
A Cooperative Botnet Profiling and Detection in
Virtualized Environment

Shun-Wen Hsiao∗†, Yi-Ning Chen∗, Yeali S. Sun∗ and Meng Chang Chen†

∗Department of Information Management
National Taiwan University, Taipei, Taiwan 10617

Email: {r93011, r99725028, sunny}@im.ntu.edu.tw

†Institute of Information Science
Academia Sinica, Taipei, Taiwan 11529
Email: {hsiaom, mcc}@iis.sinica.edu.tw

Abstract—Cloud security becomes an important topic in re-
cent years, as to overcome the botnet in a virtualized environment
is a critical task for the cloud providers. Although numerous
intrusion detection systems are available, yet it is not practical to
install IDS in every virtual machine. In this paper, we argue
that a virtual machine monitor (VMM) can support certain
security functions that our proposed design can actively collect
information directly from the VMM without installing an agent
in the guest OS. In addition, bot could not aware of the existence
of such detection agent in the VMM. The proposed detection
mechanism takes both passive and active detection approaches
that the passive detection agent lies in the VMM to examine
the tainted data used by a bot to check against bot behavior
profiles and the active detection agent that performs active bot
fingerprinting can actively send specific stimulus to a guest and
examine if there exists expected triggered behavior. In the real-
world bot experiments, we show the passive detection agent
can distinguish between bots and benign process with low false
positive and false negative rates. Also, the result shows the active
detection agent can detect a bot even when before it performs
its malicious jobs. The proposed mechanism suites an enterprise
having cloud environment well to defeat malware.

Keywords—bot, fingerprinting, hypervisor, intrusion detection.

I. INTRODUCTION

Botnet is a network that consists of massive malware-
infected hosts (i.e., bots), controlled by a botmaster and
exploited to launch a large-scale cyber attacks. The botmaster
uses certain specific network protocol (e.g., IRC, HTTP and
P2P) as the Command and Control (C&C) channel for de-
livering malicious executables or instructions to the bots. For
botnet detection, researchers have analyzed the behavior of a
botnet and discovered specific patterns commonly shown in
a bot lifespan. Rajab et. al. [1] discovered that the common
operation patterns of an IRC botnet are: exploit, bot download,
DNS lookup, join, and command.

The understanding of the bot behavior helps us to dis-
tinguish an infected host from a normal host by detecting
the specific behavior patterns. However, in order to evade
such behavior detection, bots in the real world change their
structures and complicate attack procedures to make their
behavior harder to be analyzed, including:

Drop Server

(TCP 80)

Bot Target Host

Remote Desktop

Service (TCP 3389)

Malicious Process

Cache.txt

sens32.dll

ntshrui.dll

Network Activities Host Activities

(1)
(a) Initiate RPD connection

(b) Crack the password

(c) Control the target host

(2)
Create a new process

(3)
(a) Request bot binary

(b) Download bot binary

(4)

Replace

system files

(5) Modify registries to

load the DLLs as services

HKLM\SYSTEM\CurrentControlSet\Services\

Sens\Parameters\ServiceDll =

%SystemRoot%\sens32.dll

HKLM\SYSTEM\CurrentControlSet\Services\

6to4\Parameters\ServiceDll =

%windir%\temp\ntshrui.dll
(6) Reboot and

 infection completion.

Fig. 1. The infection procedure of bot W32.Morto.A.

• Change on the exploitation. For example, attacker cam
make the exploitation more stealthy through phishing
or social engineering.

• Change on the structure of DNS. Using the technique
of fast-flux to hide C&C servers and other bots.

• Change on the communication. Use a self-defined or
encrypted protocol to prevent from being analyzed.

• Change on structure. For example, a botnet structure
may change from the centralized botnet to a decen-
tralized P2P structure.

Fig. 1 is a bot example W32.Morto.A, found in late 2011.
We collected the bot binary from infected hosts and reproduced
the infection process in our lab. Fig. 1 shows its behavior
that it (1) exploits a vulnerable host, (2) creates a temporary
malicious process, (3) obtains the bot binary from network,
(4) replaces benign system files, and then (5) makes itself as
a resident service (6) after next system boot up.

Through the observations, bot behavior can be generally di-
vided into two categories: network activities and host activities.
Correspondingly, there are two popular detection approaches:
network-based and host-based detection approach. The former
one targets on network activities that can be observed from
the network; while the latter one focuses on the information
that can be collected directly from the host.

Network-based detection approach often implements as an
intrusion detection system (IDS) to monitor the network traffic
by signature matching or anomaly detection techniques. It
has the advantage of monitoring massive hosts at the same
time. Also, it is transparent to the monitored hosts, which
means the hosts (or even the bots) are not aware of the
existence of such detector. However, as a passive detector, it
may miss some malwares when they are in their incubation
period (e.g., with no network activities) or when they make
stealthy communication. Such limitation of a passive detector
may lead to a less effective detection.

A general user of personal computer usually selects host-
based IDS. It is a software installed at the end host, e.g.,
anti-virus. Similarly, the installed agent can adopt signature
matching or anomaly detection technique to detect suspicious
processes or files at the host. For detecting the existence of
bots, it often targets on the following entities at the end hosts
[2], [3]: (1) the files that the malware created or modified;
(2) the Windows registry entries that the malware created,
modified or deleted; (3) the DLLs loaded by the malware
before executing; (4) the network connection established by
the malware and its context; and (5) other information, e.g.,
the service and kernel modules installed by the malware.

