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Abstract—With the advances in imaging technologies for robot or machine vision, new imaging devices are being developed for robot

navigation or image-based rendering. However, to satisfy some design criterion, such as image resolution or viewing ranges, these

devices are not necessarily being designed to follow the perspective rule and, thus, the imaging rays may not pass through a common

point. Such generalized imaging devices may not be perspective and, therefore, their poses cannot be estimated with traditional

techniques. In this paper, we propose a systematic method for pose estimation of such a generalized imaging device. We formulate it

as a nonperspective n point (NPnP) problem. The case with exact solutions, n ¼ 3, is investigated comprehensively. Approximate

solutions can be found for n > 3 in a least-squared-error manner by combining an initial-pose-estimation procedure and an

orthogonally iterative procedure. This proposed method can be applied not only to nonperspective imaging devices but also

perspective ones. Results from experiments show that our approach can solve the NPnP problem accurately.

Index Terms—Computer vision, camera pose estimation, generalized imaging device (GID), perspective n point problem (PnP),

nonperspective n point problem (NPnP).

�

1 INTRODUCTION

HOWto estimate the pose of a camera by determining the
rigid transformation, which relates images to known

geometry, is a problem of fundamental importance to
machine and robot vision. In the past, many methods were
developed for solving the pose estimation problem for
perspective imaging devices, where the imaging rays are
assumed to intersect at a common point. For some
applications such as telepresence and image-based virtual
reality, the perspective property has to be taken into
account, because the generated images are supposed to be
presented to humans. However, for some other applications
such as automatic visual surveillance and mobile robot
guidance, the imaging system need not comply with the
perspective rule.

In fact, many new types of imaging methodologies or
devices, violating the perspective construction in machine
and robot vision, were designed. That is, the imaging rays
of each of them may not intersect at a common point. For
example, Rademacher and Bishop introduced the concept
of images with multiple centers of projection, which were
applied to image-based rendering [26]. A linear pushbroom
camera [13] contains multiple focal centers distributed in a
line and is thus nonperspective as well. In addition, Huang
et al. [11] proposed a polycentric panorama model, where
the focal centers were distributed in circles. In fact, it is also
possible to acquire a nonperspective image in a single shot.
For instance, wide-angle lens systems including severe
projective distortions may have a locus of viewpoints [24].
An omnidirectional vision sensor combining a camera and

a conic mirror, which was employed for collision avoidance
of robotics, is another example of a nonperspective imaging
device [33].

However, systematic methods for pose estimation of a
nonperspective imaging device are lacking. In this paper,
we propose a pose estimation method for an arbitrary
imaging device that can be perspective or nonperspective.
The rest of the paper is organized as follows: Section 2 gives
a formulation of the problems. Sections 3 and 4 introduce
the nonperspective pose estimations when three and n
(n > 3) point correspondences are given, respectively.
Simulated and experimental results are shown in
Sections 5 and 6, respectively. Finally, some conclusions
and discussion are given in Section 7.

2 PROBLEM FORMULATION

First, we formulate the model of imaging devices consid-

ered in this paper. In essence, an imaging device captures

the rays of lights in 3D space. These rays are occluded by

the physical occupation of the imaging device itself, with

which the end points of these rays are inherently

determined. Hence, an imaging device can be generally

formulated by the three components, (I, CCS, L), as defined

below.

1. Ið�; �Þ: DI ! R�G�B is an image map ðDI � R2 is
the domain of image I), and R;G;B are the sets
consisting of the three primitive colors.

2. CCS: an arbitrary Euclidean coordinate frame se-
lected in 3D space, which is referred to as the camera
coordinate system (CCS).

3. Lð�; �Þ: DI ! R3 �R3 is a mapping from an image
point, say (i, j), to the 3D ray represented as (c; vc; v) with
respect to CCS,which consists of all the 3D points that
can be imaged at (i, j), where cc 2 R3 is the end point
and vv 2 R3 is the unit directional vector of this ray.
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The model formulated above is called a generalized
imaging device (GID) in this paper. Fig. 1 gives an illustration
of the GID.1

Given a GIDG, let �ðGÞ ¼ fl: a 3D line j9ðc; vc; vÞ s.t. the ray
specified by (c; vc; v) is contained in the full line lg. If all of the
lines contained in �ðGÞ intersect at a common point, then G

is called perspective. Otherwise, G is nonperspective.
For example, a common video camera is usually modeled

as a perspective GID. An omnidirectional imaging system

combining a hyperbolic mirror and a camera, where the lens

center of the camera is placed in one of the focal points of the

hyperbolic mirror, is another example of a perspective GID

[34].On the other hand, a linear pushbroomcamera and some

wide-angle lens systems, which have been introduced in

Section 1, are examples of nonperspective GIDs. In essence,

the concept of the GID is suitable for formulating the

geometrical relation of optical apparatuses designed for

capturing images in a 3D environment. Considering such a

general definition of imaging devices, a basic problemwould

be as follows: Given a set of 3D points with respect to a world

coordinate system (WCS) and their projecting points in the image

plane of a GID, how can the rigid transformation between the world

and the camera coordinate systems be computed? Such a funda-

mental problem is called the perspective n point problem (PnP)

for perspective imaging devices [8], [9], [14], [22], [23], [35].

This study investigates amore general problem for the GIDs,

which we call nonperspective n point problem (NPnP) because

the GIDs considered herein need not be perspective [4].
The PnP problem has been well investigated. Closed-

form solutions have been formulated if three or four 3D-2D
correspondences are adopted [9], [14], [15]. However, if
more correspondences are used, there are no closed-form
solutions available. Lowe [22] and Yuan [35] used the
Newton-Raphson method for pose estimation under the
assumption that approximate initial poses were provided.
The DeMenthon and Davis approach [8] first assumed the
camera model as a scaled orthographic projection. It obtains
the rigid transformation by solving a linear system, and
then uses a POSIT procedure to refine the result iteratively.

Lu et al. [23] also proposed an iteration method using a
scaled orthographic projection for initial estimation.

However, the NPnP problem has not been well re-

searched in past studies. In Sections 3 and 4, we will

propose a systematic method for solving the NPnP

problem. Since the PnP problem is a special case of the

NPnP problem, our method can be used for solving the PnP

problem as well.

3 NONPERSPECTIVE THREE-POINT (NP3P)
PROBLEM

In an NPnP problem, n points with known coordinates

with respect to a WCS in the 3D space, e.g., PP 1; PP 2,

. . . ; PPn, are supposed to be imaged with a GID. Assume

that their 2D image points are ði1; j1Þ; ði2; j2Þ, . . . ; ðin; jnÞ,
respectively, where ðik; jkÞ 2 DI for all k ¼ 1; . . . ; n. When

the intrinsic model of the GID is known, we want to find

the rigid transformation between CCS and WCS so that

QQk ¼ RR �PPk þ tt, where RR is a 3� 3 rotation matrix, tt is a

3� 1 translation vector, and QQk is a point in CCS that can

be represented as QQk ¼ sk � vvk þ cck, in which ðcck; vvkÞ ¼
Lðik; jkÞ and sk is a scale factor for all k ¼ 1; . . . ; n.

