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Abstract

In this paper, we consider the edge searching and node searching problems on trees. Given a
tree, we show a transformation from an optimal node-search strategy to an optimal edge-search
strategy. Using our transformation, we simplify a previous linear-time algorithm for determining
the edge-search number of a tree, and improve the running time of a previous algorithm for
constructing an optimal edge-search strategy of an n-vertex tree from O(nlogn) to O(n). We
also improve the running time of a previous algorithm for constructing an optimal min-cut
linear layout of an n-vertex tree with the maximum degree 3 from O(nlogn) to O(n). c© 2000
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The graph searching problem was �rst proposed by Parsons [27, 28] and indepen-
dently proposed by Petrov [31]. A graph represents a system of tunnels. Initially, all the
edges of the graph are contaminated by a gas. We wish to obtain a state of the graph in
which all the edges are simultaneously cleared by a sequence of moves using the least
number of searchers. The graph searching problem is not only interesting theoretically,
but also have applications on several combinatorial problems [2, 9, 15, 20, 17, 22, 25, 33]
In this paper, we consider the edge searching problem and the node searching prob-

lem on trees. In node searching [16], the allowable moves are (1) placing a searcher
on a vertex and (2) removing a searcher from a vertex. A contaminated edge is cleared

( An extended abstract of this paper appears in COCOON’97, Lecture Note in Computer Science,
Vol. 1276, 284–293, 1997.
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if both its two endpoints simultaneously contain searchers. In edge searching [27],
besides the allowable moves in the node searching, one more move, (3) moving a
searcher along an edge, is allowed. In edge searching, a contaminated edge is cleared
by moving a searcher along this edge. A cleared edge may be recontaminated if there
is a path from a contaminated edge to the cleared edge without any searcher on its
vertices (or edges). A vertex is guarded if it contains a searcher.
A node-search strategy is a sequence of moves allowed by node searching rules that

clears the initially contaminated graph. The node searching problem is the problem
to �nd a node-search strategy to clear the initially contaminated graph using as few
searchers as possible. The number of searchers needed to solve the node searching
problem on a graph G is called the node-search number of G and we denote it as
ns(G). We de�ne similarly for the edge searching problem, an edge-search strategy,
and the edge-search number es(G) of G. A search strategy is called optimal if it uses
the minimum number of searchers. It has been shown in [7, 16] (respectively, [7, 21])
that there always exists an optimal node-search (respectively, edge-search) strategy
for a graph that does not recontaminate any edge. Kirousis and Papadimitriou [16]
proved that for any graph G, ns(G)− 16es(G)6ns(G) + 1. In the rest of paper, we
only consider the node- and edge-search strategies which do not recontaminate any
edge.
The node searching problem is equivalent to the gate matrix layout problem and

interval graph augmentation problem [25]. The problem of �nding the node-search
number is equivalent to the pathwidth problem [25, 33], the interval thickness problem
[15], the narrowness problem [20], and the vertex separation problem [16, 17]. From
the equivalent of the above problems, the node searching problem is NP-complete on
planar graphs with vertex degree at most 3 [26], starlike graphs (a proper subclass
of chordal graphs) [14], bipartite graphs [18], cobipartite graphs (i.e., complement of
bipartite graphs) [1], and bipartite distance-hereditary graphs (a proper subclass of the
chordal bipartite graphs and distance-hereditary graphs) [19]. For some special classes
of graphs, it can be solved in polynomial time, as e.g., trees [10, 25, 34], cographs [6],
permutation graphs [3], trapezoid graphs [4], split graphs [14, 18], partial k-trees [5],
and k-starlike graphs for a �xed k [14, 30].
The edge searching problem is equivalent to the min-cut linear arrangement problem

for any graph with the maximum degree 3 [23]. The edge searching problem is NP-
complete on general graphs [24], planar graphs with the maximum vertex degree 3 [26]
and starlike graphs [30]. However, it can be solved in polynomial time on complete
graphs [13], trees [24], interval graphs, split graphs, and k-starlike graphs for a �xed
k¿2 [30].
Though the above two searching problems appear to be similar, the time complexities

to solve them are di�erent. There are linear time algorithms on a tree to �nd both its
node-search number and an optimal node-search strategy [34, 35] (also mentioned in
[25, Theorem 4.7]). However, the previous best algorithm [24] takes O(n log n) time
to �nd an optimal edge-search strategy on a tree of n vertices, while its edge-search
number can be found in linear time [24]. In this paper, we improve the time complexity
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of �nding an optimal edge-search strategy on a tree by establishing a relationship
between the two searching problems on this tree.
We �rst extend the concept of an avenue of a tree in edge searching as used by

Megiddo et al. [24] to an avenue system. We show that in node searching, a similar
avenue system can be de�ned. Based on properties of the above two avenue systems,
we discover that the two search numbers are equal on trees that have at least four
vertices with no degree-2 vertex, and whose every internal vertex is adjacent to at
least one leaf, so-called a sprout tree (will be de�ned in Section 3). We further show
that an optimal node-search strategy for a sprout tree can be transformed into an
optimal edge-search strategy using the same number of searchers in linear time. For
any tree T , if it is not a sprout tree, then we can transform it to a sprout tree T ′.
We will prove that if T is not a path, then T and T ′ have the same edge-search
number. Our above transformation takes time linear in the size of the input tree. Note
that the best previous result for constructing an optimal edge-search strategy for a tree
needs O(n log n) time [24]. Besides the above algorithmic achievement, the relationship
between two searching problems we discovered may be of interest by itself.
Recently, we were informed that independently Golovach [11, 12] obtained similar

