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Temporal Color Consistency-Based Video
Reproduction for Dichromats

Chun-Rong Huang, Member, IEEE, Kuo-Chuan Chiu, and Chu-Song Chen, Member, IEEE

Abstract—In this paper, a video re-coloring algorithm for dichro-
mats is presented. Different from image re-coloring schemes, re-
producing a video for dichromats requires maintaining temporal
color consistency between frames, i.e., the same color in different
frames should be re-colored to the identical new color. To achieve
this goal, we extract video key colors from shots after motion es-
timation at first. Based on the importance of video key colors, a
process order is defined to perform efficient color remapping and
solve the contrast maintaining problem. Then, the remapped frame
pixel values are interpolated by the re-mapped video key colors
with spatial-temporal constraints. Experimental results show that
our method can increase the visibility for dichromats and guar-
antee temporal color consistency.

Index Terms—Colorblind video, video processing.

I. INTRODUCTION

C OLOR plays a vital role in the delivery of the visual infor-
mation. However, people who suffer from the color vision

deficiency (CVD) are unable to distinguish certain color com-
binations. CVD people who lack one of the three basic color
mechanisms are called dichromats [1]. According to the missing
types of colors, they are classified as protanopia, deuteranopia,
and tritanopia, respectively. Besides dichromats, other kinds of
CVD, such as anomalous trichromacy [2]–[4] and monochro-
macy [1], also face a similar problem. According to [5], there
are about 200 million colorblind people in the world. It would be
beneficial to transfer color content to provide them with richer
and distinguishable color information.

To achieve this goal, researchers have focused on re-coloring
images to accommodate the accessibility of CVD people. Ex-
isting approaches can be generally classified into two categories:
manual tools and automatic techniques. Manual tools aim to as-
sist designers to manually adjust ambiguous color combinations
with user interfaces [6]–[8]. When an image contains gradual
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color changes or thousands of colors, these methods are trouble-
some in use. Thus, automatic procedures are proposed to over-
come above problems. In general, the re-coloring problem is
modeled as an optimization problem which minimizes the dif-
ferences between colors for normal people and remapped colors
for CVD people. Wakita and Shimamura [9] defined three ob-
jective constrains to describe common color effects and used the
simulated annealing algorithm to find re-color results. However,
the algorithm cannot always ensure to find global optimum so-
lutions and the computational complexity is very expensive. Jef-
ferson and Harvey [10] evaluated the color visibility by WWW
consortium criteria to preserve details for dichromats. Too many
parameters in their objective function tend to increase the diffi-
culty of efficiently solving the optimization problem.

Recently, researchers tried to find a more effective and effi-
cient way to solve the optimization problem. Re-coloring im-
ages for CVD viewers can be treated as a problem of preserving
visual details in the reduced color space. By assuming the re-
duced space as a flat plane, Rasche et al. [11], [12] proposed an
effective color to gray technique to reproduce images for dichro-
mats. Kuhn et al. [13] proposed a mass-spring system to pre-
serve the naturalness of the original colors and color contrast
after re-coloring. To efficiently model key colors, a distribu-
tion concept is proposed in [14]. The center of each distribution
group is treated as a key color. The remapping function is de-
rived from these key colors and forms a multi-variant nonlinear
problem which is hard to be efficiently solved. These re-coloring
methods can be further used to measure the image accessibility
when searching images for CVD people [15] or automatically
point out image regions which are hardly recognized by color-
blind viewers in a manually designed image [16].

In this paper, we focus on how to re-color a video for dichro-
mats instead of a single image. A simple idea is to re-color
every frame individually by using image-based methods men-
tioned above. However, the same color appearing in different
frames cannot be guaranteed to be remapped to the identical
new color, because the temporal relationship between frames is
not considered. The colors of an object may become different
in adjacent frames. Thus, different from image re-coloring ap-
proaches, temporal color consistency (TCC) should be consid-
ered when reproducing a video for dichromats, i.e., the same
color appearing in different frames is re-colored to an identical
new color.