First, we investigate the problem when n ¼ 3, which is
the minimum number of 3D-2D correspondences needed to
allow the solutions to be identified exactly. The induced
problem is called the NP3P problem in this study.

3.1 Solutions of the NP3P Problem

When n ¼ 3, the three points PP 1, PP 2, and PP 3 with known

coordinateswith respect to theWCS forma triangle. Since the

coordinates of PP 1, PP 2, and PP 3 are known, the length of the

three edgesof the triangle,a; b; c, canbedetermined.Consider

QQ1, QQ2, and QQ3, the transformed points of PP 1, PP 2, and PP 3,

lying on the corresponding rays, ll1, ll2, and ll3, respectively, as

shown in Fig. 2a, where llk ¼ ðcck; vvkÞ; k ¼ 1; 2; 3 are three lines

of aGIDwith known intrinsicmodel (and, thus, cck and vvk; k ¼
1; 2; 3 are all known to the CCS of theGID). Denote lk to be the

full line containing the ray llk; k ¼ 1; 2; 3, and let lij be the

common orthogonal line between li and lj; i; j ¼ 1; 2; 3 and

i 6¼ j, respectively. Denote qqij and qqji to be the intersecting

points between li and lij, and lj and lij, respectively. Let the

distance between qqij and qqji be dij. Without loss of generality,

consider the coordinate systemwhose origin is qq12 andwhose

x-axis is defined to be along the same direction of l12. In

addition, the y-axis of this coordinate system is defined to be

along the direction of l1, and the z-axis is defined to be the

crossproduct of xandyaxes. Byusing this coordinate system,

QQ1 andQQ2 can be represented asQQ1 ¼ ð0; t1; 0Þ andQQ2 ¼ ðd12,
t2cos�12, t2sin�12), where t1 is the distance between qq12 and

QQ1; t2 is the distance between qq21 andQQ2, and �12 is the angle

between the directions of l1 and l2 (i.e.,�12 ¼ acosðvv1; vv2Þ).
Because the distance between QQ1 and QQ2 is a, we have

a2 ¼ d212 þ ðt2cos�12 � t1Þ2 þ ðt2sin�12Þ2

¼ d212 þ ðt22cos2�12 � 2t1t2cos�12 þ t21Þ þ ðt22sin2�12Þ
¼ d212 � 2t1t2cos�12 þ t21 þ ðt22cos2�12 þ t22sin

2�12Þ
¼ d212 � 2t1t2cos�12 þ t21 þ t22:
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1. In [10], Grossberg and Nayar presented a more general imaging model
in which an image point corresponds to a bundle of rays, and it is useful for
identifying the point spread function for each pixel. Since we focus on the
geometrical calibration of the imaging devices in this paper, the imaging
model is formulated by associating an image point with a single ray, which
considerably simplifies the problem for estimating the parameters for rigid
transformations.

Fig. 1. An illustrative example of a generalized imaging device (GID).



Hence,

t22 � 2t1t2cos�12 þ t21 ¼ a2 � d212: ð1Þ

Note that the parameters used for describing (1), including

the distance between qq12 (or qq21) and QQ1 (or QQ2) and the

angle between vv1 and vv2, are all independent of the

coordinate systems being selected. Hence, consider the line

pair ðl1; l3Þ, we also have the following constraint by using

the property that the distance between QQ1 and QQ3 is b:

t23 � 2ðt01Þt3cos�13 þ ðt01Þ
2 ¼ b2 � d213; ð2Þ

where t3 is the distance between qq31 and QQ3, and t01 is the

distance between qq13 and QQ1. When d1 ¼ t1 � t01 (and, thus,

the distance between qq12 and qq13 is jd1j), then the following

equation holds:

t23 � 2ðt1 � d1Þt3cos�13 þ ðt1 � d1Þ2 ¼ b2 � d213: ð3Þ

Similarly, consider the line pair ðl2; l3Þ, then we also have:

ðt3 � d3Þ2 � 2ðt3 � d3Þðt2 � d2Þcos�23 þ ðt2 � d2Þ2 ¼ c2 � d223;

ð4Þ

where t3 � d3 (or t2 � d2) is the distance between qq32 (or qq23)

and QQ3 (or QQ2).
Equations (1), (3), and (4) give three constraints on the

three unknowns, t1, t2, and t3. Generally, since each of (1),

(3), and (4) is a quadratic polynomial equation associated

with two unknowns, the solutions can be obtained by

solving eighth-order polynomial equations with a single

variable, as shown in the following: From (1) and (3), t2 and
t3 can both be represented as t1, respectively:

t2 ¼ t1cos�12 � ða2 � d212 � t21sin
2�12Þ1=2; ð5Þ

t3 ¼ ðt1 � d1Þcos�13 � ½b2 � d213 � ðt1 � d1Þ2sin2�13�1=2: ð6Þ

Substituting (5) and (6) into (4), we can derive an equation
of the following form:

A2 �A1ðB2Þ1=2 ¼ �B1ðC2Þ1=2 � 2cos�23ðB2C2Þ1=2; ð7Þ

where

B2 ¼ a2 � d212 � t21sin
2�12;

C2 ¼ b2 � d213 � ðt1 � d1Þ2sin2�13;

A1 ¼ 2B� 2Acos�23;

A2 ¼ A2 þB2 � c2 þ d223 � 2ABcos�23 þB2 þ C2;

B1 ¼ 2Bcos�23 � 2A;

A ¼ ðt1 � d1Þcos�13 � d3;

and

B ¼ t1cos�12 � d2:

Taking the square of both sides of (7), we obtain

A2
2 þA2

1B2 � 2A2A1ðB2Þ1=2

¼ B2
1C2 þ 4cos2�23B2C2 � 4cos�23B1C2ðB2Þ1=2

or, equivalently:

A2
2 þA2

1B2 �B2
1C2 � 4cos2�23B2C2

¼ 2ð�2cos�23B1C2 �A2A1ÞðB2Þ1=2:
ð8Þ

Taking the square of both sides of (8) yields eighth-order
polynomial equations in terms of t1.