results. In [12], Golovach mentioned that if a graph G has no vertices of degree 2 and is
di�erent from the complete graph with two vertices then ns(G)6es(G). Unfortunately,
no detail is given. We were also told that Golovach [11] has the following results. If
graph G′ is obtained from the graph G by adding of any number of degree-1 vertices
adjacent to vertices of G having degrees more than 2, then es(G)= es(G′). In the same
thesis, Golovach also shows that if there exists an optimal node-search strategy of G
such that in which one searcher is placed on a vertex v, deg(v)¿3, by some move
and is removed from v immediately by the next move, and there are less than ns(G)
searchers on the graph after the �rst move, then ns(G)¿es(G).
The remaining of this paper are organized as follows. In Section 2, we de�ne the

avenue systems on trees for edge and node searching problems. Our main results about
the relationship between the node searching and edge searching on trees are presented
in Section 3. The linear time algorithm for constructing an optimal edge-search strategy
for a tree and the min-cut linear layout problem on trees with the maximum degree 3
are presented in Section 4. Finally, we give conclusions in Section 5.

2. Avenue system

Let T be an unrooted and connected tree. Let V (T ) and E(T ) denote the vertex
and edge sets of T , respectively. A sequence of vertices [v1; v2; : : : ; vr] is a path if
(vi; vi+1)∈E(T ), 16i6r−1. A vertex in T with degree 1 is called a leaf and a nonleaf
vertex is called an internal vertex. For any vertex t ∈V (T ), a connected component of
T\{t} is called a branch of T at t. Let v be adjacent to t in T . The branch of T at t
containing v is denoted as Ttv. Let T+tv denote the subtree such that V (T

+
tv )=V (Ttv)∪{t}
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and E(T+tv )=E(Ttv) ∪ {(t; v)}. T+tv is called an e-branch at t. Note that the branch Ttv
(or e-branch T+tv ) is uniquely determined by the vertex t and its neighbor v.
A full version containing trivial details as well as examples that are omitted in this

section can be found in [29].

2.1. Edge searching

Lemma 1 (Parsons [27]). If G′ is a subgraph of G then es(G′)6es(G).

Lemma 2 (Parsons [27]). For any tree T and an integer k¿1; es(T )¿k + 1 if and
only if there exists a vertex t ∈V (T ) with at least three e-branches T+tu ; T+tv ; and T+tw
such that es(T+tu )¿k; es(T

+
tv )¿k; and es(T

+
tw)¿k.

From Lemma 2, Megiddo et al. [24] proposed the concept of avenue of a tree for
the edge searching. For any tree T , let s= es(T ). A path [v1; v2; : : : ; vr] of two or more
vertices is an e-avenue for T if the following conditions hold.
(1) Exactly one e-branch of v1 (respectively, vr) has edge-search number s and this

e-branch contains v2 (respectively, vr−1).
(2) For every j, 26j6r−1, the edge-search numbers of exactly two e-branches of vj

are s and in these two e-branches, one contains vj−1 and the other contains vj+1.
Given an e-avenue [v1; v2; : : : ; vr], an e-branch at vi, 16i6r, is called a nonavenue

e-branch if it contains no other vertex in the e-avenue but vi. We call a vertex v in
a tree T an e-hub of T if the edge-search number of any e-branch at v is less than
es(T ).

Lemma 3 (Megiddo et al. [24]). A tree has either an e-hub or a unique e-avenue.

Note that more than one vertex in a tree can be chosen as an e-hub. A tree T is
minimal with respect to edge searching if the deletion of any vertex results in a forest
T ′ whose es(T ′) equals to es(T ) − 1. We de�ne similarly for T being minimal with
respect to node searching. In a tree T that is minimal with respect to edge searching
and es(T )¿2, every internal vertex is an e-hub [24]. The following lemma can be
easily proved by the de�nitions of e-avenue and e-hub.

Lemma 4. For any tree T of es(T )¿2; any leaf of T cannot be an e-hub or a vertex
of the e-avenue.

For convenience, in the rest of this paper, an e-hub is regarded as an e-avenue
consisting of a single vertex. Note that if es(T )= 1, then T is a path.
Let T be a tree. We de�ne an e-avenue system Ae(T ) and the set of nonavenue

e-branches F(Ae(T )) as follows.
(1) If T is a path [u1; : : : ; uk ], then Ae(T )= {[u1; : : : ; uk ]} and F(Ae(T ))= {T}.
(2) If T is not a path, then let [v1; v2; : : : ; vr] be its e-avenue and let T(T )= {B |B is

a nonavenue e-branch at vi, 16i6r}. Then Ae(T )= {[v1; v2; : : : ; vr]}∪ (
⋃
T ′∈T(T )

Ae(T ′)) and F(Ae(T ))= {T} ∪ (⋃T ′∈T(T )F(A
e(T ′))).
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With respect to Ae(T ), e-labels of vertices in T are de�ned as follows. First, for each
tree T ′ in F(Ae(T )) with es(T ′)¿2, the e-label of any vertex in the e-avenue of
T ′ in Ae(T ) is es(T ′). Second, for each tree T ′ in F(Ae(T )) with es(T ′)= 1, the
e-label of any vertex in T ′ is 1 if this vertex is not labeled above. Note that there
is no conict in labeling a vertex, i.e., a vertex cannot have two di�erent e-labels. If
v belongs to the e-avenue of a tree B∈F(Ae(T )) with es(B)¿2, then v is labeled
with es(B) and v becomes a leaf in the e-branches at v in B. By Lemma 4, v does
not belong to the e-avenue of any other tree B′ ∈F(Ae(T )) with es(B′)¿2. By the
labeling rules, v is not relabeled for the rest of the labeling process. If the e-label of
a vertex v is 1, then v cannot have any e-label whose value is not 1.
By de�nition, each vertex v whose e-label is at least 2 is in an e-avenue of a subtree

of T in F(Ae(T )). We denote this tree by Tv. Let i be the e-label of v in Ae(T ).
Then es(Tv)= i and Tv is a nonavenue e-branch at u of Tu for some u whose e-label
is at least i + 1. Note that if the e-label of v is es(T ), then Tv=T . If es(Tv)¿2,
then the nonavenue e-branches at v in the subtree Tv are referred in the following as
nonavenue e-branches at v without specifying the subtree.
Since more than one vertex in a tree can be chosen as an e-hub, a tree may have

many distinct e-avenue systems. In addition, by Lemma 5 and our labeling method,
we know that for any e-avenue system of tree T , the labels of the leaves of T are 1.
We have the following lemma.