A host-based detection system can closely monitor the
actions inside the host and collect extra information than a
network-based detection system. However, the detection agent
may be detected by the bots and it can only monitor the very
host that installs it. Once a malicious software is aware of the
existence of detection agent, it may hide or change its behavior
to evade the detection. If we need to guarantee that all of the
host activities that we concern can be observed and logged, a
transparent detection mechanism should be introduced.

Meanwhile, a growing number of enterprises start moving
their services to virtualized environments (e.g., private cloud)
for flexibility, mobility and cost reduction. The hypervisor
supports virtual hardware for the guest OS and allows the
isolation capability to virtual machines. However, there has not
been studied of bot detection in such virtualized environment.

One more limitation of both detection approaches is their
passivity. It means they must first observe particular bot
activities and then trigger the security alarm. In other words,
the passive detection system can only detect a malware after
malicious packets or behaviors are observed by the detector.

In order to overcome (1) the passivity issue of current
detectors and (2) the transparency issue of host-based detection
approach, and to adopt the advantage of both network-based
and host-based detection approaches, we propose a bot pro-
filing and detection mechanism within the VMM with both
passive and active detection approaches. One more benefit of
the design is the saving from installing only one detection

system in the VMM to simultaneously monitor all virtual
machines. The goals and contributions of our work are as
follows.

• Design and implement an intrusion detection system
in the QEMU hypervisor.

• Implement a process tracking mechanism to trace log
and profile the behavior of a specified bot process and
all its spawn processes.

• Use known bot variants to populate system API related
profiles for later active/passive detections.

• Compare behavior profiles of bot families and benign
processes, and quantitatively measure their difference.

• Analyze the behavior patterns of bots and benign
processes from the perspective of API calls.

• Develop a method to generate active fingerprinting for
a bot family.

The main differences between our proposed system with
the literatures are that (1) the implemented tracing mechanism
adopts the concept of tainted analysis so that all the target
processes, files, registries and memory blocks are monitored
and traced. Therefore, the list of the monitored target will
dynamically grow when a new process is spawn, a tainted file
or registry is accessed by other process, a memory block is
accessed/copied, and etc. (2) We develop our behavior profile
from the perspective of system API calls. We can precisely
portray the behavior of an attack to allow further analysis.
(3) We propose the concept of active fingerprinting technique
residing the VMM that it changes the paradigm of passively
detecting the existence of malware. The administrator can
actively probe the existence bot in a virtualization environment
before a breakout.

The proposed passive detection agent lies in the VMM
to examine and track the tainted data used by a suspicious
virtual host (i.e., guest) and check it against the bot behavior
profile. Such design can provide sufficient transparency to
the monitored guests. Moreover, it can also monitor multiple
guests on the same physical machine at the same time.

The proposed active detection agent that performs active
bot fingerprinting can actively send certain specific stimulus
(that is derived from the bot behavior profile) to a virtual
host and examine if it is a bot by observing whether certain
expected behavior is triggered by the stimulus. Our experiment
shows that it can diminish the problem of passivity and is
a good tool for network administrator to evaluate a guest
without installing additional detection agents. Therefore, our
proposed mechanism suits for an enterprise having virtualized
environment (e.g., private cloud) well to defeat malwares and
ensures the security of all the virtual hosts.

The remainder of the paper is organized as follows. In
Section 2, we review some existing works of detection and
fingerprinting. Section 3 is our proposed detection mechanism.
We present the system design and discuss its implementation
in Section 4, and evaluate our design with real-world bots in
Section 5. Section 6 contains some concluding remarks.

II. RELATED WORK

A. Botnet Detection

Several network-based approaches have been proposed
such as BotHunter, BotSniffer and BotMiner. BotHunter [4]
constructs a botnet infection dialog model by correlating the
two-way communication, and uses the model to detect the
intrusion activities. BotSniffer [5] detects bots within the same
botnet since their activities have spatial-temporal correlation
and similarity. BotMiner [6] performs cross cluster correlation
to identify the host that shares similar communication patterns
and malicious activity patterns.

Panorama [7] traces the information flow of predefined
taint data in the host, and observes how and when a malware
process leverages them. While BotTracer [8] detects mali-
cious behavior through observing the process which invokes
sensitive system call with the assistance of virtual machine
technique, API hook tool and network monitoring tool. This
approach requires the predefinition of normal application to
filter out the process started by bot.

Past works usually detect botnet by focusing on bot or
botnet malicious behavior, no matter on the network or in the
host. In these cases, we anticipate that bots or bots within the
same family indeed exist certain malicious behavior that can
be used to distinguish from each other or a benign software.
Therefore, we can make a profile for a bot as a fingerprint and
use it to check against others.

B. Virtual Machine Introspection

Garnkel [15] proposed an architecture for intrusion de-
tection using virtual machine introspection (VMI) technique.
They provide six sample security policies and monitor them
with a modified VMware Workstation. The ReVirt [16] targets
on moving security logging mechanism into a virtual machine.
Chen et al. [17] stated that secure logging and intrusion
detection could benefit from the virtualized environment.
VMwatcher [18] overcame the semantic gap challenge to
reconstruct internal semantic views (e.g., files, processes, and
kernel modules) of a VM. SIM [20] takes another approach to
install an internal entities as well to have a semantic-rich view
of the guest. A formal model [21] of VMI is even proposed
for for describing VMI techniques. We anticipate that VMI
research is a promising approach for monitoring and logging
malware activities due to its isolation and transparent property.

The main difference of our proposed IDS mechanism is
that we focus on the system API calls to describe the activities
taken by the bots and we tracking all the behaviors from the
viewpoint of tainted analysis. Every memory, file or registry
that a process (and its spawn processes) access is monitored
and traced. Based on the profiles, we can populate behavior-
based signature for later use and even use it as an evidence for
forensics. The most important of all, we use them for active
fingerprinting, which has not been explored yet.