Although there is no analytic way to solve a polynomial
equation of the eighth order, its solution is not difficult to find
numerically. Polynomial root finding is a traditional topic in
numerical analysis. Three of the popular general-purpose
polynomial root finders include themethodof computing the
eigenvalues of a companion matrix (which was used in the
EISPACK routine [29]), the Jenkins/Traub method [18] that
works with the polynomial itself, and the method consisting
of a combination ofMuller’s andNewton’s method [25], [19].
According to [19], all these three methods yield comparable
results regarding speed and accuracy when working with
low degree (n < 20) polynomials and, thus, are suitable for
solving t1 in our problem (n ¼ 8). Then, the other coefficients,
t2 and t3, canbeobtainedby substituting the solution of t1 into
(5) and (6). The apriori knowledge of the 3Dpoints located on
the positive direction of the corresponding rays, i.e.,
sk > 0; k ¼ 1; 2; 3, can be used to eliminate inappropriate
solutions as well.

Two singular cases (i.e., cases with infinite solutions) of
the NP3P problem are discussed as follows: The first case
happens when the three points are all in a line, and is
referred to as the colinear case. This is because the
transformation obtained by coupling a solution with any
rotation around this line remains a solution. The second
case, referred to as the parallel-ray case, occurs when all
three rays are parallel to each other, as will be analyzed in
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Fig. 2. Illustration of the definitions associated with the NP3P problem.



the orthographic-projection case (i.e., Case 5) in Section 3.2.
These two singular cases will be employed for removing
unsuitable triples of 3D points in finding an initial
estimation for the NPnP problem, as shown in Section 4.1.
A more formal analysis of singular cases of the general
NPnP problem will be given in Section 4.2.

3.2 Special Cases of the NP3P Problem

To solve a general NP3P problem requires solving the
eighth-order polynomial equations as described above. In
this section, we investigate some special cases of the NP3P
problem whose solutions can be obtained by solving
polynomial equations whose orders are at most four instead
of eight. Since there are analytical representations of the
solutions of a fourth-order polynomial equation, the
solutions of these special cases can be expressed in closed
forms.

Case 1 [Partially Parallel]. We call an NP3P problem
partially parallel if any two of the three lines, l1; l2; l3, are
parallel. Without loss of generality, assume that l1 and l2 are
parallel, i.e., �12 ¼ 0 and, thus, sin�12 ¼ 0. The term B2 in (8)
then becomes B2 ¼ a2 � d212 � t21sin

2�12 ¼ a2 � d212, which is
a constant term irrelevant with t1. Hence, (8) becomes
fourth-order polynomial equations in terms of t1. Therefore,
analytical solutions can be obtained for the partially parallel
model.

Case 2 [Perspective]. In this case, the three lines, l1, l2,
and l3, intersect at a common point, which forms the
standard P3P problem which has been investigated in
previous works [9], [14]. According to our formulation, d1 ¼
d2 ¼ d3 ¼ 0 and d12 ¼ d13 ¼ d23 ¼ 0 in this case, and (1), (3),
and (4) degenerate to the same forms of (1), (2), and (3) of
[14]. It has been shown in [14] that a fourth-order
polynomial equation can be derived from those three
equations. Recently, an algorithm, CASSC, was proposed
to find complete and robust real-number solutions to the
P3P problem [12].

Case 3 [Parallel Plane]. We refer to the NP3P problem as
the case of parallel plane if there are three parallel planes,
V P1, V P2, and V P3, such that the three rays, ll1 ¼ ðcc1; vv1Þ,
ll2 ¼ ðcc2; vv2Þ, and ll3 ¼ ðcc3; vv3Þ lie on V P1, V P2, and V P3,
respectively, as shown in Fig. 3a (however, the three rays
are not necessarily parallel to each other). This case cannot
be analyzed easily by using the coordinate system as
defined in Section 3.1. Therefore, a new coordinate system is
used where the origin is cc1, the x-axis is along vv1 (i.e., the
direction of ll1), the z-axis is along the normal of V P1, and
the y-axis is the cross product of z and x axes, respectively.
Since V P1 is the x-y plane of this coordinate system and
both V P2 and V P3 are parallel to V P1, cck can be represented

as ðckx; cky; LkÞ and vvk can be represented as ðvkx; vky; 0Þ for
k ¼ 2 and 3, where vkx; vky; ckx; cky 2 R and Lk is the distance

between V P1 and V Pk, k ¼ 2 or 3. Hence, the coordinates of

the transformed points, QQ1, QQ2, and QQ3 in this coordinate

system are QQ1 ¼ ðd; 0; 0Þ, QQ2 ¼ ðc2x þ s1v2x; c2y þ s1v2y; L2Þ,
and QQ3 ¼ ðc3x þ s2v3x; c3y þ s2v3y; L3Þ, respectively, where

s1; s2 2 R, and d is the distance between cc1 and QQ1.

According to the three edge lengths fa; b; cg of the triangle

formed by QQ1, QQ2, and QQ3, we have the following equations

in terms of three unknowns s1; s2, and d:

ðc2x þ s1v2x � dÞ2 þ ðc2y þ s1v2yÞ2 þ L2
2 ¼ a2; ð9Þ

ðc3x þ s2v3x � dÞ2 þ ðc3y þ s2v3yÞ2 þ L2
3 ¼ b2; ð10Þ

ðc2x þ s1v2x � c3x � s2v3xÞ2 þ ðc2y þ s1v2y � c3y � s2v3yÞ2

þ ðL2 � L3Þ2 ¼ c2: ð11Þ

By eliminating the unknown d in (9) and (10), the following

equation can be derived:

c2x þ s1v2x � ða0 � �2Þ1=2 ¼ c3x þ s2v3x � ðb0 � �2Þ1=2

) ðc2x þ s1v2x � c3x � s2v3xÞ2 ¼ b0 � �2 þ a0 � �2�
2ð½b0 � �2�½a0 � �2�Þ1=2;

ð12Þ

where a0 ¼ a2 � L2
2, b
0 ¼ b2 � L2

3, � ¼ c2y þ s1v2y, and � ¼ c3y
þs2v3y. By substituting ðc2x þ s1v2x � c3x � s2v3xÞ2 in (11)with

the right-hand side of (12), we have b0 � �2 þ a0 � �2 �
2ð½b0 � �2�½a0 � �2�Þ1=2 þ ð�� �Þ2 ¼ c0, where c0 ¼ c2 � ðL2 �
L3Þ2. Hence,

b0 þ a0 � 2ð½b0 � �2�½a0 � �2�Þ1=2 ¼ c0 þ 2��

) �2ð½b0 � �2�½a0 � �2�Þ1=2 ¼ d0 þ 2��

ðwhere d0 ¼ c0 � b0 � a0Þ
) 4ð½b0 � �2�½a0 � �2�Þ ¼ ðd0 þ 2��Þ2

) 4a0b0 � 4a0�2 � 4b0�2 þ 4�2�2 ¼ d02 þ 4d0�� þ 4�2�2

) 4a0�2 þ 4b0�2 þ 4d0�� ¼ 4a0b0 � d02:

ð13Þ

In addition, by substituting s1 ¼ ð�� c2yÞ=v2y and s2 ¼
ð� � c3yÞ=v3y into (11), we have another equation in terms of

� and �.