Lemma 5. For any tree T with no vertex of degree 2 and |V (T )|¿4; no internal
vertex is labeled with 1 in any e-avenue system of T .

Proof. Let Ae(T ) be an e-avenue system of T . By Lemma 4, all the e-labels of the
leaves in T are 1. Suppose v is an internal vertex whose e-label is 1. By the de�nition
of e-label, there exists a vertex u such that the e-label of u is at least 2, v belongs to
a nonavenue e-branch T ′ at u and es(T ′)= 1. Since T ′ is a path and v is not labeled
then, the degree of v in T is either 1 or 2. It contradicts to the fact that T has no
vertex of degree 2 and v is an internal vertex.

Based on an Ae(T ), we can construct an optimal edge-search strategy of T . As-
sume that es(T )= k. Let [v1; v2; : : : ; vr]∈Ae(T ) be the e-avenue of T . Our edge-search
strategy is as follows. We �rst place one searcher on v1 then we recursively clear all
the nonavenue e-branches at v1 using at most k − 1 searchers. Note that the edge-
search number of any nonavenue e-branch at v1 is less than k. After all the nonavenue
e-branches at v1 are cleared, we again have k − 1 free searchers. We then move the
searcher at v1 to v2 along the edge (v1; v2). By using a process similar to the one we
used to clear the nonavenue e-branches at v1, we can clear each nonavenue e-branch
of vi, 26i6r, one after one using at most k − 1 searchers. After all the nonavenue
e-branches at vr are cleared, T is cleared. Hence we have the following lemma.

Lemma 6. An e-avenue system Ae(T ) of T corresponds to an optimal edge-search
strategy of T .
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2.2. Node searching

Similar to Lemma 1, we have the following lemma.

Lemma 7. If G′ is a subgraph of G; then ns(G′)6ns(G).

Let T be a tree. If T contains any edge, then ns(T )¿2. For convenience, we de�ne
ns(T )= 1 if T contains only one vertex. Thus, ns(T )¿2 if and only if there exists a
vertex t ∈V (T ) with at least one branch. The necessary and su�cient conditions for
ns(T )¿k + 1, k¿2, were provided by Sche�er [34]. The following lemma is due to
Sche�er [34].

Lemma 8 (Sche�er [34]). For any tree T; ns(T )¿k + 1 for k¿2 if and only if
there exists a vertex t ∈V (T ) with at least three branches Ttu; Ttv; and Ttw such that
ns(Ttu)¿k; ns(Ttv)¿k; and ns(Ttw)¿k. For any tree T; ns(T )¿2 if and only if there
exists a vertex t ∈V (T ) with at least one branch.

By Lemma 8, we can de�ne similarly the avenue of node searching as follows.
A path [v1; v2; : : : ; vr] of two or more vertices is an n-avenue for a tree T with
ns(T )= s¿2, if the following conditions hold.
(1) Exactly one branch of v1 (respectively, vr) has node-search number s and this

branch contains v2 (respectively, vr−1).
(2) For every j, 26j6r − 1, the node-search numbers of exactly two branches of vj

are s and in these two branches, one contains vj−1 and the other contains vj+1.
Given an n-avenue [v1; v2; : : : ; vr], a branch at vi, 16i6r, is called a nonavenue

branch if it contains no other vertex in the n-avenue. We call a vertex v in a tree T
an n-hub of T if all the branches at v have node-search number less than ns(T ).

Lemma 9. A tree has either an n-hub or a unique n-avenue.

Proof. Our proof is similar to the proof of Lemma 3 in [24] by observing that the
e-branches in the proof of Lemma 3 are replaced by the branches.

Similar to e-hubs, more than one vertex in a tree can be chosen as an n-hub. In a
minimal tree with respect to node searching, every vertex is an n-hub. That is, a leaf
of a tree can be an n-hub.

Lemma 10. Let T be a tree with |V (T )|¿2. If T has an n-hub; then there always
exists an internal vertex of T which is an n-hub.

Proof. Consider the case that v is a leaf and v is an n-hub of T . Let u be the neighbor
of v. Since v is a leaf, v has only one branch T ′=T\{v}. Note that ns(T ′)= ns(T )−1.
All the branches at u except the one consisting of the single vertex v are subtrees of
T ′. By Lemma 7, the node-search numbers of the above branches are no greater than
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ns(T ′). The node-search number of the vertex v is 1. Thus, u is also an n-hub of T .
Since |V (T )|¿2, u is an internal vertex of T .

In the rest of this paper, an n-hub is also regarded as an n-avenue consisting of a
single vertex. We de�ne below an n-avenue system which is similar to the e-avenue
system. Let T be a tree. We de�ne an n-avenue systemAn(T ) and the set of nonavenue
branches F(An(T )) as follows.
(1) If T consists of one single vertex v, then An(T )= {[v]} and F(An(T ))= {T}.
(2) If T consists of more than one vertex, then let [v1; v2; : : : ; vr] be its n-avenue and let

T(T )= {B |B is a nonavenue branch at vi, 16i6r}. Then An(T )= {[v1; v2; : : : ;
vr]} ∪ (

⋃
T ′∈T(T )A

n(T ′)) and F(An(T ))= {T} ∪ (⋃T ′∈T(T )F(A
n(T ′))).

