses are resized to have the same larger dimension.)

5.1. Parameters

Our model has three parameters,{λ, τ, c}. τ appears in
(4), and its value is decided by running our algorithm with-
out the global term.λ andc are introduced in (1) and (11),
respectively. Recall thatc = c2/(1 + c2) and from (9),
c2 can be thought of the ratio of the average area of fore-
grounds to the average area of backgrounds over{Ii}

M
i=1.

For each dataset, we uniformly samplec2 from a given
range, adjustλ heuristically, and then report the best re-
sult. Indeed, the set of parameters can be reduced to{τ, c}
with slight decrease in accuracy, asλ can be tunedunsu-
pervisedlyby checking whether the co-segmentation results
match the foreground-background ratio implied byc2.

5.2. Accuracy

We test our co-segmentation method in seven different
settings. First, the within-image energyLi(x

i) can be im-
plemented with the cost of assigning a foreground label ac-
cording to either the co-saliency prior used in (4) or the

saliency prior by replacing̃sik with sik. Second, to single
out the effect of the global termE in (1), the experiments
are also performed with or without this global term. In case
thatE is included, the histogram representation will be used
to describe a superpixel or an area of superpixels, and we
further consider the two ways of constructing visual vocab-
ularies described in Section 4. When the co-saliency prior
and theL1,2 regularization are used, we additionally test
our method by tuning onlyτ andc. The respective results
are reported in the rightmost seven columns of Table 1.

It can be inferred from the results in Table 1 that the
co-saliency prior tends to yield better co-segmentation per-
formances than the saliency prior, except implementing our
model without using the global term to test the two datasets,
Cat andHorse. And, such few exceptions are expected
since the between-image factors are not considered here.

We next look into the importance of using the global en-
ergy termE in co-segmentation. In Table 1, the results
by includingE are those in the rightmost five columns,
and they are uniformly superior to those without using the
global term. However, considering the global term means
the necessity of the two parametersλ and c, where the
former controls its contribution, and the latter enables our
model to tackle the high complexity of co-segmentation
over more than two images.

The last factor discussed here that has a bearing on the
co-segmentation accuracy is how the visual words are ob-
tained. Recall that in Section 4, theL1,2 regularization term
is formulated based on the assumption that we have a region
Ri that has a higher probability of intersecting the underly-
ing foreground in imageIi. In practice, we have no access
to such knowledge in an unsupervised approach. Neverthe-
less, a reasonable way to yieldRi is as follows. Besides
the co-saliency map̃Si, we also apply theGaussian center
prior [16] toIi and generate, say,Oi. The superpixels inter-
secting the areas with the top 20% values ofS̃i×Oi are then
included inRi. The strategy is general in the sense that the
ratio between the area of the resultingRi to the area ofIi
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Avg. Total TimeDataset
superpixels superpixels (in second)

Cars front 96.83 581 0.65
Cars back 104 624 0.85

Bike 96.9 2907 215.40
Cat 75.71 1817 19.84

Plane 90.67 2720 62.77
Face 87.73 2632 110.88
Cow 46.03 1381 6.96

Horse 94.03 2821 150.18
Gnome 77.50 310 0.22

Table 2. Inference time for each dataset.

can range from 35.70% to 68.56% in our test datasets. More
importantly, it can reduce the unexpected effect of applying
theL1,2 regularization to the backgrounds, as is justified by
the improved accuracy in the rightmost three columns.

5.3. Time complexity

We run our algorithm on a PC with Intel i7 CPU @ 2.8
GHz. In Table 2, the inference time in optimizing{xi} with
the energy defined in (1) is reported for each dataset. Com-
pared with the technique of Joulinet al. [15], where the av-
erage number of superpixels is around500 per image, and
the inference time is about8 minutes for a pair of images
and4 to 9 hours for30 images, our method is more efficient.
In particular, the proposed co-segmentation approach does
not require over-segmenting each image into large number
of superpixels, and can efficiently accomplish the task via
an optimal labeling derived by the graph-cut algorithm.

6. Conclusion

Our main contribution is to introduce a new energy min-
imization model that is general enough to deal with the high
complexity of simultaneously segmenting multiple images,
and meanwhile, can be efficiently and optimally solved. In
addition, we have proposed a useful regularization term for
K-means clustering in learning the visual words for co-
segmentation. If the inclusion of the three parameters (or
two, for slight decreases in the co-segmentation accuracy)
in our method is not considered, we have come close to
establish a fully-unsupervised algorithm. Still, there are
several issues remained to be explored. In particular, we
would make efforts to further improve the quality of the
saliency and co-saliency detection, extend co-segmentation
to a more general concept, and bring in new applications.
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