ðc2x þ ðv2x=v2yÞð�� c2yÞ � c3x � ðv3x=v3yÞð� � c3yÞÞ2

þ ð�� �Þ2 ¼ c0:
ð14Þ
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Fig. 3. (a) Illustration of the parallel plane case. (b) Illustration of the linear pushbroom camera model.



Since both (13) and (14) are quadratic equations in terms of
� and �, a fourth-order polynomial equation in terms of a
single variable � (or �) can be derived by eliminating
another unknown � (or �) from (13) and (14). Hence, the
pose estimation problem of the parallel planes case can be
solved analytically as well.

Case 4 [Linear Pushbroom]. All the rays of a linear
pushbroom camera [11] are emitted from a line (referred to
as the line of motion) and lie on parallel planes (referred to
as the view planes), as shown in Fig. 3b. The linear
pushbroom camera model can be used to model X-ray
imageries and local behaviors of satellite images. It is
obvious that the linear pushbroom camera model is a
special case of the parallel plane case analyzed above and,
thus, can be solved analytically as well.

Case 5 [Orthographic]. In orthographic projection, all rays
are parallel, which is both a special case of the partially
parallelmodel and the parallel planemodel discussed above.
In this case, cos�12 ¼ cos�13 ¼ cos�23 ¼ 1 and d1 ¼ d2 ¼ d3 = 0.
Therefore, (1), (3), and (4) become ðt2 � t1Þ2 ¼ a�, ðt3 � t1Þ2 =
b�, and ðt3 � t2Þ2 ¼ c�, respectively, where a� ¼ a2 � d212,
b� ¼ b2 � d213, and c� ¼ c2 � d223. Theycanbe further simplified
to the following three linearly dependent equations in terms
of t1, t2, and t3: t2 � t1 ¼ �a00, t1 � t3 ¼ �b00, and t3 � t2 ¼ �c00,
where ða00Þ2 ¼ a�, ðb00Þ2 ¼ b�, and ðc00Þ2 ¼ c�. Hence, the
solutions exist if and only if �a00 � b00 � c00 ¼ 0, and in this
case there are infinite number of solutions, t2 ¼ t1 � a00 and
t3 ¼ t1 � b00, for all t1. The existence of an infinite number of
solutions is because the projected image remains the same
under orthographic projection when an object is translated
along the ray direction.

4 NONPERSPECTIVE N POINT (NPnP) PROBLEM

The analysis in Section 3 shows that exact solutions can be
identified for the NPnP problem when n ¼ 3. However,
when n > 3, exact solutions may not exist due to image
noises. It is therefore necessary to find approximate
solutions. In this paper, we developed a systematic method
that finds an initial estimate of the approximate solutions
first, as introduced in Section 4.1. Then, an iterative
optimization procedure is proposed for refining the solu-
tions, as introduced in Section 4.2.

4.1 Initialization for the NPnP Problem

The idea of our approach to initialization of the NPnP
problem is to exploit the solutions of the three-point case. In
general, there are n!=ð3!ðn� 3Þ!Þ triples of 3D-2D corre-
spondences that can be served as initial estimates. The
desire is to find that one that is better than the others (better
in the sense that the triple gives a more accurate estimate
than the other triples). The initialization procedure is shown
as follows.

Algorithm 1: Consider n 3D points, PP 1, PP 2, . . . PPn, with
known coordinates with respect to a WCS, and the
corresponding 2D image points pp1, pp2, . . . , ppn, where ppm 2
DI for allm ¼ 1; . . . ; n. Assume that the rays associated with
these points are ðcc1; vv1Þ, ðcc2; vv2Þ, . . . , ðccn; vvnÞ, and the full
lines containing these rays are l1; l2; . . . ; ln, with respect to
the CCS, respectively.

Step 1. Repeat Steps 1.1-1.4 K times, where K is a positive
integer.

1.1. Select three points in fPP 1; PP 2, . . . ; PPng randomly.

Assume that they are PPi; PPj, and PPk.

1.2. If one of the following conditions happens, then go

back to Step 1: 1) maxðjvvTi vvjj, jvvTj vvkj, jvvTi vvkjÞ is smaller

than a given threshold. 2) The angle between the two

vectors, PPji and PPki, where PPji ¼ PPj � PPi and

PPki ¼ PPk � PPi, is too small. 3) The area of the triangle
formed by the three selected points in the image,

ppi, ppj, and ppk, is too small.

1.3. Compute the rigid transformations between WCS and

CCS, which are associated with the three point-line

pairs, ðPPi; liÞ, ðPPj; ljÞ, and ðPPk; lkÞ.
1.4. For each rigid transformation computed in Step 1.3,

say, ðRR; ttÞ, transform all the other 3D points with this

rigid transformation by PP 0m ¼ RPRPm þ tt, where m ¼ 1,
. . . ; n. Compute the sum of squared distances (SSD)

between PP 0m and lm;m ¼ 1; . . . ; n. Record both the SSD

value e and its corresponding rigid transformation

ðRR; ttÞ.
Step 2. Let e be the smallest among all the SSD values

recorded in Step 1.3, and let ðRR; ttÞ be the recorded

rigid transformation corresponding to e. Output

ðRR; ttÞ.
The above algorithm computes a rigid transformation

with the smallest error among several selections of the
triples of point-line correspondences. In Step 1.2, some
triples of point-line correspondences randomly selected
from Step 1.1 are dropped because they are not appro-
priatefor pose estimation. Rule 1) drops the triples whose
three rays are too parallel to each other. Rule 2) drops the
triples whose three world points are too co-linear. Both
1) and 2) drop the triples that are close to the singular cases
shown in the end of Section 3.1, which lead to infinite
approximate solutions and, thus, are not suitable to be
employed. Rule 3) in Step 1.2 drops the triples whose three
image points are too close to each other. This is employed
because the image domain is discrete in practice and the
three image points of the triples that are too close to each
other is easily affected by quantization noises. In our
experience, the pose computed by Algorithm 1 can serve
as a good initial estimate for the NPnP problem. The
iteration time, K, is selected by balancing between accuracy
and time. The larger the K, the more the triples are used
and, thus, the higher the chance of having a more accurate
solution. Too large a K leads to a long period of execution
time for Algorithm 1, but may also induce a faster
convergence speed for Algorithm 2 that will be introduced
in Section 4.2. A simulation showing the influence of K on
the accuracy of the estimated pose is given in Section 5. In
addition, note that Algorithm 1 copes with the case in which
3D-2D correspondences are available. By augmenting it
with some further processing, this algorithm can be
extended to a RANSAC algorithm [9] that can handle
outliers of 3D-2D correspondences.