With respect to An(T ), n-labels of vertices in T are de�ned as follows. For each
tree T ′ in F(An(T )), the n-label in An(T ) of any vertex in the n-avenue of T ′ is
ns(T ′). Since more than one vertex in a tree can be chosen as an n-hub, a tree may
have many distinct n-avenue systems.
During the assignment of n-labels, for each branch T ′ in F(An(T )), if T ′ has an

n-hub then, by Lemma 10, we can always choose an internal vertex as its n-hub.
If ns(T ′)= 2, |V (T ′)|=2, and a vertex u ∈ V (T ′) is a leaf in T , then we label the
other vertex, which is an internal vertex of T , in T ′ with 2. By doing so, we have the
following lemma.

Lemma 11. Let T be a tree with |V (T )|¿ 2. Then there exists an n-avenue system
of T such that the n-labels of all the leaves of T are 1.

By the de�nition of n-label, each vertex v in an n-avenue for a subtree of T in
F(An(T )), we denote this tree by Tv. Let i be the n-label of v in An(T ). Then
ns(Tv)= i and Tv is a nonavenue branch at u of Tu for some u whose n-label is at
least i + 1. Note that if the n-label of v is ns(T ), then Tv=T . If ns(Tv)¿2, then
nonavenue branches at v in the subtree Tv are referred in the following as nonavenue
branches at v without specifying the subtree.
In general, besides the leaves of T , internal vertices can be labeled with 1 in an

n-avenue system.

Lemma 12. Let T be a tree with at least one internal vertex and whose every internal
vertex is adjacent to at least one leaf. Then there exists an n-avenue system of T
such that no internal vertex of T is labeled with 1.

Proof. Consider an n-avenue system An of T satisfying Lemma 11. By our de�nition
of n-labels, the neighbor of a vertex with n-label 1 cannot be labeled with 1 in An.
Hence, there is no internal vertex of T whose n-label is 1 in An.

Similar to edge searching, we can construct an optimal node-search strategy of T
based on an An(T ).
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Lemma 13. An n-avenue system An(T ) of T corresponds to an optimal node-search
strategy of T .

3. Relation between node and edge searching on trees

In this section, we show a relationship between node- and edge-search strategy on
trees. We �rst de�ne the reduction operation on degree-2 vertices in a tree T . Let
v be a vertex of degree 2 which is adjacent to vertices u and w. Let T ′ be the tree
obtained from T by deleting v and its incident edges, and then joining u and w by a
new edge. We say that T ′ is obtained from T by applying a reduction operation on
v. The reduction of T is the tree obtained from T by applying all possible reduction
operations. That is, there is no degree-2 vertex in the reduction of T . A tree of at
least four vertices is called a reduction tree if it is the reduction of some trees. The
following lemma is implied by the results mentioned in [16, 32].

Lemma 14. Let T ′ be the reduction of a tree T . Then es(T )= es(T ′).

We next de�ne the sprout operation on internal vertices of a tree. For an internal
vertex v that is not adjacent to any leaf, the sprout operation adds a new leaf to vertex
v. The sprout of T is the tree obtained from the reduction of T by applying all possible
sprout operations. A tree is called a sprout tree if it is a sprout of a reduction tree.
Let T ′ be the sprout tree of a reduction tree T . Let T+vu be any e-branch at v in T and
es(T+vu )¿2. Then the e-branch at v in T

′ which contains u is the sprout of T+vu .

Lemma 15. Let T ′ be the sprout of a reduction tree T . Then es(T )= es(T ′).

Proof. Since T is a subtree of T ′, by Lemma 1, es(T )6es(T ′). By de�nition of
sprout tree, all the vertices in V (T ′)\V (T ) are leaves. By Lemma 4 and our labeling
method, any e-avenue system of tree T ′, the labels of the leaves of T ′ are 1. Let
W = {[u; v] | v∈V (T ′)\V (T ) and (u; v) ∈ E(T ′)}. Note that for each [u; v]∈W , u is
an internal vertex and v is a leaf added by a sprout operation. It is not hard to see
that Ae(T )∪W is an e-avenue system of T ′. By using Ae(T )∪W , it can be proved
that es(T )¿es(T ′). Hence es(T )= es(T ′).

Remark. The detail for showing es(T )¿es(T ′) can be found in [29]. We were in-
formed that Lemma 15 is implied by results independently shown in [11] (in Russian).

A caterpillar is a tree consisting of a simple path P (called the body or backbone)
with an arbitrary number of simple paths attached by coalescing an endpoint of the
added path with a vertex in P. The attached paths are called hairs. A caterpillar is
called a k-caterpillar if all of its hairs have length at most k.

Lemma 16. For any reduction tree T; es(T )= 2 if and only if ns(T )= 2.
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Proof. Assume that es(T )= 2. Let [v1; v2; : : : ; vr] be an e-avenue of T . The edge-
search numbers of the nonavenue e-branches at vi, 16i6r, are 1, i.e., the nonavenue
e-branches at vi are paths. Since T is a reduction tree, the length of each nonavenue
e-branch is 1. It implies that T is a 1-caterpillar. On the other hand, a 1-caterpillar
with no degree-2 vertex is a reduction tree with the edge-search number 2.
With a similar argument, we can show that a reduction tree of node-search num-

ber 2 is a 1-caterpillar with no degree-2 vertex and vice versa. The lemma thus
follows.

Lemma 17. Let T be a tree and let v be a vertex whose n-label is at least 2 in an
n-avenue system of T . Let T ′ be a tree obtained by attaching a new leaf u to v.
Then ns(T )= ns(T ′).

