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Abstract Similar face Query Face Similar Face

We propose a new method to retrieve similarface im­
ages from large face databases. The proposed method
extracts a set ofHaar-like features, and integrates these
features with supervised manifold learning. Haar-like
features are intensity-basedfeatures. The values ofvar­
ious Haar-like features comprise our rectangle feature
vector (RFV) to describe faces. Compared with sev­
eral popular unsupervised dimension reduction meth­
ods, RFV is more effective in retrieving similar faces.
To further improve the performance, we combine RFV
and a supervised manifold learning method and obtain
satisfactory retrieval results.

1 Introduction

The goal of face retrieval is to retrieve face images
that are similar to a specific query face image in large
face databases. The retrieved face images can be used
for various applications, such as photo management or
visual surveillance. This retrieval task includes two
kinds of target images. One is the face images with
the same identity of the query face. The other is the
face images which have appearance similar to the query
face. Figure 1 shows search results of two kinds of tar­
get images.

Navarrete and Ruiz-Del-Solar [8] used tree­
structured self-organizing map (TS-SOM) to organize
face images for fast retrieval. Chow and Rahman [5]
combined multiple facial features and multi-SaM for
face matching. The SaM-based methods usually do
not consider the face variations of the same person, but
this characteristic is important in face retrieval.

Dimensionality reduction is usually desirable for an­
alyzing data. Recently manifold learning is proposed to
simultaneously reduce dimensionality and preserve lo­
cal structures in the data. Manifold learning contains
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Figure 1. The center face is a query face.
The left face has a different label with the
query face. The right face has the same
label with the query face.

two disciplines, unsupervised [7] and supervised man­
ifold learning. In supervised manifold learning, Lo­
cal Discriminant Embedding (LDE) [3] and Marginal
Fisher Analysis (MFA) [14] have shown their classifica­
tion potential for face recognition. They achieve good
performance because they consider the inter-face and
intra-face variances by using graph embedding.

Many previous works used original face images to
train a classifier or to do dimensionality reduction.
However, the raw images contain pixel-wise inten­
sity values which are vulnerable to various kinds of
noises. In order to consider information in local re­
gions and overcome noises, we transfer pixel-wise in­
tensity values to component-wise features. There are
many component-based features in the literature, such
as Rectangle, HOG and EOH features [?] [6] [9].

Wu and Navetia [13] suggested that training with
human annotation may not be optimal for the classifi­
cation task. They used the rectangle features of one
strong classifier to construct a descriptor of the target
class data and use clustering to improve their classifi­
cation performance. In [2], the sum of all responses
of features is used to train a better face detector by us­
ing the Adaboost algorithm [?]. These works inspire us
two things. One is that rectangle features can be used



to describe sub-regions of human faces, such that pixel­
wise data can be transformed into component-wise fea­
tures. Second, after training with the Real Adaboost
algorithm, we can use all of the selected rectangle fea­
tures as our feature descriptor.

In this paper we use all selected rectangle features
as our rectangle feature vector (RFV) to describe face
images. Supervised manifold learning is then used to
construct an effective face manifold. Finally, we use the
nearest neighbor method to classify new input images
on the face manifold.

2 Manifold Learning for Face Retrieval

We select discriminant rectangle features from a
large feature pool with Real Adaboost algorithm [11]
and use them as our component-based features. These
features are assembled as a feature vector, called the
rectangle feature vector (RFV), to describe faces. Then
we combine the RFV with a supervised manifold
learning method, LDE, for face retrieval, and achieve
promising face retrieval results.

2.1 Formation of the Feature Vector

To form our feature pool, we prepare a set of Haar­
like features with different block sizes and types as
our rectangle feature pool P. We selected a total of
T features from the feature pool P by using the Real
Adaboost [11] algorithm and the cascaded structure as
in [4]

Given face images and non-face images as our pos­
itive and negative data. After training with cascaded
Real Adaboost, we obtain S strong classifiers, where S
is the number of cascaded layers. Given a face image
x, the output of the s-th layer of the trained cascaded
struture can be formulated as:

T s

Hs(x) == L hs,t(Bs,t(x)), s == (1, ... , S)
t=1

where Ts is the number of weak classifiers of the s-th
layer, Bs,t is the t-th rectangle feature value, and hs,t
is the classification confident value of a weak classi­
fier which depends solely on the t-th rectangle feature
value. The traditional strong classifier H uses the sum
of confident values to classify this input image x. In our
method, we use all rectangle features values of the S
layers as our feature vector, which can be described as

RFV(x) == [BI,I(X), B I ,2(X), ... , B 2 ,I(X), ... , BS,Ts(X)]

2.2. Supervised Manifold Learning

Manifold learning approaches can represent intrin­
sic characteristics of high dimensional data in a lower­
dimensional space. We use LDE [3] and the proposed
RFV to learn a face manifold. In LDE [3], neighbor­
hood graphs are constructed with affinity weights to
formalize a graph embedding problem as an eigenvalue
problem. Each input data is projected onto the low di­
mensional manifold, and then the nearest neighbor clas­
sifier is used to decide its class.

We show the LDE [3] algorithm below. Given
data points {Xi}~I E Rn and the corresponding la­
bels {Yi E {I, 2, ... , C} }~I' The data matrix X =
[XIX2",Xm] is in Rnxm. The LDE can be realized by
the follow three steps.

1. Construct neighborhood graphs.
, Let G and G' denote two different neighborhood

graphs. To construct G, we consider each pair of
points Xi and x j from the same class. An edge is
added between Xi and Xj if Xj is one of x/s k­
nearest neighbors. For G', instead of considering
each pair of Xi and X j with different classes, we
connect Xi and Xj if Xj is one of x/s k'-nearest
neighbors.