Another issue worthy of being addressed is the
computation of rigid transformations associated with the
three pairs, ðPPi; liÞ, ðPPj; ljÞ, and ðPPk; lkÞ, in Step 1.3. A
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generally effective way is to use the method for solving the
NP3P problem as introduced in Section 3.1, which obtains
rigid transformations that transforms PPi, PPj, and PPk to
points lying on li, lj, and lk, respectively. However, the
computational efficiency may be diminished due to the
following two reasons. 1) It requires finding all the real-
number solutions of several eighth-order polynomial equa-
tions which can only be solved numerically. 2) There may
be many solutions satisfying a NP3P problem, and all of
them need to be further processed in Step 1.4.

To increase the efficiency of this algorithm, we suggest
using a perspective camera to approximate the GID being
considered. As a result, the computations involved in Step 1.3
are reduced to finding solutions of a P3P problem instead of a
NP3P one. The number of real-number solutions of a P3P
problem is atmost four,which ismuchsmaller than that of the
NP3P one. Although the solution obtained by solving a P3P
problem is an approximated one compared with its NP3P
counterpart, it usually suffices as an initial estimate for a
NPnP problem, by considering that the NP3P solution itself
serves as an approximation to the NPnP problem.

In the remainder of this section, we will focus on how to
approximate a GID with a perspective camera. This
problem is equivalent to finding a virtual center and a
virtual image plane, as shown in Fig. 4a. First, the virtual
center is obtained as a 3D point, PPc, that satisfies the
following criterion:

PPc ¼ argmin
P

1

nn

Xnn

mm¼1
dist2ðPP; lmÞ; PP 2 R3; ð15Þ

where distðPP; lmÞ is the distance between PP and lm. Since
the objective function to be minimized in (15) is a
quadratic polynomial in terms of Px, Py, and Pz (where
PP ¼ ðPx; Py; PzÞ), it has a closed-form solution that can be
solved via standard LMS analysis.

Now, consider the selections of the virtual image plane.
As seen in the 2D illustrative example shown in Fig. 4b,
when a virtual plane is selected, the intersection points,
gg1; . . . ; ggn, of this plane and all the rays of the GID can be
computed. The line l0m passing through PPc and ggm then
serves as an approximated line of lm for all m ¼ 1; . . . ; n.

Hence, given a 3D point PP lying in l0m, its distance to lm
is, however, dependent on how far PP is away from gm. The

farther that PP is away from gm, the larger distðPP; lmÞ
becomes. Consequently, the accuracy of such an approx-
imation is distance-dependent. When PP is away from the
virtual plane (e.g., PP is a distant 3D point), the approxima-
tion is likely to be very poor. Since no prior knowledge
about the locations of the 3D points to be imaged with a
GID is given, we propose an infinite-plane approximation
strategy for approximating the 3D rays of GID by using the
rays of a perspective imaging device. In this strategy, the
infinite plane is selected as the virtual plane, and line l0m is
thus parallel to line lm so that it approximates for all
m ¼ 1; . . . ; n. Hence, the distance between lm and l0m is a
constant, distðPPc; lmÞ. In other words, the distance from any
point PP on the approximated line l0m to the original line lm
remains fixed by using this strategy. In contrast, if the
virtual plane is selected “not” distant to the virtual center
PPc, the distance from a point PP on the approximated line l0m
to the original line lm will vary with the distance from PP to
PPc, which then leads to a case in which the accuracies of
virtual-plane approximation are not even for the 3D points
in space. A 2D illustrative example of the infinite-plane
strategy is shown in Fig. 4c. Therefore, the advantage of this
approximation strategy is that the accuracy of the approx-
imation is independent of the locations of the 3D points,
which allows the 3D points to be treated evenly in the pose-
estimation process.

After approximating the GID to be processed with a
perspective imaging model as described above, the method
for solving the P3P problem as introduced in Section 3.2 can
then be used to find the required rigid transformations in
Step 1.3 of Algorithm 1.

4.2 Convergent Iterations for NPnP

Given an initial estimate of the rigid transformation
between WCS and CCS, we further refine it by minimizing
an objective function iteratively. Consider that the projec-
tion of a point PP onto a ray ll ¼ ðcc; vvÞ can be represented as:

ProjðPP ; llÞ ¼ vvvvT ðPP � ccÞ þ cc: ð16Þ

The orthogonal vector from PP to ProjðPP ; llÞ is thus

ProjðPP ; llÞ � PP ¼ ðvvvvT � IÞðPP � ccÞ; ð17Þ

where I is the 3 by 3 identity matrix. The length of the vector
defined in (17) is the distance between PP and ll. The
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Fig. 4. (a) Approximate a GID with a persepctive camera containing a virtual center and a virtual image plane. (b) A 2D example of the virtual center,

virtual plane, and approximated lines. (C) A 2D illustration of the infinite-plane approximation strategy.



objective function being minimized in our approach is
E ¼ minmin

R;t
eeðRR; ttÞ, where eeðRR; ttÞ is defined as

eeðRR; ttÞ ¼ 1

n

Xn

m¼1
jjðvvmvvTm � IÞðRPRPm þ tt� ccmÞjj2

¼ 1

n

Xn

m¼1
jjRPRPm þ tt� ProjðRPRPm þ tt; llmÞjj2:

ð18Þ

To find the optimal solution ðRR�; tt�Þ of (18), we adopt the
iterative-closest point (ICP) principle introduced by Besl
and McKay [3]. Algorithms based on the ICP principle
always converge monotonically to minimum values of a
mean-square distance metric. This rate of convergence is
more rapid than that of generic nonlinear optimization
methods (such as the Gauss-Newton method). Although the
ICP principle does not guarantee that the global minimum
can always be found, it does suggest that the global
minimum (or a very approximate local minimum) can be
obtained from a very broad range of initial guesses (our
simulation result, as shown in Section 5, also supports this
phenomenon). The ICP principle was widely adopted for
the registration of partially overlapping range images [5],
[28]. In the past, the ICP principle has also been adopted for
solving pose estimation problems for the perspective case
[32], [6]. Lu et al. [23] have recently proposed a method that
is very similar to the ICP principle for solving the PnP
problem as well, which has also shown that such a scheme
is faster and globally convergent.

An algorithm based on the ICP principle contains the
iteration of the following two stages: 1) Find the closest
point in the corresponding line for each 3D point. 2) Find a
rigid transformation that transforms the 3D points to their
closest points in a least-squared-error manner. The iterative
refinement method proposed for solving the NPnP problem
based on the ICP principle is shown in the following.

Algorithm 2: The same variables defined in Algorithm 1 are
used

Step 0. Let ðRR00; tt00Þ be the initial rigid transformation

estimated using Algorithm 1. Set Eold  1.