C. Fingerprinting

Comer and Lin [9] in 1994 first developed fingerprinting
approach, using the different configurations of each OS’s TCP

Physical Machine

Host Operating System

Hypervisor

Passive Detection

Agent

Active Detection

Agent

VM

Guest OS

Applications

VM

Guest OS

Applications

…

Fig. 2. A virtualized environment and the proposed agents.

protocol implementation (different default value of parameters
such as TTL) to detect the OS version of the remote host.
Today, fingerprinting technology has been widely used in
detecting (1) OS Fingerprinting [10]: the OS version of remote
host, (2) application fingerprinting [11]: application version
run in the remote host, and (3) vulnerability fingerprinting:
whether a known vulnerability existing in the host.

To detect the OS version, for example, active fingerprinting
approach initiates a special-designed packet, and detects the
OS version of a remote host depending on the contents
of response packet. On the contrary, passive fingerprinting
approach dose not send any packets, but monitors packets
inbound and outbound the host to determine the OS version. In
this paper, we adopt the concept of fingerprinting and introduce
a profiling system for fingerprinting malware.

III. DETECTION APPROACH

A. Monitor the Guest OS in a Virtualized Environment

In a virtualized environment (Fig. 2), a guest OS is exe-
cuted on a virtual machine created by the hypervisor/emulator.
The I/O and the CPU instruction of the guest OS are all
translated by the hypervisor/emulator, and then are actually
executed by the physical machine. Therefore, we implement
the proposed detection agents in the visualization layer to
monitor all the interactions between the guest OS and the
VMM. Such approach makes it possible to monitor the guest
OS without modifying it or installing additional software and
reduce the risk of being detected by the malware in the guest
OS. Another benefit is that the detection agents can monitor
all above guest OSes at the same time.

However, the virtual machine introspection (VMI) ap-
proach must consider the semantic gap [8] between the OS-
level semantics and low-level VM observations. We will
demonstrate how to monitor the high-level activities by an-
alyzing related data in the virtualization layer later.

B. Learning-Based Bot Behavior Profile

In a bot host, the initial bot process may create one or more
processes to perform malicious activities. Our goal is to trace
and characterize these bot processes’ behavior and generate a
bot behavior profile for them. We adopt a learning approach
to generate the behavior profiles of real world bot samples.

The example of W32.Morto.A shows that a bot may
access/modify specific files or Windows registries. We observe
that certain actions are inevitable for the bot, hence we focus
on building the bot’s behavior profile by using the file/registry
access activities related to the bot processes.

We define an activity as a system API call related to a
file/registry access. The proposed passive detection agent will
generate a bot process activity log that contains the activities
of a set of monitored bot processes. Based on the collected bot
process activity log(s) of a family of bot, we then generate a
bot behavior profile that contains the common activities from
each bot process activity log. Then, we may generate several
bot behavior profiles based on different families of bots to
create a bot (malware) behavior database.

In figure 3, we give a simplified example of the XML-based
bot profile that we generate in our system. The bot is named
W32.Virut and we use 10 different variants of W32.Virut
to populate the bot behavior profile. The actually length of the
profile is 206 lines, and we only list some of them. With this
profile, we can easily describe the bot and use it as a basis to
detect the bot in a hypervisor.

C. Passive Bot Detection

Based on the database, we identify a set of files
and registries that are used to monitor and mark them
tainted. For example, a malware that would like to run
as a system service in the infected host can modify or
add a Windows registry entry in the HKLM\SYSTEM\
CurrentControlSet\Services\. Take W32.Morto.A
for instance, it modifies a registry entry named 6to4. There-
fore, it is marked as tainted.

Then, we check the processes to be tested in the guest
OS against the tainted objects in the runtime. If any process
accesses the tainted objects, it is marked suspicious. Then
immediately, the passive detection agent starts to trace the
activities of this suspicious process (and its spawn processes)
for a period and generates the corresponding activity log.

The passive detection agent then analyzes the collected
process access activity log against the bot behavior profile
database. To determine the abnormality, we calculate the
Jaccard similarity coefficient between a bot behavior profile
and a process activity log to measure the similarity of them.

The tainted file Jaccard index, αJ(i, k), and the tainted
registry Jaccard index, βJ(i, k) are computed for a possible
bot k in guest host i based on the process activity log Li and
the bot behavior profile Lk. They are defined as followings.

αJ(i, k) =
of tainted file access activity in Li ∩ Lk
of tainted file access activity in Li ∪ Lk

βJ(i, k) =
of tainted registry access activity in Li ∩ Lk
of tainted registry access activity in Li ∪ Lk

If both values are 1.0, it implies that the guest host i is in-
fected by the bot k since they show the exactly same activities.
Proper thresholds αk and βk for each bot k are set for effective

<?xml version="1.0"?>
<Report>
<Module>
<LoadLibrary fileName="ws2_32.dll"/>
<LoadLibrary fileName="wininet.dll"/>
<LoadLibrary fileName="msvcrt.dll"/>
...

