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Abstract—Rough face alignments lead to suboptimal perfor-
mance of face identification systems. In this study, we present
a novel approach for identifying genders from facial images
without proper face alignments. Instead of using only one input
for test, we generate an image set by randomly cropping out a
set of image patches from a neighborhood of the face detection
region. Each image set is represented as a subspace and
compared with other image sets by measuring the canonical
correlation between two associated subspaces. By finding an op-
timal discriminative transformation for all training subspaces,
the proposed approach with unaligned facial images is shown
to outperform the state-of-the-art methods with face alignment.
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I. INTRODUCTION

Gender identification, i.e., inferring female or male from
facial images, is a useful preprocessing step for face ap-
plications, such as facial expression recognition and age
estimation. Previous studies on gender identification have
relied on careful alignment of a facial image into a standard
template. The studies in [1], [2] conduct experiments on
many combination of the state-of-the-art face alignment and
pattern classification methods for gender identification. The
authors found that the classification rates increase with the
accuracy of face alignment because such alignment could
reduce the variability during building the model in the
training phase.

Since face detection can provide a rough face region for
each subject, most works of gender identification regard
the detected image patches as desired facial images. This
approach, however, suffers from the problem that the detec-
tor could not specify a robust result of face location. The
performance of gender identification, therefore, is somewhat
limited to the accuracy of face alignment. In practice,
false recognition may occur frequently because of variations
of human poses or difficult alignments. Two widely used
methods for aligning faces are affine warping for geometric
shape alignment [3], and a statistical model built for facial
shape and appearance [4]. Nevertheless, these alignment
processes require feature detection or manual efforts of
labeling specific facial features, e.g. eyes and mouth for
affine warping or plenty facial landmark points for the AAM
method [4]. When applied to a new test face set under

different variation settings, such as illumination or pose, the
face model must be rebuilt from a newly collected training
set to identify the variation. Moreover, rough alignment of
a single input is likely to downgrade the results.

In this paper, we aim to discover the gender correlations
from unaligned facial images to avoid alignment processes.
We generate a facial image set by randomly cropping
facial image patches around the detected face position of
a single image. Rather than using the scattered distribution
of these unaligned facial images, a subspace is constructed
for each image set to extract the joint information from
these randomly cropped facial patches. Because the facial
image set contains more facial appearance of the same
subject, a subspace is capable of representing more integral
facial information than a single input. Thus, we employ sets
of multiple unaligned facial images and represent them as
subspaces to achieve better results for gender identification.

After each facial image set is represented as a subspace
to express non-aligned facial variations of the same sub-
ject, we measure the similarity between two subspaces by
canonical correlation, which has been successfully applied
to several image-set-based applications such as object and
face recognition [5], [6], [7], [8]. It is a notable property that
the intersection between two subspaces of image sets are less
sensitive to variations compared to that between a vector and
a subspace [7]. Namely, a subspace constructed by unaligned
facial images is a considerable representation to reduce the
variation caused by face alignment. In addition, we find an
optimal gender discriminative transformation for all training
subspaces by exploiting the method of discriminant-analysis
of canonical correlation (DCC) [6]. The transformation
maximizes the correlation within subspaces of the same gen-
der and simultaneously minimizes the correlation between
subspaces of different genders. Finally, our approach is
demonstrated to perform better gender identification results
without face alignment over the approaches that assume the
face is well aligned.

II. UNALIGNED FACIAL IMAGE SETS

Due to the fact that face detection as well as face align-
ment algorithms does not align a face perfectly, we intend
to discover the gender correlations among sets of unaligned
facial images. To capture more facial variations for each
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subject i, we collect an image set Xi by randomly cropping
out a set of facial image patches around the position initiated
by face detection. An image set Xi can be generated from
image patches {x1, . . . ,xm} locating at random positions,
scales and rotations around the detected face region. As
shown in Figure 1, red and blue rectangles indicate the
detected face region and randomly cropped image patches,
respectively. Here, we resize and reshape each image patch
xi to an n-dimensional column vector.