Step 1. Compute PP �m ¼ RR00PPm þ tt00 for all m ¼ 1; . . . ; n.

Step 2. For each point PP �m, find its closest point, PP 0m, in lm.

That is, PP 0m ¼ ProjðPP �m; lmÞ ¼ vvvvT ðPP �m � ccÞ þ cc for all

m ¼ 1; . . . ; n.

Step 3. Find the rigid transformation that minimizes the sum
of squared distances between PPm and

PP 0m;m ¼ 1; . . . ; n. That is, find ðRRnewnew; ttnewnewÞ that
minimizes E ¼ 1

n

Pn
m¼1 jjRRnewnewPPm þ ttnewnew � PP 0mjj

2.

Step 4. If ðEold �EÞ=Eold is smaller than a predefined

positive threshold, then stop. Otherwise, set

Eold  E, RR00  RRnewnew, tt00  ttnewnew, and go to Step 1.

In Step 3 of Algorithm 2, the least-squared-error transfor-
mation between two sets of 3D points has closed-form
solutions, which can be solved via the quaternion approach
[16], the SVD approach [1], the orthonormal-matrices
approach [17], or the dual-quaternion approach [31]. In our
work, the SVD approach proposed by Arun et al. [1] was
adopted because it has been shown to have the best overall
accuracy among these methods [21].

In the following, some limitations of our method are
formally analyzed. Consider that our method consists of
two phases, the initial-estimation phase (Algorithm 1) and
the ICP phase (Algorithm 2). The major step of Algorithm 1
is to compute the solutions of the NP3P problem, and that
of Algorithm 2 is to find the least-squared-error (LSE) rigid
transformation between two 3D point sets. We have shown
in Section 3.1 that the parallel-ray and the colinear cases are
both singular cases of the NP3P problem. Note that the
colinear case is also a singular case for estimating the LSE
rigid transformation between two 3D point sets [21]. By
joining the singular cases of both phases, we can see that the
two singular cases of the NP3P problem remain singular for
the NPnP problem. We demonstrate this by giving a formal
analysis of the error function (18) as shown below.

First, consider the case that all the rays are parallel to
each other. In this case, all the unit vectors vvm in (18) are the
same. Without loss of generality, let vvm ¼ uu for all m, then
(18) becomes

E ¼min
R;t

�mjjðuuuuT � IÞðRPRPm þ tt� ccmÞjj2

¼ min
R;t

�mjjðuuuuT � IÞðRPRPm þ tt� ccmÞ þ �uuuuTuu� �uujj2

for all � 2 R because uu is a unit vector. Hence,

E ¼min
R;t

�mjjðuuuuT � IÞðRPRPm þ tt� ccmÞ þ ðuuuuT � IÞ�uujj2

¼ min
R;t

�mjjðuuuuT � IÞðRPRPm þ ðttþ �uuÞ � ccmÞjj2;

which shows that if ðR; tR; tÞ is a solution, then ðR; tR; tþ �uuÞ is
also a solution for all � 2 R.

Second, consider the case where all the 3D points are in a
line. In this case, thepointPPm canbe representedasQQ0 þ �mww
for all m, where ww is a unit vector along this line, QQ0 is an
arbitrary point on this line, and �m 2 R, respectively. Note
that any rotation can be represented as rotating an angle �
about some axis. Let RR� be the rotation of rotating � around
the ray ðQQ0; wwÞ. Then, RR� satisfies that RR�ðQQ0 þ �mwwÞ =
QQ0 þ �mww, and (29) becomes

E ¼ min
R;t

�mjjðvvmvvTm � IÞðRRðQQ0 þ �mwwÞ þ tt� ccmÞjj2

¼ min
R;t

�mjjðvvmvvTm � IÞðRRRR�ðQQ0 þ �mwwÞ þ tt� ccmÞjj2:

Hence, if ðR; tR; tÞ is a solution, then ðRR�; ttÞ is also a solution for
all � in this case. The above analyses show that the pose of
the GID cannot be determined exactly with our method in
the above two cases.

In our experience, the ICP method performs well for
solving the NPnP problem. Global minimum (or a very
approximate local minimum) can be found from a broad
range of initial estimates, as will be shown in the simulation
in Section 5. Nevertheless, ICP does not guarantee finding
the global minimum for all cases and, therefore, may at
times get stuck at a strong local minimum. To solve this
problem, a common strategy is to use multiple initial
estimates for restarting and running the ICP algorithm
multiple times [7], [27]. Note that our method can be easily
modified to implement this idea. In Algorithm 1, since
K rigid transformations have been found by solving
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K distinct P3P problems, each transformation can serve as
an initial estimate to restart the ICP method in Algorithm 2.
By doing so, there is more opportunity to seek out a better
solution when the ICP method fails to find an accurate one
in previous trials.

5 SIMULATIONS

Some simulations were performed to evaluate the accuracy

of the proposed method for solving the NPnP problem.

First, a GID containing 50 rays is defined in 3D space. The

end point cc of each ray is randomly selected in a disk whose

radius is 10 and the directional vector vv of this ray is

selected randomly in space. After a GID is defined in this

way, a 3D point is picked randomly on each ray. Then, these

50 points are translated and rotated via a rigid transforma-

tion TTsim ¼ ðRRsim; ttsimÞ. Our purpose is to estimate the rigid

transformation TTsim, given the pairs of rays and trans-

formed 3D points. In our simulation, RRsims are synthesized

using Euler angles. Several rotations whose angles are

within a range ½0;Wsim� are selected, and the translations

ttsims are synthesized randomly. In our simulation, Wsim is

selected from 20� to 140�, as shown in Fig. 5a. With

Algorithm 1 (K is set to 100) and the approximated GID as

introduced in Section 4.1, an estimated rigid transformation

TTsim can be obtained from a selected triple of pairs of point-

ray correspondences for each ðRRsim; ttsimÞ. By applying the

estimated transformation, the 3D-distance error (as defined

to be the squared root of (18)) was obtained for each

ðRRsim; ttsimÞ, and Fig. 5a shows an average of the errors for

each range specified by Wsim.
Meanwhile, the rigid transformation is obtained by

means of only three pairs. It can then be further refined
by including more pairs of point-ray correspondences
using our approach. By using this transformation as an
initial estimation for iterative refinement with Algorithm 2,
a new rigid transformation can be obtained from all
50 pairs of point-ray correspondences. Fig. 5a also shows
the 3D-distance error (the squared root of E) by applying
the newly generated rigid transformation. As can be seen,
no matter how large the range of the rotation angles are,
our method (the combination of Algorithms 1 and 2) can
always converge to the correct solutions that correspond
to E ¼ 0. This shows that our method can converge to the
global minimum within a very broad range of initial
guesses.To make a comparison, two widely adopted
iterative refinement methods, the Gauss-Newton (G-N)
method and the Levenberg-Marquardt (L-M) method,2 are
also used to refine the initial rigid transformation
obtained via Algorithm 1, as shown in Fig. 5b. In this
simulation, the maximal number of iterations (MaxIter)
allowed is set to be 10,000, and the tolerance of the error
value for stopping (TolFun) is set as 1e-5, for both G-N
and L-M, respectively. Fig. 5b shows the 3D-distance
error. As can be seen, our proposed method converges
more accurately than the other two. In general, the
efficiency of an iterative process highly depends on the

number of iterations. Fig. 5c further shows the number of
iterations required for G-N, L-M, and our Algorithm 2,
respectively. It reveals that our method, based on the ICP
principle, is far more efficient than the other two.