<File>
<CreateFile creationDisposition="

OPEN_EXISTING" fileName="C:\WINDOWS\
system32\vmwpfh.exe"/>

<CreateFile creationDisposition="
OPEN_EXISTING" fileName="c:\autoexec
.bat"/>

<CopyFile existingFileName="C:\malware.
exe" newFileName="C:\WINDOWS\
system32\vmwpfh.exe"/>

...
<Registry>
<RegQueryValue hKey="HKEY_LOCAL_MACHINE

\System\CurrentControlSet\Services\
Tcpip\Parameters\Hostname" type="
REG_SZ"/>

<RegQueryValue hKey="
HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Services\Tcpip\
Parameters\Domain" type="REG_SZ"/>

...
<RegCreateKey hKey="HKEY_USERS\S

-1-5-21-117609710-...\Software\
Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders"/>

...
<RegSetValue hKey="HKEY_CURRENT_CONFIG\

Software\Microsoft\windows\
CurrentVersion\Internet Settings\
ProxyEnable" type="REG_DWORD"/>

...
<OtherAction>
<OpenProcess desiredAccess="

PROCESS_QUERY_INFORMATION
PROCESS_VM_READ" procName="rundll32.
exe"/>

<CreateProcessInternal cmdLine="C:\
WINDOWS\system32\vmwpfh.exe"/>

<WinExec cmdLine="C:\WINDOWS\system32\
vmwpfh.exe"/>

<OpenProcess desiredAccess="
PROCESS_CREATE_THREAD
PROCESS_QUERY_INFORMATION
PROCESS_VM_OPERATION
PROCESS_VM_WRITE" procName="explorer
.exe"/>

<CreateRemoteThread procName="explorer.
exe"/>

</OtherAction>
</Report>

Fig. 3. The bot behavior profile of W32.Virut (simplified).

Fig. 4. Bot dataflow relationship diagraph.

detection, since bot variants might exist. Moreover, we might
also not be able to observe or log all activities of a bot during
a limited observation period. Therefore, if αJ(i, k) ≥ αk and
βJ(i, k) ≥ βk, the host i is determined as a bot infected by k.

D. Active Bot Fingerprinting

We observe that bot may have certain hidden behavior
which is activated only when it is properly triggered (named
trigger-based behavior [12]). For instance, a bot may launch
an attack only after receiving a command from its bot master.

In the past, bot detectors can only passively detect bots
after the bot shows certain malicious activities. We believe the
trigger-based behavior can be a niche. Hence, we target on
them and develop active bot fingerprinting, which is derived
from OS fingerprinting concept. We analyze the bot behavior
profile established in the previous phase and try to extract a
bot fingerprint in this phase.

For each bot behavior profile in the database,

1) We list the I/O-related activities invoked by the
bot process in terms of API calls with the input
parameters and output results. Note that in a bot
behavior profile, there are certain general APIs, files
or registries (such as invoking wsock32.dll or
querying registry netshell.dll). Hence, in our
experiments, we manually exclude them. In practice,
we can learn the exclusion list from benign processes.
We will discuss it in our experiments later.

2) From 1), construct the bot dataflow digraph (Fig.
4) where a vertex is an API call. If there exists a
directed edge from vertex u to vertex v, it means the
intersection of the output value set of this instance
u ({O}uj) and the input value set of this instance
v ({I}vk) is not empty and the timestamps of this
instance u is earlier than that of v. We set the value
of the edge to Oum. It indicates that certain value (Oum)
is passed from this instance of u to v.

3) From 2), generate a fingerprint which contains stim-
ulus and response in pair. The stimulus is set to the
API call u and the response is set to the API call v.
If we change the value of oum and theoretically it will
be passed to v. If u is a triggerable event, then we
shall be able to perform such active fingerprinting.

4) From 3), we perform the active bot fingerprinting
through the stimulus, and then observe if the ex-
pected response (i.e., v) is triggered with the changed
parameter. If the triggered response is observed, we
consider the guest host as infected.

In our experiments, a triggerable I/O event is most likely
a file change, a registry change or network packet received.

Guest

Hypervisor

User space

Kernel space

Process

System Call Handler System/PDA Drivers

Virtual Hardware

Disk Memory CPU

Active Detection Agent

Plug-ins

Passive Detection Agent

Fingerprint

Examiner

Fingerprint

Generator

API Hooking

Module

Process

Tracking

Module

obtain process information

from virtual hardware

Fig. 5. The proposed system overview.

IV. SYSTEM DESIGN AND IMPLEMENTATION

The proposed system (see Fig. 5) consists of passive
detection agent (PDA) and active detection agent (ADA).
These agents are implemented in the hypervisor/emulator as
a plug-in. For Windows, a PDA driver needs to be installed
in the guest OS to deliver the upper layer’s information (e.g.,
processes information) to the underlying agents. Note that for
Linux, such driver is not needed.

A. Passive Detection Agent

Process Tracing Module. Before tracing a process, PDA
acquires the process information of the guest OS sent by
the PDA driver. The returned process information includes:
process name, PID, CR3 value (each process/thread has its
own CR3 register value for mapping the virtual memory to
physical memory), and the information of loaded modules.

In Fig. 6, the process tracing module gets the current
executing process and current CR3 value (step 1). We can
instruct it to monitor a target process by using CR3, PID or
process name. If the target process is executing (step 2), the
current status of CPU and memory can be retrieved for further
inspection (step 3). Further, we can call the API hooking
module to record the process activities (step 4).

API Hooking Module. In our system, we monitor the bot
behavior by API hooking, which is a common approach for
detectors [3]. Traditional API hooking technique modifies the
API function’s address in DLL file and points the new address
to a self-defined function to intercept the call. However, the
malware may be aware of the presence of such API Hooks.

Our approach is stealthier, because our agent can obtain
the status of virtualized hardware. In our system (Fig. 7),
we monitor the value of EIP register to check which API
function is called (step 2). If it matches a target API call, a
self-defined callback function will be invoked in the VMM
(step 3). We can then obtain the inputs and outputs of the call
from the corresponding memory and EAX register (step 4–7).
The hooked APIs are listed in Table I.