To the best of our knowledge, there are only few works [17],
[18] addressing on re-coloring videos for CVD people. In [17],
Machado and Oliveira present an automatic image re-coloring
technique with GPU to enhance color contrasts for dichromats.
They also propose to preserve the temporal coherence for
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browsing an interactive 3-D graphic model and claim that
their method is also suitable for video re-coloring. However,
no general video re-coloring results are presented in their
paper. To avoid the color inconsistency during an interactive
visualization session, they use the re-color vector of the current
frame for the next frame by assuming that the adjacent frames
contain the same object. However, the adjacent frames of
general videos may not contain the same objects due to object
motions. Moreover, when shot changes occur, their assumption
would be no longer satisfied. Their method might be used to
re-color a video without shot changes and foreground object
motions, but it could fail to make the colors consistent when a
video contains multiple shots and significant object motions.
Hence, their method can only achieve TCC at the shot level.

Liu et al. [18] divide a video into shots and enforce the same
colors appearing in different frames to be identical new colors
after remapping in each shot. The same colors appearing at ad-
jacent shots are smoothly varied. Thus, they also achieve TCC
at the shot level. Nevertheless, it is very common that the same
colors appear in many non-adjacent shots. Hence, in their ap-
proach, the same colors in the video will have different colors in
different shots, i.e., the TCC at the video level is not achieved.
Moreover, they performed a rule-based local color rotation in
the color space to enhance accessibility for CVD
people. Consider with the plane, they rotate colors in the
left plane towards and in the right plane towards for
the protanopia and deuteranopia. This straightforward strategy
only works well when most colors in the image are red and green
which is confused in the protanopia and deuteranopia vision.
The remapping step is not suitable to produce discriminative
colors for dichromats.

To achieve TCC at the video level, we propose a new auto-
matic video reproduction algorithm for dichromats. The idea is
to retrieve video key colors appearing in the video and remap-
ping them at the same time to avoid color inconsistency. A video
key color is a frequently visible color in the video. Retrieving
video key colors is time-consuming, because a video volume
usually contains millions of pixels. To increase the performance,
we separate a video into shots at first. Since adjacent frames
in a shot contain similar colors, the motion estimation method
is used to efficiently reduce repetitive colors. Shot key colors,
which are the colors frequently appearing in a shot, are obtained
by clustering the residual colors after motion estimation. Then,
shot key colors from different shots are clustered to obtain video
key colors. For remapping video key colors, we define a pro-
cessing order based on their visibility in the shots. According
to the processing order, we iteratively remap these key colors to
new colors so that they can be distinguished by CVD people.
During each iteration, we formulate the re-coloring problem as
a 1-D optimization problem, which can be solved efficiently.
Based on the remapped video key colors, we remap the shot
key colors. Finally, the remapped values of the pixels in frames
are computed by the frame interpolation which is accelerated
by taking the advantage of spatial and temporal locality prop-
erties. Different from [18], we enable the color mapping to be
identical in the whole video and colors are remapped to keep the
same contrast as normal people can see as possible. Besides, for
computing the color mapping function of each shot, they only

use the first frame in the shot while we take into account whole
shot frame sequences to get more accurate color information.
The detailed method is described in Section II. Experimental
results are presented in Section III to demonstrate the effective-
ness of the proposed method. Section IV gives the conclusion.

II. PROPOSED METHOD

In the following, we will introduce how to efficiently find the
video key colors and their remapped colors for CVD people.

A. Shot Detection

In practice, taking all pixel values of the video volume into
account requires much computation time and memory space. In
order to alleviate memory redundancy, a bottom-up approach is
considered by taking the advantage of the video structure. We
first divide a video into shots using [19] which applied the con-
cept of invariant local descriptors, contrast context histogram
(CCH) [20], to detect the continuity of frames. If the same ob-
jects or backgrounds appear in adjacent frames, we would prob-
ably consider that there is no shot change. CCH is used to iden-
tify whether two adjacent frames belong to the same shot. In
addition, by counting the number of matched CCH features, we
can minimize the influence of both objects and camera motions,
which can be easily mis-classified as shot transitions and suc-
cessfully detect both abrupt and gradual transitions. After the
shot detection, the th shot in the video can be expressed as
a set of frames as follows:

(1)

where and are, respectively, the indices of the first and last
frames of .