Proof. We prove this lemma by induction on ns(T ). In the case of ns(T )= 2, by the
de�nition of v, v is a vertex in the n-avenue of T . Thus Tvu is a branch at v with
V (Tvu)= {u}. It is not di�cult to see that ns(T ′)= 2= ns(T ).
We assume for all trees T with 26ns(T )6k − 1, ns(T ′)6ns(T ). Now we consider

a tree T with ns(T )= k and its n-avenue An(T )= [v1; : : : ; vr]. In T ′, we also call the
branches at vi which do not contain any vj, j 6= i and 16j6r, the nonavenue branches
without ambiguity. We provide the following node-search strategy for T ′ according to
An(T ). First, we place a searcher on v1. Then, we clear one by one the nonavenue
branches at v1 by optimal node-search strategies with no recontamination. During the
clearing of a branch Tv1w at v1, the edge (v1; w) is cleared once w is guarded by a
searcher and is not recontaminated. After all the nonavenue branches at v1 are cleared,
we place a searcher on v2. Then v1 is cleared and the searcher at v1 is removed. We
continue the above clearing process on v2; : : : ; vr sequentially until all the nonavenue
branches at vr are cleared. Then T ′ is cleared.
Let T(T )= {B |B is a nonavenue branch at vi, 16i6r, in T} and T(T ′)= {B |B

is a nonavenue branch at vi, 16i6r, in T ′}. We compute the number of searchers
used in the following two cases.
(1) v= vi for some i, 16i6r. Let Ti be the tree containing only one vertex u. Then

T(T ′)=T(T )∪ {Ti}. Since for all T∗ ∈T(T ′), ns(T∗)6k − 1, our node-search
strategy uses at most k searchers.

(2) v 6= vi for all i, 16i6r. Let T∗ be the nonavenue branch at vi for some i, 16i6r
which contains u. By the induction hypothesis, ns(T∗)6k − 1. All the other non-
avenue branches in T(T ′) are also in T(T ), which are of node-search number
no greater than k − 1. Thus our node-search strategy uses at most k searchers.

By the above discussion, ns(T ′)6ns(T ). Since T is a subtree of T ′, by Lemma 7,
ns(T )6ns(T ′). Thus ns(T )= ns(T ′).

Lemma 18. For any sprout tree T; es(T )6ns(T ).

Proof. We prove this lemma by induction on the number ns(T ). First, by Lemma 16,
if ns(T )= 2, then es(T )= 2. Next, we assume that for every sprout tree T with
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26ns(T )6k − 1, es(T )6ns(T ): Now let T be a sprout tree with ns(T )= k. By
Lemma 12, we have an n-avenue system An(T ) in which no internal vertex of T
has n-label 1. Let [v1; v2; : : : ; vr]∈An(T ) be an n-avenue of T . For each nonavenue
branch Tviu at vi, 16i6r, if ns(Tviu)¿2, then Tviu may contain at most one vertex of
degree 2. If it has a degree-2 vertex, then this vertex must be u which is an internal ver-
tex of Tviu. Furthermore, u is adjacent to a leaf. Since the n-label of each leaf is 1, the
n-label of u is at least 2. By Lemma 17, if ns(Tviu)¿2, then ns(T

+
viu)= ns(Tviu)6k− 1

and T+viu is a sprout tree. If ns(Tviu)= 1, then V (Tviu)= {u}.
In the following, we will clear T by edge searching rules based on the n-avenue

system An(T ) using ns(T ) searchers. For each nonavenue branch Tviu of ns(Tviu)¿2
at vi, 16i6r, ns(T+viu)= ns(Tviu)6k − 1 and T+viu is a sprout tree. By the induction
hypothesis, if ns(Tviu)¿2, then es(T

+
viu)6ns(T

+
viu)6k − 1. Thus we can clear T in the

context of edge searching by �rst placing one searcher on v1. Then, we clear T+v1u of
ns(Tv1u)¿2 using at most k − 1 searchers by edge searching rules. To clear T+v1u of
ns(Tv1u)= 1, in edge searching, we only place one searcher on u and move it to v1
along the edge (u; v1). After the nonavenue e-branches T+v1u at v1 are cleared, we have
k − 1 free searchers and we move the searcher at v1 to v2 along the edge (v1; v2).
After the edge (v1; v2) is cleared, v1 is cleared and v2 is guarded. We then continue
the above clearing process on v2; : : : ; vr sequentially until all the nonavenue e-branches
at vr are cleared. That is, es(T )6ns(T ).

Remark. We were informed that Lemma 18 is implied by results independently shown
in [11] (in Russian).

Lemma 19. For any reduction tree T; ns(T )6es(T ).

Proof. The proof is similar to the proof of Lemma 18. The detail can be found in
[29] and we omit it.

Remark. Lemma 19 is implied by results independently mentioned in [12].

Theorem 20. For any sprout tree T; es(T )= ns(T ).

Proof. Since a sprout tree is also a reduction tree, by Lemmas 18 and 19, this theorem
holds.

Theorem 21. The edge-search number of a tree can be determined in linear time.

Proof. We design an algorithm to �nd the edge-search number of any tree T as follows.
If T is a path, then es(T )= 1. If T is not a path, then we �rst construct its reduction
tree T ′. Next, we construct the sprout tree T ′′ of T ′. By using any linear-time algorithm
[10, 25, 34] to compute ns(T ′′). By Lemmas 14, 15, and Theorem 20, es(T )= ns(T ′′).
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Remark. Though there is a linear-time algorithm to determine the edge-search number
of a tree [24], by using our results, we can also obtain a linear-time algorithm to
determine the edge-search number of a tree.