Hypervisor

Virtual Hardware
Disk Memory CPU

Passive Detection Agent

Process

Information

API

Hooking

Module

Target on

a process

Same

CR3?

Get CPU

status

Get RAM

status

(1)

(2)

CPU registers

Y

Start tracing

memory map

(3)

(4)

Process Tracking

Module

registers

Fig. 6. The process tracing module in PDA.

Hypervisor

Virtual Hardware
Disk Memory CPU

Passive Detection Agent

Process

Information

Process

Tracking

Module

Same

address? Get parameters

from process stack

Target APIs

(API address)

CPU register (EIP)

Y

memory map

API Hooking Module

Callback

Function

Get return values

from EAX register

registers

(1)
(2)

(3)

(4)

(5)

(6)

(7)

Fig. 7. The API hooking module in PDA.

B. Active Detection Agent

Active Detection Agent contains a fingerprint generator
and a examiner. Generator generates bot fingerprinting and
the examiner instructs the ADA driver to initiate the stimulus
of a fingerprint. The examiner checks if the expected response
is triggered. It can be performed periodically to check the bot
infection situation, even when a bot is in its incubation period.

C. Implementation

We implement our system based on TEMU [13], a dynamic
taint tracing platform built upon QEMU [14]. QEMU is an
open source generic machine emulator and virtualizer. QEMU
provides a system mode that can emulate a full computer
system. TEMU includes a taint analysis engine and a semantics
extractor. It can perform dynamic taint analysis, OS awareness,
and in-depth behavioral analysis (e.g., memory accessed and
API calls invoked by a process).

TEMU provides an API to extend its functions. We imple-

TABLE I. HOOKED APIS

File Access Registry Access Others
(kernel32.dll) (advapi32.dll)
CreateFile RegOpenKeyEx LoadLibrary
ReadFile RegQueryValueEx OpenProcess
WriteFile RegSetValueEx CreateProcess
DeleteFile RegCreateKeyEx CreateProcessInternal
CopyFile RegDeleteKeyEx WinExec

RegDeleteValue ExitProcess

Physical Machine (with Intel VT-x)

Ubuntu 10.10 (Linux Kernel 2.6.35)

TEMU 1.0

Windows XP

System/PDA Drivers

Target Process

Virtual

Hardware

Taint

Analysis

Engine

Semantic

Extractor

T
E

M
U

 A
P

I

Target Process …

Active Detection Agent

Passive Detection Agent

Fingerprint

Examiner

Fingerprint

Generator

API Hooking

Module

Process

Tracking

Module

Fig. 8. System implementation.

mented the PDA and ADA in C/C++ as plug-ins of TEMU
(Fig. 8). A Xerces-c Library is used to generate and parse
bot behavior profile in XML format. In our experimental
environment, the host OS is an Ubuntu 10.10 and the TEMU
version is 1.0 (QEMU 0.12.5). To accelerate the emulated
CPU, we used the accelerator kqemu 1.3.0pre11. We installed
Windows XP SP3 as our guest OS as the testing environment
since it is one of the most popular OS.

Beside the new plug-ins, we also implement certain new
features in QEMU or TEMU, such as (1) tainted process
tracing that can automatically record and trace the new pro-
cesses created by the bot process and its child process, (2)
API parameters retrieval that can obtain the value of function
parameters and return value for Windows API hooking, and
(3) a subsystem for event logging.

Event Logging Subsystem. A BlockDriver is used to
log the differences between a clean system (a.k.a. base file) and
the malware-infected system. In QEMU, it is called backing
file. It will not be modified unless the administrator commit
it. The backing file can help us the verify our detection result.
Moreover, for the real-time event monitoring, once a hooked
API is found, the information of the corresponding parameters
and process will be delivered to the standard I/O or file.

Tainted Process Tracing. A malicious process may write
certain malicious materials into file system, and then the
tainted files or directories may read by another process again.
In order to keep tracking such activities, all the files that a
malicious process writes to the file system should be tracked.
In QEMU, we have to check such tainted file list and see if
there is any propagation made by such malicious processes. We
record the PID and CR3 of the process to keep such tracking
in an internal list. A corresponding mechanism for updating
CR3 value of current CPU and a list for maintaining current
tainted file list are also implemented. We also implement
a function to obtain the tainted file name from file system
inode for convenience. If there is any access to these tainted
files, an alarm is triggered. A function of TEMU plug-in,
tracing_taint_disk ,is modified to accomplish this job.

We add a new data structure named trace_profile_t
to keep the tracking the behavior of a process into a profile. It
includes the process name in the file system, a general log file,
a network activity log file, an API hook log file, a memory
allocation log file, the PID and CR3 of the process. All the

tracing control commands (such as start tracing, stop tracing,
set the PID to be traced, set the process name to be traced,
output the profile, output our log files) can be used in QEMU’s
standard command line interface.

API Hooking. In order to monitor the APIs in Table
I, we register these APIs in a list named hooks. For all
these Win32 APIs, they are either from kernel32.dll or
advapi32.dll library. We then further specify the structure
of the parameters and return values of these API functions
from Windows MSDN references [19]. Hence, after the API
is called, we can obtain the parameters and return values.