We have also varied some other factors in our method to

see their influences. First, we show the influences of the
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2. They were implemented with MATLAB via the command “lsqnonlin”
in our simulation.

Fig. 5. (a) Average 3D-distance errors obtained using Algorithm 1 and

Algorithm 2. (b) Average 3D-distance error obtained using G-N, L-M,

and our (Algorithm 2) methods. (c) Number of iterations associated with

each method.



iterative times,K, in Algorithm 1, by varyingK from 20 to 120

(where Wsim is fixed to 50�). The 3D-distance error of the

initial transformation, obtained by using Algorithm 1, is

shown as a red line in Fig. 6a. As can be seen, the pose-

estimation error decreases when K increases, which is very

reasonable because the more trials that are being done, the

better the chances are to find a better solution. Nevertheless,

an interesting result is that, nomatterwhatK is, an initial pose

can always be iteratively refined via the ICP principle of

Algorithm 2 to an exactly correct pose, as shown with the

green line inFig. 6a.Hence,Khas an influenceon the accuracy

of the initial poses but is without influences on the final poses

when our method is being used in this simulation. Secondly,

we investigated the influence of the dropping rules of Step 1.2

of Algorithm 1. The blue line in Fig. 6a shows the average 3D-

distance error of the initial poses obtained by using Algo-

rithm 1,where the dropping rules in Step 1.2were not used. It

is clear that the dropping rules are useful for finding a better

initial estimation of the GID pose. Also, similar to the case of

varying the rotation angles and K, exactly correct poses can

always be found by further refining with Algorithm 2,

whether the dropping rules have been applied or not (green

line of Fig. 6a). The above simulations reveal that the global

minimum (or a very approximate local minimum) can be

obtained from a very broad range of initial guesses, by using

the ICP principle in Algorithm 2. Although the dropping

rules have no significant influences on the final poses

obtained with our method in the simulation, they are helpful

to reduce the iteration time of Algorithm 2 because better

initial estimates have been found with Algorithm 1 by using

these rules, as shown in Fig. 6b.

In the above, ideal GID models without imaging noise

were considered and, thus, the error could be minimized to

zero. In the following simulation, the same GID model as

defined in the above was used, and some noises are added

to the GID. In this simulation, a 3D point is randomly

picked on each ray such that the distance between this

3D point and the end point is within a range [10, 500].

Hence, such a configuration simulates a situation where the

width of the GID is about 10 centimeters, and it is used to

take images of objects that are within a range of 5 meters

away from it. These 50 points are translated and rotated via

a rigid transformation TTsim ¼ ðRRsim; ttsimÞ, where the Euler

angles of RRsim are selected within ½0�; 50�� and ttsim is

selected randomly. Then, we add some imaging noises to

the simulation process. The noise is added by varying the

directional vector of each ray within a stereo angle. To

determine reasonable noise ranges (i.e., ranges of the stereo

angles) for simulation, we assume that the angle of viewing

scope of the GID is W, and it has roughly 512 pixels in a

row. If the imaging error is about 3 pixels, then the ray

direction deviates roughly 3W=512 degrees, which is

smaller than 2:2�ð	 3� 360�=512Þ because W is at most

360�. According to the above analysis, the noise of the stereo

angle is set to range from Ssim ¼ 0:5 degrees to 5 degrees

(i.e., about 0.7 to 6.8 pixel error if it is the case considered

above). Within each noise range ½0; Ssim�, several trials were

performed. To save the simulation time and taking practical

situations into account, the maximal number of function

evaluations allowed (Maxfunevals) for both G-N and L-M

are set as 1,000 in this simulation. The average errors versus

noise ranges thus obtained are shown in Fig. 7a, and it

shows the better performance of our method. In addition,

we found that the number of function evaluations required

for both G-N and L-M are always 1,000. Comparing the

number of function evaluations required for different

methods as shown in Fig. 7b, our method also demonstrates

a greater efficiency in the presence of image noise. Looking

at the influence of the iterative time K of Algorithm 1 when

image noise is presented, Fig. 7c further shows that the 3D-

distance errors obtained by setting Ssim ¼ 1�. Similarly, the

larger is K, the more accurate is the estimated pose via triple

of points with Algorithm 1. Nevertheless, no matter the size

of K is, Algorithm 2 can always converge to a pose with the

same accuracy from all initial poses, as shown in Fig. 7c.
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Fig. 6. (a) Average 3D-distance errors obtained by using Algorithm 1

(with and without using dropping rules) and Algorithm 2 in association

with K, the number of iterations of Algorithm 1. (b) Number of iterations

of Algorithm 2 in association with K.



6 EXPERIMENTAL RESULTS

An omnidirectional camera, composed of a lens and a

curved mirror, is used in our experiment, as shown in Fig. 8.

The reflection curve of this camera is designed to maximize

the average image resolutions within a range of viewing

angles, but not deliberately to satisfy the single view-point

constraint [2]. Hence, such an imaging device is a
nonperspective GID, but with higher image resolutions
and better point-spread properties than those designed to
satisfy the single view-point constraint. In the following, an
implementation issue of investigating the intrinsic model is
first discussed in Section 6.1. Then, the experimental results
are shown in Section 6.2.

6.1 Intrinsic Model Investigation

This paper focuses on the pose-estimation problem of a GID
under the situation that the intrinsic model of a GID is
given. That is, for all ði; jÞ 2 DI , the corresponding ray,
Lði; jÞ, with respect to a CCS of the GID is known. In the
following, we will introduce the method used in our
experiment for investigating the intrinsic model. The idea
behind it is similar to that in [10].

Inspired by an image-based rendering method [20], we
use two disjointed surfaces for establishing the intrinsic
model Lð�; �Þ in our work. Fig. 9a shows a 2D illustration of
our method. Suppose that S1 and S2 are two parametric
surfaces (e.g., planes or cylinders) with known parameters
with respect to a CCS. Hence, each point contained in S1 or
S2 has known 3D coordinates with respect to the CCS. In
addition, assume that each ray of the GID to be investigated
intersects some points in S1 and some other points in S2,
respectively. For example, let Lði; jÞ intersect S1 in PP 1 and
S2 in PP 2, respectively. If we can identify PP 1 and PP 2 in the
image, then Lði; jÞ can be set as the ray starting from PP 1 and
passing through PP 2. Here, PP 1 and PP 2 are referred to as the
starting and passing point of ði; jÞ, respectively.