4. Construction of an optimal edge-search strategy

As in Section 2, we can construct an optimal edge-search strategy of a tree from its
e-avenue system. If the pointers from every e-avenue A to the e-avenues of nonavenue
e-branches at vertices of A are provided, then it takes linear time in the construc-
tion of corresponding edge-search strategy. However, for the time being, we do not
know how to build an e-avenue system with the pointers in linear time. In this sec-
tion, we present a linear-time algorithm to construct an optimal edge-search strategy
of a tree T from an optimal node-search strategy of T , which does not use avenue
systems.
According to Kirousis and Papadimitriou [15], an optimal node-search strategy of

G can be represented by a sequence of vertex sets Y=(Y1; : : : ; Yr), where Yi⊆V (G)
is a set of vertices guarded by searchers at step i for 16i6r. Recall that we only
consider the node-search strategies which do not recontaminate any edge. An edge
(u; v) is cleared at step i if {u; v}⊆Yi and {u; v}*Yj for all j¡i. An edge (u; v) is
clear at step j if u; v ∈ Yi for some i6j. A vertex u is cleared at step i if it is the
�rst step that all the incident edges of u are clear.
For simplicity of presentation, in the following we assume Y0 =Yr+1 = ∅. The node-

search strategy Y clears T as follows. At the beginning of step i, 16i6r, all the
vertices in Yi ∩Yi−1 are guarded. In this step, we guard all the vertices in Yi\Yi−1, i.e.,
the whole Yi is guarded. Then, since there is no recontamination in Y, the vertices in
Yi\Yi+1 are cleared and we can remove all the searchers on the vertices of Yi\Yi+1.
The node-search number of Y is maxi |Yi|. Note that (Y1; : : : ; Yr) is also called a path-
decomposition of the graph G [25]. Furthermore, there exists an optimal node-search
strategy Y satisfying the following assumptions.
(1) For any vertex u ∈ Yi, 16i6r, at least one incident edge of u is clear at step i.
(2) If u is cleared at step i, then u =∈ Yj for all j¿i.
(3) Yi+Yi−1 and Yi*Yi−1 for 26i6r.
In the following, we consider Y satisfying the above three assumptions. Note that

in Y, any leaf occurs in exactly one of its steps by Assumptions (1) and (2). Also, if
v is guarded at step i and is cleared at step j, then v∈Yt for i6t6j.
For each vertex u∈Yi\Yi+1, we say that step i is the clearing step of u in Y.

According to the clearing steps of vertices, all the vertices of T can be sorted into
a sequence C=(v1; v2; : : : ; vn) such that the clearing step of vi is no later than the
clearing step of vj if i¡j. We call C a clearing sequence of Y. Note that all the
vertices in Yi\Yi+1 have the same clearing step i. For vertices with the same clearing
step, without loss of generality, we assume in the following that the orders of leaves
(if they exist) are smaller than that of the others in C.
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The clearing sequence C plays an important role in constructing our optimal edge-
search strategy. In the following, we �rst show that a clearing sequence C which
corresponds to an optimal node-search strategy satisfying the three assumptions can be
constructed in linear time. Then, according to C, we design a linear-time algorithm
to construct an optimal edge-search strategy of a sprout tree. Finally, we construct
an optimal edge-search strategy of a tree from the optimal edge-search strategy of its
sprout tree.
Let F be a set of intervals. Let G be the interval graph de�ned by the intersection

relation of F . If G contains T as a subgraph, then F is an interval model of T . For
each vertex u∈V (T ), let u be guarded at step au and be cleared after step bu in a
node-search strategy Y=(Y1; : : : ; Yr), i.e., u∈Yt for au6t6bu. Let Iu= [au; bu] for
all u∈V (T ). Since for all (u; v) ∈ E(T ), Iu ∩ Iv 6= ∅, {Iu | u∈V (T )} is an interval
model of T . Note that Yi= {u∈V (T ) | Iu= [au; bu] and au6i6bu}. An interval model
of T is optimal if the maximum clique size of its corresponding interval graph is
the smallest among all interval models of T . Conversely, an optimal interval model
F = {Iu= [au; bu] | u∈V (T )} of T corresponds to an optimal node-search strategy of T
in which for all u∈V (T ), a searcher is placed on u at step au and is removed after
step bu [15].
Sche�er mentioned that an optimal interval model F of T can be constructed in

linear time [35]. In general, the node-search strategy corresponds to F may not ful�ll
Assumptions (1)–(3). In order to obtain an optimal interval model F∗ whose cor-
responding optimal node-search strategy satis�es the three assumptions, we make the
following modi�cation of F .
Let N (u)= {v | v ∈ V (T ) and (u; v)∈E(T )} and N [u] = {u}∪N (u). Let F = {Iu=

[au; bu] | u∈V (T )}. We �rst modify F into F ′= {I ′u= [a′u; b′u] | u∈V (T )} by setting
a′u= max{au;min{av | v∈N (u)}} and b′u= max{av | v∈N [u]} for all u∈V (T ). It can
be veri�ed that F ′ is an interval model of T by showing that a′u6b

′
u for all u∈V (T )

and I ′u ∩ I ′v 6= ∅ for all (u; v)∈E(T ). Let Y′ denote the node-search strategy corre-
sponding to F ′. By the setting of a′u, at least one neighbor of u is guarded at time a

′
u

in Y′ for all u∈V (T ). Thus, Y′ satis�es Assumption (1). By the setting of b′u, b
′
u is

the �rst time step at which u is cleared for all u∈V (T ). Thus, Y′ satis�es Assumption
(2). In the above modi�cation, for each vertex, we only need to check its neighbors
in T and overall it takes linear time.
The interval model F∗ whose corresponding node-search strategy Y∗ satis�es the

three assumptions is obtained by modifying F ′ as follows. We �rst sort the endpoints
of all the intervals in F ′ in nondecreasing order, in which for endpoints with the same
value, left endpoints precede right endpoints. After this, we partition the sorted sequence
into a consecutive sequence of segments where each segment contains a consecutive se-
quence of left endpoints followed by a consecutive sequence of right endpoints. Assume
there are totally r segments. We number these segments from 1 to r in increasing order.
For all vertices u, if a′u (respectively, b