Take the CreateProcessInternalW API for exam-
ple, it has 11 parameters and returns a BOOL. After the API is
called, we first intercept the call and read memory stack start-
ing at ESP with size 32-bit * 12 (11 parameters and 1 return
value). All these information will be copied to another memory
and wait for further logging. Actually, we implemented 43
API hooks for these APIs in Table I because there are
several variants of a call. For example, CreateProcessA,
CreateProcessW, CreateProcessInternalA, and
CreateProcessInternalW are all possible API calls to
to create a process. The C++ file for implementing the hooking
functionality is 2239 lines.

V. EXPERIMENT

A. Data Source

The bot samples are downloaded from a database built
by the National Center for High-Performance Computing
(NCHC), Taiwan. We choose four families of botnet in our
experiments: Virut, Sality, Korgo and Pinfi. The
bot family classification is provided by Symantec Security
Response and VirusTotal by using the hash value of the bot
binaries. For each bot family, we have 10 variants (V1 ... V10).
They are the largest family in the database. We use Windows
Internet Explorer (IE) as an example of benign process. In
some experiments, Chrome, MSN Messenger (MSN) and
Microsoft Paint (Paint) are used as well.

B. Learning-based Bot Behavior Profiling

We build the bot behavior profile from bot process activity
logs. We infect vulnerable guest OS by using bot samples, and
instruct the passive detection agent to monitor and log the bot-
related processes (including the bot process and the processes
it creates or injects malicious code to) for 2 minutes.

For generating the behavior profile for a bot family, we
use multiple variants and extract common entries form their
bot process activity logs. It is expected that the different set of
chosen variants could populate different profiles since the bot
variants are slightly different from each others. We will show
how it affects the detection later. We also expect different bot
families should exist certain distinct behavior. Table II shows
the number of file/registry accessed in our experiment. As we
expected, difference bot families have different characteristics.
We discuss certain interesting APIs, files and registries here.

Process-Related APIs. CreateProcessInternal,
WinExec, OpenProcess, and CreateRemoteThread

fall into this category. It is quite common to spawn
other new processes to perform additional malicious
jobs. On the contrary, IE only opens new process
named IEXPLORER.EXE, which is exactly itself. For
Korgo, it uses WinExec with command line parame-
ter: C:\WINDOWS\system32\zaegr.exe to execute a
bot. Alternatively, Virut uses OpenProcess to invoke
rundll32.exe, which is responsible for running dynamic
link library in Windows system.

For creating process, an system administrator could set a
limit to the number of spawn process. It could be helpful for
counteracting DDoS-like attacks, worm or bot, since some of
them create lots of process in a very short period of time.

CopyFile and DeleteFile. All of our bots use CopyFile
to make a copy of the bot binary to Windows system folder or
temporary folder for further execution. The filenames may look
like zaegr.exe or vwjop.exe. Sality deletes several
files, and they are all temporary files created by itself. For IE,
it only deletes HTTP cookies and temporary HTML files in
IE’s temporary folder.

CreateFile. CreateFile API has a parameter named
creationDisposition, and it could be CREATE_NEW,
CREATE_ALWAYS or OPEN_EXISTING. From our obser-
vation, bots usually use the former two parameters to cre-
ate files (in the system folder) for later use and use the
latter one to read/execute existing files. But for IE, it uses
OPEN_EXISTING for reading cookies, cached HTML and
font files (from its temporary folder and font folder).

From the viewpoint of files, it is much secure to match
signature in the VMM, since malware may detect the existence
of IDS as well. A host-based IDS might be disabled by a
malware, but it could not disable an IDS in the VMM. In
addition, if a new tainted file is identified, the administrator
can add it in our QEMU/TEMU plug-in to actively check the
infection status of all guest OSes. It would be more efficient.

RegCreateKey and RegSetValue. Bot may modify or add
registry to change the behavior of the infected host, such
as adding new service (all bots), change hostname/domain
(Korgo), change firewall settings (Sality), disable Limited
User Account (Sality), and etc. The further forensics should
be done; however it may beyond the scope of this paper.

Files and Registries. Table III shows the average Jaccard
similarity coefficient (and its standard deviation) between ev-
ery bot variants within its family, and the coefficient comparing
with IE. The similarity within the bot family is higher than the
similarity of a bot and IE. From the point of view of registry,
Sality variants have lots of common behavior (.3979), but
the difference (.1910) between variants is also large.

We observe (1) the number of accessed file is far less
than that of registry, which suggests detecting malicious file is
important but may have higher false positive if the detectors
miss them; (2) only very few files have common filenames
among variants since random filename are used; (3) bots
usually do not use random registry; (4) variants in the same
family have common behavior and using known variants may
detect unknown ones; (5) IE is very different from these bots.

TABLE II. THE NUMBER OF API CALLS OF COLLECTED BOT FAMILIES AND THE BENIGN PROGRAMS

File Registry Others
Create Copy Delete QueryValue CreateKey SetValue LoadLibrary Others

Korgo 8.6 1.0 0.0 131.3 12.0 10.7 24.0 5.9
Pinfi 16.5 1.2 0.1 189.6 19.5 20.2 25.9 6.5
Sality 12.3 0.8 2.3 466.3 18.1 388.0 23.0 13.6
Virut 7.0 1.0 0.0 119.1 16.7 14.4 23.8 5.2
IE 163.0 0.0 8.0 905.0 34.0 39.0 40.0 3.0
Chrome 93.0 1.0 10.0 409.0 94.0 8.0 46.0 4.0
MSN 14.0 0.0 0.0 350.0 19.0 19.0 19.0 0.0
Paint 4.0 0.0 0.0 188.0 21.0 0.0 11.0 0.0

TABLE III. THE SIMILARITY COEFFICIENT OF BOT VARIANTS USING FILE AND REGISTRY RELATED API.