Given image sets {X1, . . . ,XN} for N subjects, we
gather the common information of these unaligned facial
images by describing each Xi as its own linear subspace Si
spanned by a set of bases. Similar to [5], [6], [8], an n× d
unitary basis matrix Pi for representing a linear subspace
associated with Xi is computed by

XiX
T
i ' PiΛiP

T
i , (1)

where Λi is the top-d largest eigenvalue and Pi is the corre-
sponding eigenvectors forming unitary orthogonal bases for
linear subspace Si. After compressing the general informa-
tion of each facial image set into its subspace, we then find
an optimal gender discriminative transformation T for all
subspaces {S1, . . . ,SN} such that the correlation between
transformed subspaces of the same gender are maximized
and meanwhile those of different genders are minimized.

III. GENDER DISCRIMINANT TRANSFORMATION

Let the n× d orthonormal basis matrix Pi represent the
subspace Si of subject i. We measure the similarity between
a pair of subspaces Si and Sj by the canonical correlation. A
standard algorithm [9] to compute the canonical correlation
for two subspaces is the solution using singular value
decomposition (SVD) of PT

i Pj ∈ Rd×d:

PT
i Pj = UijΛU

T
ji s.t. Λ = diag(σ1, . . . , σd), (2)

where Uij , Uji are orthonormal vectors, and the sum of
the singular values Λ (or cosines of principal angles) is the
canonical correlation associated with the two subspaces. The
smaller the principal angles are, the larger the canonical
correlation would be. In other words, the more a pair of
subspaces intersect with each other, the more likely they
belong to the same gender. We denote Cij = PiUij

and Cji = PjUji as the canonical vectors (or principal
vectors [9]). According to [5], [6], we measure the canonical
correlation between two subspaces Si and Sj as follows:

corr(Si,Sj) ≈ −tr
(
(Cij −Cji)

T (Cij −Cji)
)
. (3)

One could view the correlation from a geometric perspective
that the angle between two unitary bases is proportional to
the length of difference between them.

Having defined the canonical correlation between two
subspaces, our next goal is to obtain an optimal transforma-
tion T that transforms all subspaces of image sets to another
space that contains maximal correlation within the same

Random
Crop

subject i image set X i

Figure 1. An illustration of our idea of generating an image set
by randomly cropping out a set of facial patches (blue rectangles)
around the face detection region (red rectangles).

gender and minimal correlation between different genders.
To find T, we employ the discriminant-analysis of canonical
correlations (DCC) [6] by solving

T = arg max
T

tr(TTSbT)

tr(TTSwT)
. (4)

Sb and Sw are the between-gender and within-gender scatter
matrices defined according to Eq. (3) and are given by

Sb =
N∑
i=1

∑
k,ci 6=ck

(C′ik −C′ki)(C
′
ik −C′ki)

T (5)

Sw =
N∑
i=1

∑
j,ci=cj

(C′ij −C′ji)(C
′
ij −C′ji)

T (6)

The optimal transformation matrix T is then obtained by
solving Eq. (4) as a eigen-decomposition of S−1w Sb. Note
that the non-singularity of Sw can be guaranteed in several
ways, such as pseudo-inverse [10] or pre-applying PCA to
reduce the rank of data similarity [11].

The transformed canonical vectors C′ij = QiU
′
ij and

C′ji = QjU
′
ji used in Eq. (5) and (6) are obtained by

calculating canonical correlation between two transformed
subspaces S ′i and S ′j through the SVD of QT

i Qj :

QT
i Qj = U′ijΛU

′T
ji . (7)

Recalling Eq. (2) that canonical correlation is defined for
orthonormal inputs of subspaces, Qi is obtained as an
orthonormal basis matrix for the associated subspace S ′i by
computing a preliminary QR-factorization of TTPi and can
be written as follows:

Qi = TT (PiR
−1
i ), (8)

where Ri is the d× d invertible upper-diagonal matrix.

IV. EXPERIMENTAL RESULTS

In our study, 24×24-pixel resolution facial image patches
were pre-located using the cascaded face detector [12] with-
out further face alignment processes. We perform histogram
equalization on each facial image patch for normalizing
ambient lighting variations. Two public available databases,
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(a) (b)

Figure 2. Example facial patches of female (top two rows) and male (bottom two rows) from (a) the FERET database and (b) the MORPH
database, where the later database can be regarded as a more challenging one because of more variation in aging and ethnicity.

the FERET database [13] and the MORPH database [14],
were used for the experiments. While FERET is one of the
mostly used database with good quality facial images for
gender identification, MORPH is a notable illustration of
much larger number of facial images with more challenging
variations in terms of aging and ethnicity.