B. Shot Key Color Extraction

Once a video is separated to shots, we now focus on extracting
key colors of each shot. In practice, the shot volume remains
too huge to gather all pixel values for clustering shot key colors.
Since our goal is to find all colors appearing in a shot and then
choose the primary ones, identical pixel values between adja-
cent frames can be eliminated in advance. As a result, we im-
pose the motion estimation approach to prune off the repetitive
colors. Since frames in the same shot are quite similar, most
image blocks in the th frame can be represented by those in
the previous frames . Thus, only a few of memory storage is
required to store the residual image blocks after deleting repet-
itive image blocks.

There are some standard search ways for motion estimation
in the video codec standards, such as fast full search [21] and
hexagon search [22]. These search methods aim to get precise
estimation of motion vectors to reduce the compression bit rate
as much as possible. However, they are time-consuming. To si-
multaneously maintain the motion estimation performance and
decrease the computation time, adaptive rood pattern search
(ARPS) [23] is proposed. ARPS has also been shown that out-
performs many well-known search methods. The main idea of
ARPS is that the motions of neighbor macro blocks are co-
herent in general. Thus, the motion vector of the current block
can be predicted by means of the neighbor blocks. In addi-
tion, four-armed rood pattern points with adaptive sizes have
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to be checked. The search size is defined as the larger abso-
lute value of the coordinate of the predicted motion vector. This
rood pattern search leads to find high probability area of a good
matching. A subsequent local search with small fixed pattern
is then performed. The procedure is terminated until the best
matching point is at the center of the search pattern. Moreover,
zero-motion prejudgment is performed at the beginning to fur-
ther reduce the computational cost of zero-motion blocks.

After motion estimation, the redundant image blocks in the
current frame are represented by image blocks in the pre-
vious frame . The remaining blocks contain the residuals
in . By finding the union of the residuals of each frame, we
have a new subspace of the shot volume . Then, minimum
variance quantization (MVQ) [24] is employed to further re-
duce the numbers of colors in the subspace. MVQ approximates
frequently appearing colors with smaller color cubes and larger
ones for infrequently appearing colors in the RGB space. Here,
the number of colors to be quantized in is related to the ratio
of residual image blocks. Let the first frame of be quan-
tized into 256 colors. The number of colors to be quantized in

is computed as follows:

(2)

The total number of quantized colors in can be computed
as follows:

(3)

In this way, we can efficiently extract the colors appearing in
. Nevertheless, is usually more than 1000. Among these

colors, we would like to further extract shot key colors by re-
moving duplicate or similar colors. Clustering methods such
as -means [25] can be used to extract key colors from the
quantized colors. How to decide the number of clusters (key
colors) remains a problem. Affinity propagation (AP) [26] gives
a better way to achieve the clustering. AP is an exemplar-based
clustering algorithm that finds clusters by exchanging messages
between pairs of data points. Messages include responsibility
and availability which reflects how suitable a candidate exem-
plar point is to serve as the exemplar for another point and
how appropriate a point is to choose another point as its ex-
emplar, respectively. The affinity between two data points in-
dicates whether they should be in the same cluster. Thus, it can
choose the number of clusters automatically based on the simi-
larity. The similarity is defined as Euclidean distances between
any two quantized colors in the color space which
present the perceptual difference between them. The only one
parameter, inference value, is the median of the similarity by
following the suggestion in [26]. After AP, we can obtain the
shot key colors of .

C. Video Key Color Extraction

In a video, main characters will appear in many shots but they
do not always appear in adjacent shots. If the same colors of a
character are not consistent in different shots, CVD viewers will
feel confused because the same character has distinct colors.