Korgo Pinif Sality Virut
Family Member (File) (.1879, .0666) (.0131, .0466) (.1107, .0627) (.2269, .0657)
Family Member (Registry) (.2629, .0690) (.2050, .0916) (.3979, .1910) (.2320, .0654)
with IE (File) (.0323, .0132) (.0394, .0154) (.0251, .0138) (.0365, .0119)
with IE (Registry) (.0949, .0090) (.0854, .0177) (.0392, .0193) (.0774, .0228)

TABLE IV. THE NUMBER OF TAINTED FILE/REGISTRY ACCESS
AGAINST DIFFERENT BOT PROFILE

|P | = 1 |P | = 2 |P | = 3 |P | = 4 |P | = 5
Sality (File) 15.45 3.25 2.20 1.50 1.25
Virut (File) 8.00 5.40 5.05 5.00 5.00
Sality (Registry) 1218.20 803.15 617.05 447.65 226.65
Virut (Registry) 182.35 133.95 130.50 129.55 128.65

C. Passive Bot Detection

1) Bot Behavior Profile Generated by Multiple Bot Vari-
ants.: We would like to understand what is the proper number
of variants we should use in our proposed profile mechanism
and how it affects our detection result. For a bot family, we
infect the vulnerable OS by using variants in set B one by one
and check against the accessed tainted file/registry with the bot
behavior profile generated by set P (where |B| + |P | = 10,
since for each bot family we have 10 variants). We randomly
distribute these variants to B and P set, and repeat the
experiments 20 times to obtain the average. We use Sality
and Virut as demonstrative examples in Table IV.

As we expect, including more variants to generate bot
profile could make it be more prune (but we may lose
particular behavior for a specific variant). For Virut, the
average number of registry for |P | = 5 is 128.65, which means
Virut variants have commonly shared registry access behav-
ior. However, the differences between Sality variants are
large (the commonly shared registries decrease from 1218.20
to 226.65). It also matches the larger variance value, 0.1910,
in Table III). Hence, making proper bot profile for Sality is
not easy. We suggest further classification to Sality family.

We discover some registries are common network reg-
istries. Since checking the network configuration and estab-
lishing network connection are common for a bot and a benign
network program, we suggest that it is necessary to introduce a
white list for commonly used registries to increase the quality
of the profile. As for the files, certain files are important and
commonly used by the family, such as malware binaries. They
could be useful for anti-virus detectors.

2) Jaccard Similarity Coefficient.: We use the Jaccard
Similarity Coefficient to distinguish bot process and benign
process. In the P = 4 experiment, for bot k = Virut,
the Jaccard difference value of αJ(Vi, k) and αJ(IE, k) is
0.2603, and the difference value of βJ is 0.2382. The larger

TABLE V. THE JACCARD COEFFICIENT RESULT OF VIRUT PROFILE
USING DIFFERENT VARIANT SET

P=1 P=2 P=3 P=4 P=5
αJ (Vi, V irut) .2269 .2509 .2777 .2981 .2549
αJ (IE, V irut) .0365 .0364 .0455 .0378 .0434
Diff .1903 .2145 .2322 .2603 .2116
βJ (Vi, V irut) .2320 .2506 .3050 .3307 .3057
βJ (IE, V irut) .0774 .0898 .0930 .0925 .0952
Diff .1546 .1608 .2120 .2382 .2105

difference, the more we can distinguish a benign process and
a bot process. Due to the page limit, we only show the result
of Virut in Table V. We can see that the best result is
at P = 4. In our experiments of other bot families, the
minimal difference for βJ (register) is 0.1127 and the minimal
difference for αJ (file) is 0.0498. These values can be used
as thresholds to detect bots. We believe it is large enough for
a IDS to distinguish a benign process from a bot process. It
also indicates that usually using registry information as profile
for detecting malware is much more efficient. Moreover, using
proper number of variants to generate profile is important, too.

D. Active Bot Detection

In the active fingerprinting experiment, we generated an ac-
tive fingerprinting for Virut based on its profile of 5 variants.
The stimulus used here is to set two registries under direc-
tory \HKLM\System\CurrentControlSet\Services
\Tcpip\Parameters. The first registry entry is Domain
and the other is Hostname. The former one is often set to
NULL for a normal host when the computer does not join
a domain, while the latter one is usually the name of local
host. Virut infects the vulnerable host by allocating and
writing memory in the address space of Explorer. (Note
Explorer is a user shell of Windows, not IE.) Virut then
creates a remote thread that runs in the address space allocated
from Explorer. Further, it queries these two registries and
makes a DNS query to the domain specified in the registry. In
this case, the DNS query is the response of our fingerprinting.

We test this fingerprinting on all the Virut variants, and
observe that all the variants access these two registries and
send the DNS packet out, except one variant accesses them
but does not send the DNS packet out. To our best guess, it
either delays the query or the attacker rewrites the code. For
this specific active fingerprinting, all benign programs (i.e.,, IE,

Chrome, MSN, and PAINT) do not response it. While tracing a
Virut variant, we observe that it spawns 4–6 processes (with
different PIDs) to perform the attack. Hence, it is necessary to
keep tracking the process and API calls. The result shows that
it is an effective detection approach with no false positive.

VI. DISCUSSION AND CONCLUSION

Several measures are introduced in the literature to evaluate
the similarity between two event sets. In this paper, we only
take the existence of events into account, but we also anticipate
the order of the activities might be meaningful for profiling.
Therefore, time information is preserved in our design for
further investigation in our future work.