In practice, two opaque calibration surfaces, SS1 (inner)
and SS2 (outer), are used, both of which contain some
calibration marks with known coordinates as shown in
Fig. 9b. However, it is worth noting that the two calibration
surfaces need not necessary be similar, and that the marks
can be randomly located on each surface. The only critical
restriction for these two surfaces is that the 3D coordinates
of the calibration marks on them have to be known with
reference to a unified coordinate system. First, the GID
takes an image of SS1. Then, SS1 is taken off and the GID takes
an image of SS2. Assume that these two images are I1 and I2,
respectively. Given an ði; jÞ 2 DI , if it happens to be the
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Fig. 7. (a) Average 3D-distance error versus noise range. (b) Number of

function evaluations versus noise range using our method. (c) Average

3D-distance errors obtained using Algorithm 1 and Algorithm 2 in

association with K when noise is presented (Ssim ¼ 1�).

Fig. 8. The omnidirectional camera used in our experiment, which is

nonperspective.



imaging positions of some calibration mark,M, in I1, as well
as some other calibration mark, M 0, in I2, then the
3D coordinate of M can serve as the starting point, and
that of M 0 can serve as the passing point, of ði; jÞ,
respectively. Lði; jÞ can then be set as the ray from the
starting point toward the passing point. Otherwise, if ði; jÞ
is not the imaging positions of any calibration marks in
either I1 or I2, then the 3D coordinates of some calibration
marks imaged in a neighborhood of ði; jÞ are used to
interpolate the starting and the passing points. The cubic
spline [25] is used here to interpolate the starting and the
passing points.

6.2 Results

In practice, the quantization error, image correspondence
error, and the estimation error of the intrinsic model all can

generate errors to the estimated positions and orientations.
To verify the accuracy of our method, two such omni-
directional GIDs were used and, thus, a nonperspective
stereo pair was formed. We put this stereo setup in an
indoor environment, and some 3D points (total of 38 points)
in this environment were measured in advance and
employed for pose estimation, as shown in Fig. 10. After
using the method introduced above, the poses of both
imaging devices were estimated. Hence, a calibrated stereo
pair of omnidirectional cameras was constructed, which can
help us compute the 3D coordinate of any other point in this
environment if its corresponding image points have been
identified in both images. In this way, we computed the
coordinates of some 3D points in this environment and used
them to verify the accuracy of the poses estimated with our
method. The left part of Table 1 lists the errors measured for
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Fig. 9. (a) Two-dimensional illustration of the investigation of the intrinsic model of a GID, where S1 and S2 are two surfaces consisting of 3D points of

known coordinated with respect to the CCS. (b) The two surfaces, S1 (inner) and S2 (outer), used for estimating the intrinsic model.

Fig. 10. The images captured with the camera shown in Fig. 8. (a) The red points are the 3D points used for pose estimation. (b) A stereo pair taken

with the omnidirectional cameras.



some right angles as shown in Fig. 11a, while the right part
of Table 1 lists the errors measured for some length ratios,
where line 0 shown in Fig. 11b serves as the unit length. The
relative error is the ratio of the difference between real and
estimated values to the real value.

In addition, since a stereo pair is formed, the correspon-
dence of a point selected in one image should lie on a curve
in the other image, as illustrated in Fig. 12. It is called the
epipolar line in the perspective case, and is referred to as
the matching curve here. Fig. 13a shows some points selected
in one image. If no errors occur, their associated matching
curves should pass through the corresponding points in the
other image. Fig. 13b shows the matching curves of the
points shown in Fig. 13a. As can be seen, these matching
curves all pass through the corresponding points in a close
manner. Table 2 shows the distances from the correspond-
ing points to their associated matching curves, where these
corresponding points are selected manually. As can be seen,
these distances are all very small (less than one pixel).

In the next experiment, in order to test our method in a
more complicated environment, a GID stereo pair is formed
such that one GID has a slant motion (where the slant angle

is about 10�) with the other GID, as illustrated in Fig. 14a. In
addition, with more objects being added, the scene contains
points with more 3D variations than those in the previous
experiment, as shown in Figs. 14b and 14c. After computing
the GID poses with our method, Table 3 lists distances from
some points to their associated matching curves (shown in
Fig. 14d). The results of this experiment show again the
effectiveness of our method.

7 CONCLUSIONS AND DISCUSSION

A systematic method for pose estimations of generalized
imaging devices is proposed in this paper. Since the
imaging devices considered in our framework may not be
perspective, their pose estimation problem is referred to as
the NPnP problem. We have investigated the case when
n ¼ 3 and presented how to find its exact solutions. Some
particularly useful special cases, such as the parallel plane,
linear pushbroom, and partially parallel camera models,
have also been investigated, and they were shown to have
closed-form solutions.

A random-selection strategy, which finds an initial
approximation of the rigid transformation via a better triple
of 3D-2D correspondences, was then developed for solving
the NPnP problem when n > 3. To increase the efficiency of
the initial-estimation stage, a perspective camera model was
also proposed and used for approximating a GID. An
iterative refinement algorithm, based on the ICP principle
that always converges monotonically to a minimum value,
was developed for refining the rigid transformation initially
estimated in a highly effective and efficient way. Although a
nonperspective imaging device was used in our experiment,
the proposedmethod can be applied not only to nonperspec-
tive imaging devices, but to perspective ones as well. The
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TABLE 1
Errors for Some Right Angles and Length Ratios in Experiment 1

Fig. 11. The illustrations for estimations of some right angles and length ratios in experiment 1. (a) The angles used for right-angle results. (b) The

lines used for the length-ratio results, where line 0 is the unit length.

Fig. 12. Illustration of the matching curve.



860 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 7, JULY 2004

Fig. 13. (a) Five points selected in one image of the stereo GID pair used in experiment 1, where their enlarged local views are shown in (c). (b) The
matching curves of these points in the other image of the stereo pair.

TABLE 2
Distances to the Associated Matching Curves in Experiment 1

Fig. 14. (a) A slanted stereo GID pair. (b) Five points selected in one image of the stereo GID pair used in experiment 2, where their enlarged local
views are shown in (d). (c) The matching curves of these points in the other image of the stereo pair.

TABLE 3
Distances to the Associated Matching Curves in Experiment 2



developed method also has potential to be used for pose
estimation of a mounted multicamera system by modeling
this systemwith a singleGIDconsistingof all the camera rays.
We conclude that our approach provides an effectiveway for
pose estimation of general imaging devices.
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