To solve this problem, we propose TCC-based video reproduc-
tion approach to ensure that video key colors appearing in dif-
ferent shots will be remapped to the identical new colors at the
video level. Since we collect shot key colors from all shots in the
video, we further group them via AP to find the common colors,
which are denoted as video key colors. In this way, we can re-
duce the computation complexity of finding video key colors
directly from the video volume.

During AP clustering, we also compute the significance of
each video key color. The significance is the frequency of the
video key color appearing in the shots. The higher significance
means that the video key color is usually appearing in different
shots. If we can remap the video key colors with higher signifi-
cances in the early stage, they can be distinguished more easily
by CVD viewers and the remapping procedure will be more flex-
ible. For example, if there are two shots in a video, the key colors
in the first shot are green and red and the second shot contains
red and yellow. Suppose that green and yellow are remapped to
blue and yellow for protanopia. Then red will fail to be re-col-
ored under the color contrast constraint, because only yellow
and blue can be distinguished for protanopia. On the other hand,
if we remap red which has the higher significance at first, the
awkward situation can be avoided. For this reason, video key
colors are sorted in the descending order according to their sig-
nificances in the video.

D. Video Key Color Reproduction

After obtaining video key colors and their significances,
we now focus on remapping them to new colors so that CVD
people can distinguish among them. The remapping criterion is
to maintain the perceptual distances between each pair of video
key colors at the normal vision space and at the CVD color
space. Hence, video key colors are rearranged based on color
contrast maintenance within the gamut of CVD. Unfortunately,
this is a multi-variant nonlinear optimization problem [14] and
is complex to solve.

To simplify the optimization problem, we will introduce the
CVD color space at first and remap all video key colors one
by one according to their significances. The remapped video
key colors are denoted as the reference colors. The unmapped
video key color is computed by following the color contrast con-
straints comparing with the reference colors to obtain the new
color. In this procedure, we can successfully reduce the opti-
mization problem to a series of 1-D optimization ones.

1) CVD Color Space: It is important to model the CVD color
space for dichromatic people. Since the remapped colors are
presented for CVD viewers, the remapping range of the color
gamut is limited to the space of a specific type of dichromats.
Although Brettel et al. [27] have proposed a successful approach
to simulate the CVD space, their nonlinear mapping functions
in the color space are implicit functions which
are difficult to be applied for the analytic purpose, such as con-
structing an energy function. In fact, the CVD color space is
a subspace of the normal vision space. In [11] and [12], they
found that each type of dichromatic color gamut is a low curva-
ture surface in the normal vision space. Based on this observa-
tion, they approximated the surface by a flat plane and extended
their grey scale preserving techniques to accomplish re-coloring
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Fig. 1. Simulated gamut of 2-D collapses in ��������� space perceived by
each type of CVD viewers. Red, green, and blue lines are the simulation space
for protanopia, deuteranopia, and tritanopia, respectively.

algorithms. In our approach, we propose a more precise way to
fit each curvature space.

To explain it, we apply the regression analysis to find a
polynomial function that approximates the specific CVD space
based on the simulation function provided in [27]. We transfer
all of the colors in the RGB space to the CVD color space. As
shown in [11], maintaining the luminance of the original color
in the RGB space and modifying only the components are
sufficient to construct the perceived colors in the CVD space.
Thus, only space is considered. The corresponding CVD
space of the protanopia, the deuteranopia, and the tritanopia
are represented by red, green, and blue as shown in Fig. 1,
respectively. It can be easily found that the gamut of CVD
spaces cannot be well fitted by straight lines which are proposed
in [11] and [12]. Because the gamut of each dichromacy is a
1-D curve in the plane, we observed that the point in this
curve is uniquely determined when is given. This implies
us to represent the curve as a function of ; without loss of
generality, we modeled it as a th-order polynomial and
find the coefficients of by fitting the curve via
standard regression analysis in a least-squared-error manner. In
our experiments, there is almost no difference when .
Therefore, is selected for our models to reduce the
computational complexity. The equations of each dichromatic
type are shown as follows:

Protanopia:

(4)

where and is the scientific notation.
Deuteranopia:

(5)

where .