′
u) is in the ith segment, let a

∗
u = i (respectively,

b∗u = i). Let F∗= {I∗u = [a∗u ; b∗u ] | u∈V (T )}. Note that F∗ preserves the intersection
relations of intervals in F ′. Let Y∗i = {u∈V (T ) | I∗u = [a∗u ; b∗u ]∈F∗ and a∗u6i6b∗u }
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for 16i6r and Y∗=(Y∗1 ; : : : ; Y∗r ). It can be veri�ed that Y∗ satis�es Assumptions
(1) and (2). Since there is at least one right (respectively, left) endpoint in the ith
(respectively, (i + 1)th) segment, Yi*Yi+1 (respectively, Yi+1*Yi). That is, Y∗ satis-
�es Assumption (3). A clearing sequence C corresponding to Y∗ can be obtained by
sorting vertices according to the right endpoints of their corresponding intervals in F∗
in nondecreasing order, in which for vertices with the same value of right endpoints,
leaves precede internal vertices. By using a linear-time integer sorting algorithm [8],
the above sorting processes can be done in linear time. Hence C can be obtained from
F in linear time.
Let T be a sprout tree and F be an optimal interval model of T obtained as in

the above. Let Y=(Y1; : : : ; Yr) be an optimal node-search strategy corresponding to F
and let C be a clearing sequence corresponding to Y. Next, we construct an optimal
edge-search strategy S from C in linear time. In S, the vertices are cleared in the
same order as C. The moves of S are as the following algorithm.

Algorithm OES(T : sprout tree, C=(v1; : : : ; vn));
for i=1 to n do
if vi is not guarded then place a searcher on vi;
if vi has only one uncleared incident edge (vi; u) then
move the searcher on vi to u along the edge (vi; u)

else begin
for all uncleared edges (vi; u), where u is guarded, use a free
searcher to clear (vi; u);

for all uncleared edges (vi; u), where u is unguarded, do begin
place a searcher on vi;
move this searcher to u along the edge (vi; u)

end for;
remove the searcher on vi

end if
end for
end OES;

Let S be the edge-search strategy constructed by Algorithm OES. In each iteration of
OES, a vertex is cleared. Let phase j of S be the sequence of moves obtained from
a sequence of iterations in OES for clearing the vertices in Yj\Yj+1. The idea of our
algorithm is that in phase j of S, it clears all the vertices in Yj\Yj+1 using at most
|Yj| searchers. Note that in edge searching, an edge is cleared by letting a searcher go
through it (instead of by just guarding both endpoints as in node searching). Therefore,
though an edge is guarded by searchers at both of its endpoints, we need another
searcher to clear this edge. In each phase of S, it should be guaranteed that no extra
searcher is needed to clear the vertices.
Let Sj = {u | u has a searcher during the phase j of S}. Note that since the ver-

tices cleared in phase j of S are the same as the vertices cleared at step j of Y,
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Sj\Sj+1 =Yj\Yj+1. Before proving that Algorithm OES constructs an optimal edge-
search strategy, we need the following lemma.

Lemma 22. Sj ⊆Yj for 16j6r.

Proof. Let N [W ] =
⋃
w∈W N [w] for a vertex set W . We prove this lemma by induc-

tion on the phase number. As a basis, we consider S1. All the vertices in Y1\Y2 are
cleared at step 1 of Y and in phase 1 of S. By the clearing rules of node searching,
N [Y1\Y2]⊆Y1. By the clearing moves of OES, S1 =N [Y1\Y2]. Hence S1⊆Y1.
Next, assume that Si⊆Yi for all i, 16i6k − 1. Let Wk = {w |w∈N [Yk\Yk+1] and

w =∈ Sk−1}. Then Sk =(Sk−1\(Yk−1\Yk))∪ (Yk\Yk+1)∪Wk . By the induction hypothesis,
Sk−1⊆Yk−1. Hence Sk−1\(Yk−1\Yk)⊆Yk−1\(Yk−1\Yk)=Yk−1 ∩ Yk . Since the clearing
sequence of S is the same as C (obtained from Y), (Yk\Yk+1) ∪Wk ⊆Yk . Therefore
Sk ⊆Yk .

Lemma 23. Given a sprout tree T and a clearing sequence C corresponding to an
optimal node-search strategy Y of T; Algorithm OES(T;C) constructs an optimal
edge-search strategy of T in linear time.

Proof. Since OES clears all the vertices of T , the strategy S constructed by OES
is an edge-search strategy of T . In the following, we consider the phases of S. For
simplicity, we assume S0 = Sr+1 = ∅. For an iteration i, let j be the phase containing
this iteration. We prove this lemma by showing that in iteration i, at most |Sj| searchers
are used to clear vi in phase j.
We �rst consider the case that vi is the �rst cleared vertex in Sj\Sj+1. There are

two cases.
Case 1: vi has only one uncleared incident edge. Let the uncleared edge be (vi; u).