In order to compare our results with those reported in [1],
we followed their experimental setups as follows. We used
fa- and fb-subsets from the FERET database by removing
duplicate images of the same subject; at the end there are 450
facial images for both females and males. For the MORPH
database, which is not used in [1], we collect 8,033 female
and 47,810 male images; there are totally 418 subjects of
age ranging from 18-69 and of races of Caucasian, African-
American and Asian. To the best of our knowledge, we are
the first tackling the gender identification problem over such
variations with wide range of age and races. Example images
from both databases are shown in Figure 2.

We collected 75 facial image patches as the image set
for each subject. A subspace is constructed for each subject
using Eq. (1) with 98 percentage of data energy preserved.
Being proved a stable method against the dimensionality
of transformation T [6], the dimension is fixed at 160 for
the following experiments. The solution of T was ensured
nonsingular by computing the pseudo-inverse of the within-
gender scatter matrix in Eq. (6).

We compared the performance of the proposed subspace-
based approach to discriminative sample-based methods, i.e.,
k-Nearest Neighbor (kNN) of images transformed by “PCA
plus LDA” [11]. The number of nearest neighbors is set to
1 and 10. Mutual subspace method (MSM) [8], a simpler
accession of canonical correlations, was also implemented
for verifying the discriminative power of the transformation
T. Our performance was reported by classification accuracy
versus the number of training subspaces. Note that each
subspace represents a subject; the same number of female
and male subjects for both training and test were chosen
from different image sets.

As shown in Figure 3, it is easier to obtain a better result
for the FERET than the MORPH database, because the
facial images are frontal and easier to classify even though
alignment processes are ignored. The accuracy increases
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Figure 3. Classification accuracy between different set classication
methods of (a) the FERET database and (b) the MORPH database
over different numbers of training subspaces.

with the number of training subspaces in both databases
since the larger number of training subspaces are selected,
the more discriminatory gender information from different
subjects can be learned. It can be seen from Figure 3 (a)
that both subspace-based methods, DCC and MSM, out-
perform sampled-based methods. Although the input facial
images are not aligned in advance, subspaces are capable
of providing more general information of a subject than a
single image regardless of alignment processes. In Figure 3
(b), however, the performance of MSM is inferior to 10-
NN PCA+LDA. Even 1-NN PCA+LDA performs better
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Figure 4. Comparison of classification rates of the FERET database
between our method and those discussed in [1].

than MSM when the number of training subspaces is not
large enough. Because the MORPH database contains more
diverse range of variations and less controlled facial poses
than the FERET database, training subspaces are likely to
spread too exclusively for test subspaces to match the correct
gender. The DCC method, on the other hand, discovers an
optimal transformation that projects these subspaces to a
more discriminative space. Thus, as shown in both figures in
Figure 3, DCC delivers a the most robust performance with
less difference of accuracy compared to other methods.

Finally, we compare our results to those reported in [1].
These methods include Neural Network (NN), Support Vec-
tor Machine (SVM), Threshold Adaboost (Th-Ada), LUT
Adaboost (LUT-Ada), Mean Adaboost (Mean-Ada) and Lo-
cal Binary Patterns combined with SVM (LBP+SVM). Note
that the experiments in [1] were conducted only on one pub-
lic available database, FERET. Results for FERET images
with and without alignment are shown in Figure 4 (colored
dark red and light blue, respectively); RC is abbreviated from
“random cropping” for the proposed method. We found that
the performance of the proposed method is better than the
methods without alignments, and still slightly better than
those with proper alignments. The benefits of combining
image sets with subspace matching methods were confirmed
through this experiment.

V. CONCLUSION

In summary, we have presented an approach for iden-
tifying genders from unaligned facial images. Rather than
using only one facial image for test, we generate a set of
unaligned images form a single input and represent each
image set as a subspace. All subspaces are transformed by
considering discriminating set information between different
genders, and have been shown to improve the performance
of gender identification using unaligned facial images.
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