Tritanopia:

(6)

where .
2) Optimization: The perceptual distance between any two

colors in the color space is measured by the
Euclidean distance. The remapping objective criterion is to keep
the same perceptual distance between each pair of key colors
at the normal vision space and at the CVD color space. So the
remapped error introduced by any pair of video key colors,
and , for maintaining the color contrast is defined as follows:

(7)

where and are the reference colors, i.e., the remapped
colors of and , respectively. If there are video key
colors, the color contrast error of each video key color pair can
be measured by (7). By accumulating the errors, the objective
function is formed as follows:

(8)

By minimizing (8), all pairs of and can be found. How-
ever, it is remarkably difficult to find the global optimal solution
efficiently. Many previous works [10], [14] solved the optimiza-
tion problem by the gradient descent method to avoid the enor-
mous computing load.

Instead of finding all reference colors simultaneously, we pro-
pose an iterative procedure to calculate the remapping results
one by one. Let all video key colors be stored in a process queue,

, according to their significances in a descending order. Fol-
lowing the order in , video key colors are remapped to the
CVD space sequentially by maintaining each pair of color con-
trast as shown in (9):

(9)

where is the th original video key color in , de-
notes that the set of key colors have already been processed
and their corresponding reference colors have already been
determined. The remapped color of the first video key color

in is the CVD simulation color of . The following cor-
responding reference color of the video key color in is
determined sequentially by (9).

There are still several constraints in the optimization problem.
At first, we have to maintain the luminance consistency and so
the component of is set as the same as that of . Since

is the remapped color for CVD viewers, it should appear in
the CVD space. Therefore, we can restrict the component of

to be positioned along formulated in (4)–(6),
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where type .
Equation (9) is then further expressed as follows:

(10)

where , , and are the mapping functions of the lu-
minance , component, and component of the color in
the space, respectively. In this procedure, the di-
mension of the optimization problem is reduced to one which is
related to the component of in each iteration step. Hence,
it can considerably alleviate the computational complexity since
the optimization solution of the 1-D problem can be solved
easily. Many approaches have been proposed to solve the 1-D
optimization problem [28]. In our case, the objective function of
the 1-D optimization problem is a fourth-order polynomial func-
tion. The shuffled complex evolution (SCE-UA) method [29] is
adopted to solve the problem because it has good performance
to solve irregular objective functions.

There is still another advantage of the proposed processing
order. Re-coloring for dichromats could be considered as infor-
mation reduction from a 3-D space to a lower one. By following
the processing order, the formerly calculated reference colors

are easier to maintain the color contrast between the refer-
ence colors and the original key colors because there are still
few elements in . Video key colors with lower signifi-
cances have lower accessibilities for CVD viewers, because the
color contrast has to be maintained with respect to more refer-
ence colors. These colors with lower significances just appear in
a short period in the video; thus, the artifacts could be ignored.
In this way, we can remap each video key color to its new
color in the CVD space. The colors in the shots which are
the same as the video key colors will be remapped to the iden-
tical new key colors to achieve TCC in the video level. Since
the same colors from different shots are remapped to the iden-
tical colors, we can ensure TCC in the video level even across
different shots.

E. Frame Color Interpolation

From previous sections, a bottom-up approach is adopted to
cluster frame pixel colors to shot key colors and then cluster
shot key colors to video key colors. Now, we reversely com-
pute the remapped shot key colors from remapped video key
colors and then interpolate frame pixel colors from remapped
shot key colors. Let denote a shot key color that belongs to
the cluster of the video key color, . The corresponding shot
reference color is then derived by the projection of the per-
ceptual difference [13] as follows:

(11)

where , is the reference color associated to
, and is the ratio of the distance-weighted interpolation

provide by [13] and [30]:

(12)

and

(13)

where is a predefined small value to avoid zero-division and
is the number of total video key colors.
Basically, frame pixel colors can be re-colored according to

shot reference colors by the same method as (11), but it is not
efficient [13]. We utilize the spatial and temporal locality to ac-
celerate the interpolation step. The spatial locality is that the
re-colored pixel value at the position is possible to be equal to
its neighbor pixels at whose re-colored pixel values are
already estimated. The re-colored value of can be copied from

if their original values are the same. Let and
represent the th original and re-colored frames, respectively.
The original pixel value and the re-colored of is denoted as

and , respectively. If ,
. The temporal locality considers the

color similarity between adjacent frames. According to the re-
sults of motion estimation, we can reversely compute the cor-
respondent pixel of in the previous frame. Again, if

, .
means the inverse motion vector from to its corre-

sponding point in . Since adjacent frames in the same shot
are similar in general, this step is able to greatly reduce the com-
puting load. After all, the remaining pixel values are re-colored
by (11). The interpolation approach of in the frame level is
summarized as follows:

(14)

where refers to the th shot reference color. Note that
and is also derived by (12) by replacing

the parameters in the video level to the shot level.

III. EXPERIMENTS

A. Re-Colored Results

We applied the proposed algorithm to three video sequences
collected from the Internet.1 Fig. 2 shows the experimental re-
sults of the first sequence. As shown in Fig. 2(b), both of the
red and green men become yellow men for CVD viewers with
the protanopia. To avoid the visual confusion, a simple idea is

1Demo videos are available at http://imp.iis.sinica.edu.tw/ivclab/research/
CVDVideoReproduction/index.htm.



HUANG et al.: TEMPORAL COLOR CONSISTENCY-BASED VIDEO REPRODUCTION FOR DICHROMATS 955

Fig. 2. Experimental results of the signal light video. The sampled images obtained from (a) the original sequence, (b) the simulation sequence of the protanopia,
(c) the image-based re-coloring method, (d) Liu et al.’s method, and (e) the proposed method.

to re-color every frame by the image-based method [14] indi-
vidually without considering TCC. As shown in Fig. 2(c), in
the 249th, 844th, 1657th, and 1926th frames, the green men
are remapped to the blue men and the red men are remapped
to the yellow men. However, in 1472nd and 1993rd frame, the
green men are remapped to the yellow men and the red men
are remapped to the blue men. As a result, CVD viewers will
have difficulty to differentiate between the green men and red
men. Moreover, when playing the remapped video, the “color
jitter” phenomenon, i.e., the colors of the same objects change
frequently between adjacent frames, will make viewers uncom-
fortable. As shown in Fig. 2(d), Liu et al.’s [18] method failed to
re-color two fighters in the 844th and 1657th frames. Although
they consider enforcing the same colors appearing in a shot to be
identical new colors, they do not consider that the same colors
appearing in different shots should be also remapped to the same
color. For example, the red man is re-colored to yellow in the
246th frame but is re-colored to gray in the 1472nd frame and is
re-colored to yellow again in the 1657th frame. Such inconsis-
tency of the same object between different shots will cause the
confusion of the CVD viewers. The results of the image-based
and Liu et al.’s methods [18] indicate the importance of TCC in
the video level. As shown in Fig. 2(e), our method can consis-
tently remap all the green men to the yellow men and all the red
men to the blue men in the whole video. Thus, the CVD viewers
can explicitly understand that the green and red men belong to
two different colors.

In Fig. 3(b), the snooker pool and the balls are undistinguish-
able for people with protanopia. Although the image-based

method can remap the color of the ball to blue which makes it
distinguishable from the snooker pool as shown in the 600th
frame of Fig. 3(c), it also remaps the color of the snooker pool
to blue in the 319th frame. Such an inconsistent mapping will
make the viewers confused. As shown in Fig. 3(d), Liu et al.’s
method not only fails to remap the color of the ball in the 246th
frame but also the color of the shirt of the sport man in the
1170th frame. As can be seen, our method can achieve TCC
better in the video level.