As in OES, edge (vi; u) is cleared by moving the searcher on vi to u. Since {vi; u}⊆ Sj,
no more than |Sj| searchers are used in iteration i.
Case 2: vi has more than one uncleared incident edges. In this case, vi must be an

internal vertex. By our assumption on C, if Yj\Yj+1 contains a leaf, then the �rst cleared
vertex in phase j of S is a leaf. Therefore, all the vertices in Yj\Yj+1 (= Sj\Sj+1) are
internal vertices. Since T is a sprout tree, vi is adjacent to a leaf, say u. The leaf u
must be cleared in some phase k (¡j) because u =∈Yj\Yj+1. Thus, vi must be guarded
in phase j − 1, i.e., vi ∈ Sj−1.
Let Ui= {x | x is an unguarded and uncleared neighbor of vi at the beginning of

iteration i}. By Assumption (2) on Y, Ui is not empty; otherwise by the fact that
vi ∈ Sj−1⊆Yj−1, vi is clear at the step j − 1 in Y, which contradicts to that vi is
cleared at step j in Y. Thus we have at least |Ui| (¿1) free searchers at the beginning
of iteration i. By using any free searcher, the uncleared edges (vi; u) with u =∈Ui are
cleared �rst. After that all the uncleared edges (vi; u) with u =∈Ui are cleared, we still
have at least |Ui| free searchers. Then clear the uncleared edges (vi; u) with u∈Ui.
Once the edge (vi; u) is cleared, u is guarded for all u∈Ui. Hence after all the vertices
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in Ui are guarded, vi is cleared and the searcher on vi can be removed. Since vi is
the �rst cleared vertex in phase j, the number of guarded vertices at the beginning of
iteration i is |Sj ∩ Sj−1|. Since Ui⊆ Sj\Sj−1, we use |Sj ∩ Sj−1| + |Ui|6|Sj| searchers
in iteration i.
Note that after vi is cleared, we always have at least one free searcher in the rest

of phase j.
Now we consider the case that vi is not the �rst cleared vertex in Sj\Sj+1. Recall

that Ui denotes the set of unguarded and uncleared neighbors of vi at the beginning
of iteration i. For uncleared edges (vi; u) with u =∈Ui, we clear them by using a free
searcher which is freed from the �rst cleared vertex of phase j. For uncleared edges
(vi; u) with u∈Ui, we clear them by using |Ui| searchers. Since Ui⊂ Sj, we use at
most |Sj| searchers in iteration i. That is, we use |Sj| searchers to clear all the vertices
in Sj\Sj+1 in phase j. By Lemma 22, Algorithm OES uses at most maxj |Yj|= ns(T )
searchers to clear T . By Theorem 20, S is optimal.
In Algorithm OES, we scan the vertices according to their orders in C. For each

scanned vertex, we only clear its uncleared incident edges. Hence, Algorithm OES runs
in linear time.

Theorem 24. An optimal edge-search strategy of a tree can be obtained in linear
time.

Proof. We design an algorithm to construct an optimal edge-search strategy for any
tree in the following. For any tree T , if T is not a path, then we �rst obtain the
reduction of T , say T ′. Next, we obtain the sprout of T ′, say T ′′. We �rst obtain
a clearing sequence according to an optimal node-search strategy of T ′′ by using a
linear-time algorithm [35] and then transform it to an optimal edge-search strategy S′′

for T ′′ using Algorithm OES. We then obtain an edge-search strategy S′ for T ′ from
S′′ by deleting all allowable moves clearing the leaves which are added by sprout
operations. For each edge (u; v)∈E(T ′) but (u; v) =∈E(T ), there exists a path from u
to v in T and each vertex (6= u; v) in this path has degree 2. The expanding of (u; v)
from S′ is to modify S′ such that the clearing moves of (u; v) is replaced by the
clearing moves of a path from u to v. Our edge-search strategy S for T is obtained
from S′ by expanding all the edges (u; v)∈E(T ′) but (u; v) =∈E(T ). Since S uses the
same number of searchers as S′′, by Lemmas 14 and 15, S is an optimal edge-search
strategy for T . It is not di�cult to see that the deletions of added leaves and the
expansions of degree-2 vertices can be done in linear time.

Theorem 24 answers positively the question proposed by Megiddo et al. [24] of
whether an optimal edge-search strategy for any tree can be constructed in linear time.
Let T be a tree and V (T )= n. A linear layout of T is a one-to-one function L

mapping the vertices of T to {1; 2; : : : ; n}. For 16i¡n, let �(L; i) denote the number of
edges (u; v) of T with L(u)6i¡L(v). The cutwidth of T under L, denoted by cw(T; L),
is max{�(L; i) | 16i¡n}. The cutwidth of T , denoted by cw(T ), is min{cw(T; L) |L is
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a linear layout of T}. Given a graph G and a positive integer k, the cutwidth problem
is the problem to determine whether cw(G)6k and the min-cut linear arrangement
problem is the problem to �nd a linear layout L of G such that cw(G; L)6k.
Chung et al. [9] proved that for any tree with the maximum degree 3, its edge-search

number and cutwidth are identical. They also gave an O(n log n)-time algorithm to de-
termine the cutwidth and a corresponding linear layout for any tree with the maximum
degree 3. Yannakakis improved this result to an arbitrary tree in O(n log n) time [36].
Makedon and Sudborough showed a more general result such that es(G)= cw(G) for
an arbitrary graph G with the maximum degree 3 [23]. They also constructed an op-
timal linear layout for a graph G with the maximum degree 3 based on an optimal
edge-search strategy of G in linear time. By combining results of [23] and Theorem
24, we have the following theorem.

Theorem 25. An optimal min-cut linear layout of a tree with the maximum degree 3
can be obtained in linear time.

5. Conclusions

In this paper, we establish a relationship between the node searching and edge search-
ing problems on trees. The bridge is built from an n-avenue system and an e-avenue
system of a tree. We currently do not know how to construct an optimal edge-search
strategy for a tree from any one of its e-avenue systems in linear time. However, we
show that for a sprout tree, its optimal edge-search strategy can be obtained from its
any optimal node-search strategy without using its avenue systems. This result leads to
a linear-time algorithm for constructing an optimal edge-search strategy for any tree.
This also answers positively the question proposed by Megiddo et al. [24] of whether
an optimal edge-search strategy for any tree can be constructed in linear time. Further-
more, it leads to a linear-time algorithm to construct a min cut linear layout for any
tree with the maximum degree 3.
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