For zero-day malware detection as a future work, we
believe it can possibly come up with certain file and registry
infection rules which are generalized from different kind of
bot families. Such detection rules can be used in sandbox or
honeypot to see if our method can catch zero-day malware.

As for network-related APIs, such as AcceptEx and
ConnectEx, we argue that analyzing network protocol needs
to reassemble multiple packets and reconstruct the communi-
cation context statefully. For the packet inspection and recon-
struction, network-based approach, such as our previous work
[22], is much more appropriate and easier for implementation,
while it can keep the state of the protocol and infer the attacks
by checking the integrity of the protocol execution context.

In Table I, although there are only 17 APIs are hooked
(which means we only use them to profile a malware), yet the
parameters of the APIs are also considered while comparing
two processes. We believe the APIs and the parameters used
are descriptive enough to identify these malware. However,
we can also anticipate that a sophisticated attacker may try
not to use Win32 APIs to build their malware. But we argue
that building such program is not easy. Moreover, we can even
further monitor lower-level system calls to profile a process.

For the performance concern of such security hyperviosr,
we argue that due to the performance isolation of virtualized
environment, the computation overhead is on the hypervisor
rather than the guest. In our case, we can assign a dedicated
virtual CPU (or physical CPU) to handle the security functions
without interfering the execution of the guest. However, TEMU
might lead to poor performance itself. We argue that it does
not affect the correctness of the profiling and detection result.
However, we consider that hardware-assistant-based imple-
mentation is more suitable for fast production in the future.

Although the PDA and ADA are more like behavior-
based signature mechanisms, we anticipate that they can be
used to perform behavior-based anomaly detection. As long
as a normal behavior profile are learned or specified by the
administrator, they can keep tracking the activities of the
process and identify abnormal behavior . It can even more
useful for preventing malicious activities or unknown attacks.

In this paper, we propose and implement a passive process
activity analysis and an active fingerprinting methods for bot
detection in virtualized environments. It can perform process
tracking, tainted tracing, process profiling. They are the basis
to provide secure guest for the cloud applications. Our system

has the following benefits. (1) These methods are less intrusive
than traditional host-based approach. (2) It can closely and
more precisely monitor the behavior of bots. (3) The agents are
implemented in the hypervisor. We detect the bots that access
registry/file using API hooking technique without being aware
of by the bot. (4) The cooperative passive and active detection
methods provide proactive and effective bot detection.

The experiment results show that using bot behavior pro-
files learned, our passive detection agent can distinguish bot
host with no false positive and no false negative. In addition,
our active detection agent can detect real bot. Both detection
method are workable and effective.

REFERENCES

[1] M. A. Rajab et al., “A Multifaceted Approach to Understanding the
Botnet Phenomenon,” in Proc. Internet Measurement Conference, 2006.

[2] K. Rieck et al., “Learning and Classification of Malware Behavior”, in
DIMVA, 2008.

[3] C. Willems et al., “Toward Automated Dynamic Malware Analysis Using
CWSandbox,” in Proc. IEEE Security & Privacy (S&P), 2007.

[4] G. Gu et al., “BotHunter: detecting malware infection through IDS-
driven dialog correlation,” in Proc. USENIX Security Symposium, 2007.

[5] G. Gu et al., “BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic,” in NDSS, 2008.

[6] G. Gu et al., “BotMiner: clustering analysis of network traffic for
protocol- and structure-independent botnet detection,” in Proc. USENIX
Security Symposium, 2008.

[7] H. Yin et al., “Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis,” in CCS, 2007.

[8] L. Liu et al., “BotTracer: Execution-Based Bot-Like Malware Detection,”
in Proc. Int. Conf. on Information Security (ISC), 2008.

[9] D. E. Comer and J. C. Lin, “Probing TCP Implementations,” in Proc.
USENIX Summer Conference, 1994.

[10] J. M. Allen, “OS and Application Fingerprinting Techniques,” SANS
Institute, Tech. Rep. 2007.

[11] Testing for Web Application Fingerprint, https://owasp.org/index.php/
Testing for Web Application Fingerprint (OWASP-IG-004)

[12] D. Brumley et al., “Automatically Identifying Trigger-Based Behavior
in Malware,” in Botnet Detection, 2008.

[13] D. Song et al., “Bitblaze: A new approach to computer security via
binary analysis,” in Proc. Int. Conf. on Information Systems Security,
2008.

[14] QEMU, http://wiki.qemu.org
[15] T. Garnkel and M. Rosenblum, “A Virtual Machine Introspection Based

Architecture for Intrusion Detection,” in NDSS, 2003.
[16] G. W. Dunlap et al., “Revirt: Enabling intrusion analysis through

virtual- machine logging and replay,” in OSDI, 2002.
[17] P. M. Chen and B. D. Noble, “When virtual is better than real,” in Proc.

Workshop on Hot Topics in Operating Systems (HotOS), 2001.
[18] X. Jiang et al., “Stealthy Malware Detection through VMM-based “Out-

of-the-Box” Semantic View Reconstruction,” in CCS, 2007.
[19] Windows API List (Windows), http://msdn.microsoft.com/en-us/library

/windows/desktop/ff818516(v=vs.85).aspx
[20] M. I. Sharif et al., “Secure in-VM Monitoring using Hardware Virtu-

alization,” in CCS, 2009.
[21] J. Pfoh et al., “A Formal Model for Virtual Machine Introspection,” in

Proc. Workshop on Virtual Machine Security (VMSec), 2009.
[22] S.-W. Hsiao et al., “Cross-level behavioral analysis for robust early

intrusion detection,” in Proc. IEEE Int. Conf. on Intelligence and Security
Informatics (ISI), 2010.