2. Compute affinity weights.
Specify the affinity matrix W of G, where each
element Wij represents the weight of the edge be­
tween Xi and Xj, and is given by

By default, Wij == 0 if Xi and Xj are not connected.
The other affinity matrix W' of G' can be com­
puted in the same way.

3. Complete the embedding.
Find the generalized eigenvectors VI, V2, .. , Vz that
correspond to the llargest eigenvalues in

X(D' - W')XT
V == >..X(D - W)XT v,

where D and D' are diagonal matrices with diag­
onal elements d ii == ~jWij and d~i == ~jW~j' The
embedding of Xi is accomplished by Zi == vT Xi,

where V= [VI V2 ...Vz].

3 Experiments

In the first part of the experiments, we explain how
to train the RFV by using Real Adaboost [11]. In the
second part, we show how we prepare training data for
face manifold learning and testing. At last, we analyze
experimental results.



3.1 Feature Vector Training

We use frontal face images in CMU PIE [12]. There
are 68 persons in PIE database. We rotate and resize
frontal face images to crop them manually. In total
we collect 6,048 face images as positive training data.
The non-face data includes 17,739 images which were
collected from the Internet. We randomly select 6,048
images with different sizes at different positions from
these non-face images as negative data. We normalize
these positive and negative data to size 24 x 24. We
specify that the total detection rate is 99.7% and the to­
tal false positive rate is 6.4 x 10-3 %. Then we use
Real Adaboost algorithm [11] and the cascaded struc­
ture [?] to select features. We refer the readers to [11]
for the detail of Real Adaboost. When the training pro­
cess is completed, 232 rectangle features in six layers
are selected. We use them as our RFV descriptor in the
following experiments.

3.2 Manifold Learning and Test Stage

We use Feret [10] face databases for manifold learn­
ing. It contains 14,126 images from 1,199 individuals.
We detect frontal faces by using the OpenCV face de­
tector [1]. After detecting frontal faces, there are 3,470
frontal face images of 1,187 individuals. Table 1 shows
the distribution of numbers of detected images of each
individual. For example, there are 734 persons with 2
detected face images. These faces include many vari­
ations, including lighting, beard, and eyeglasses. We
align and crop these detected faces according to the eyes
positions and normalize them to size 24 x 24. Some
face samples are shown in Figure 2. In the training
stage, there are 2,374 training images in total. In the
test stage, we use the other 1,096 images as test sam­
ples. The training and test samples are not overlapped.
We set that both k and k' to 1 and the variance t to 50.

We test the performance of our RFV and face re­
trieval method. We use the nearest neighbor method
to classify new input images. In the first experiment,
we compare the ability of our RFV with unsupervised
methods: row data (Ori), PCA, LPP [7]. The second ex­
periment, we combined previous unsupervised feature
with LDE: (Ori+LDE), (PCA+LDE), and (RFV+LDE).

3.3 Experimental Results

In first experiment, we show the error rates of dif­
ferent unsupervised methods with respect to different
levels of preserved data energy. The preserved data en­
ergy is the preserved eigen ratio that we used for dimen­
sion reduction. In all unsupervised methods (Table 2),

Table 1. The distribution of the number of
frontal face images in Feret database.
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Figure 2. Faces sample images in Feret
database

the performance of our component-based feature vec­
tor (RFV) is the best when preserving 90% data energy
with 232 dimensions.

In second experiment, we combined the unsuper­
vised feature with LDE, the error rate of our method
is 0.244 when preserving 90% data energy with 102
dimensions (Table 3). In combined the unsuper­
vised feature with LDE, (RFV+LDE) and (PCA+LDE)
have good performance in energy 90%. Our method
(RFV+LDE) consistently outperforms other methods (
(Ori+LDE) and (PCA+LDE) ).

In Figure 3, we show the precision when retriev­
ing the k nearest neighbors. We check 10-100 nearest
neighbors to test different methods. We find our method
(RFV+LDE) has better performance than (PCA+LDE).
In Figure 4, we show some five retrieved similar im­
ages, along with the query image. The experimental re­
sults show that our method can effectively retrieve sim­
ilar face images from a large database.

4 Conclusions

We have proposed a method for retrieving similar
face images in large face databases. Our method uses
a set of rectangle features as the RFV descriptor and ex­
ploits this descriptor with supervised manifold learning.
Experimental results show that our method is effective
and outperforms the other methods. In future work, we
will consider relevance feedback to refine retrieval re­
sults.
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Figure 3. The query and retrieved face im­
ages
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Figure 4. Precision-Knn results of differ­
ent methods on Feret face database [10]

Table 2. Error rates of different unsuper­
vised methods at different levels of pre­
served energy. The number in parenthe­
sis is the preserved data dimensionality.

E:0.90 E:0.93 E:0.96 E:0.99

Ori 0.47(576) 0.47(576) 0.47(576) 0.47(576)

PCA 0.50(61) 0.45(94) 0.49(156) 0.48(317)

LPP 0.769(404) 0.760(437) 0.748(477) 0.736(536)

RFV 0.440(232) 0.440(232 0.440(232) 0.440(232)

Table 3. Error rates of different unsuper­
vised features which combined with LDE
at different levels of preserved energy.
The number in parenthesis is the pre­
served data dimensionality.

E:0.90 E:0.93 E:0.96 E:0.99

Ori+LDE 0.354(308 0.359(359) 0.357(423) 0.362(522)

PCA+LDE 0.297(43) 0.292(120) 0.310(133) 0.315(148)

RFV+LDE 0.244(102 0.252(111) 0.247(123) 0.281(136)
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