In Fig. 4(b), the strawberries and their leaves are the same
colors under the CVDvision.Asshown in Fig. 4(c), the remapped
colors of the strawberries in different frames change frequently.
Although Liu et al.’s method can avoid the “color jitter” in a
shot, their method fail to achieve TCC in the whole video. Thus,
the remapped colors between different shots will gradually
change. For example, the remapped colors of strawberries in
the 343rd, 552nd, and 1065th frames are different as shown in
Fig. 4(d). Unlike the image-based and Liu et al.’s approaches,
our method can consistently remap the colors of the strawberries
and the leaves to blue and yellow shown in Fig. 4(e), respectively.
Similar results are shown in Fig. 5(e); the poinsettia flowers and
their leaves are distinguishable and their colors are consistent in
all frames in the video after remapping.

B. Numerical Analysis

To quantify the effectiveness of our work, we compute the
contrast reduction score, the color reduction score, and the inter-
frame color change rate (ICCR) score suggested in [31], re-
spectively. Here, the contrast reduction score is the ratio of the
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Fig. 3. Experimental results of snooker video. The sampled images obtained from (a) the original sequence, (b) the simulation sequence of the protanopia, (c) the
image-based re-coloring method, (d) Liu et al.’s method, and (e) the proposed method.

Fig. 4. Experimental results of strawberry video. The sampled images obtained from (a) the original sequence, (b) the simulation sequence of the protanopia, (c)
the image-based re-coloring method, (d) Liu et al.’s method, and (e) the proposed method.

mean contrasts of the original and remapping versions to de-
scribe quantitatively the difference in contrast. Color contrast
is computed by the perceptual distances between the pairs of
a point and its neighbor point at one pixel apart. If the color
contrast after remapping are close the original one, it implies

the remapping method can maintain the color contrast. The dis-
tinguishable colors mean the colors perceived by viewers. The
color reduction score is the ratio of the mean number of distin-
guishable colors of the original and the remapping versions of
videos. To evaluate the color changes between adjacent frames,
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Fig. 5. Experimental results of the poinsettia video. The sampled images obtained from (a) the original sequence, (b) the simulation sequence of the protanopia,
(c) the image-based re-coloring method, (d) Liu et al.’s method, and (e) the proposed method.

we employ the ICCR score. Let be the number of distin-
guishable colors of the frame . The ICCR score between
and is defined as follows:

(15)

where and
.

The statistical values of three quantified evaluations are
summarized in Tables I–III, respectively. Every video is mea-
sured under the original video, the CVD simulation video
of the protanopia, the video re-colored by the image-based
method [14], the video re-colored by the Liu et al.’s method
[18], and the video re-colored by the proposed method. In
Table I, the mean of the color contrast is the average of the
color contrast of all frames of each video. While the contrast
reduction score is closer to one, the reproduced video is more
similar to the original video. As shown in Table I, the proposed
method has the most similar color contrast compared with the
original video. Thus, the contrast reduction scores of the pro-
posed method are close to one for all the videos. Such results
reveal that our method can maintain the color contrast after
reproducing the videos. The means of distinguishable colors
appearing in the videos are shown in Table II. It can be found
that the means of distinguishable colors in the CVD videos are
the smallest because the CVD viewers cannot distinguish these
colors. However, after remapping, the means of distinguishable
colors obviously increase which indicates more colors can be
recognized by the CVD viewers. If the color reduction score
is closer to one, the reproduced video includes more similar

amount of distinguishable colors as the normal video. The
proposed method performed the best results in most cases.
Table III presents ICCR results. If the color changes between
adjacent frames of the reproduced videos can be maintained
as those of the original video, the reproduced videos have
similar accessibility as the original video. Again, our method
performed the best among the compared methods. Overall, our
re-coloring approach gives a good way to enhance the video
accessibility for dichromats.

The proposed algorithm was implemented by using Matlab
on a PC with Intel four cores 2.66-G CPU. The computation
time of each step is summarized in Table IV. As we can see, a
larger frame size requires more computation time in general.
Key color remapping time is independent of the frame size
which is proportional to the number of video key colors.

C. Subjective Study

During the experiment, 11 subjects including one protanopia
subject reviewed the original videos at first. Then, they gave
their assessments to every re-colored video as shown from
Figs. 2–5. The subjects, who do not know the proposed method,
are able to compare the results of different methods appearing
in randomized order for assessments, and thus, they do not
know which method is applied to a particular video in advance.
Three kinds of assessments, contrast, naturalness, and perfor-
mance were made. Contrast indicates the distinguish ability
of colors of the re-colored video. Naturalness shows how the
re-colored video can preserve the colors which are discrimi-
native in the original video for the CVD people. Performance
is the overall visual rating of the re-colored video. In order to
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TABLE I
COLOR CONTRAST SCORE

TABLE II
COLOR REDUCTION SCORE

obtain a quantitative assessment, each assessment is rated from
0 to 4, where 0 means the worst and 4 means the most satisfied.
Then, an average score of each assessment is calculated from
all of the test videos. The results of each assessment with
respect to videos are shown in Tables V–VII. Generally, Liu
et al.’s method and our method show better results compared
with the image-based method because it cannot achieve TCC
at shot and video levels. The naturalness assessment usually
contains the relatively worse results compared with the contrast
and performance assessments in Liu et al.’s and our methods.
This is because a video contains richer colors than a single
image, and thus, the re-colored video is relatively hard to
preserve the colors which are discriminative originally. The
proposed method owns the highest scores in all of the three

TABLE III
ICCR SCORE

TABLE IV
COMPUTATION TIME IN SECONDS

TABLE V
SUBJECTIVE RESULTS OF CONTRAST ASSESSMENT

assessments. Moreover, to the protanopia subject, the average
assessment scores of the four videos in contrast, naturalness,
and performance with respect to our method are 3, 2, and 2.5,
respectively, higher than 1.75, 1.5, and 1.75 of the Liu’s method
and 2.5, 0.5, and 1 of the image-based method. The promising
results show that the proposed method can re-color videos with
better visual quality.

D. Discussion

As shown in the experiments, our method can successfully
achieve the TCC at the video level. However, there are some lim-
itations. At first, our method only focuses on re-coloring videos
for dichromats. Re-coloring videos for people with anomalous
trichromacy [2]–[4] and monochromacy [1] are not considered.
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TABLE VI
SUBJECTIVE RESULTS OF NATURALNESS ASSESSMENT

TABLE VII
SUBJECTIVE RESULTS OF PERFORMANCE ASSESSMENT

One of the possible solutions is to modify our polynomial equa-
tions for trichromacy people and then apply the proposed tech-
nique to re-color the videos. As for monochromacy people, once
the reduced monochromacy space with respect to the original
color space is derived, the videos can also be re-colored by the
iterative procedure. Second, when a long video contains a huge
amount of colors, the number of the clustered video key colors
might increase from dozens to hundreds. Although these key
colors can be mapped to their new colors according to the pro-
cessing order, it is not guaranteed that the remapped new colors
are distinguishable for dichromats. In other words, our method
might fail to arrange appropriately the key colors for a long
and very colorful video. One of the possible solutions is to re-
duce the quantization levels after motion estimation. As a re-
sult, the number of video key colors is reduced which implies
a better remapping results for these key colors; however, since
the collected key colors are reduced, the re-colored video will
lose more of the colorful information. Thus, handling long and
colorful videos for dichromats still remains an open problem.
Finally, since our method needs to collect the video key colors
from the whole video, it cannot be applied to live streaming.

IV. CONCLUSION

We have proposed a novel video reproduction approach for
dichromats. Compared with image-based re-coloring and Liu
et al.’s approaches, our method can ensure TCC in the whole
reproduced video. Our method can make the objects of the
same colors consistent for CVD viewers to avoid jittering of
the remapped colors. Moreover, to enhance the accessibility
for dichromats, we iteratively select video key colors according
to their visibility in the video and formulate 1-D optimization
problems to remap each video key color according to the model
of the CVD gamut. By utilizing the hierarchical structure of
videos and the motion estimation technique, we reduce the
memory usage and speed up reproduction tasks. Experimental
results and evaluation demonstrate the effectiveness of our
method.
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