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a b s t r a c t

This paper presents a new hybrid approach for detecting salient objects in an image. It consists of two
processes: local saliency estimation and global-homogeneity refinement. We model the salient object
detection problem as a region growing and competition process by propagating the influence of
foreground and background seed-patches. First, the initial local saliency of each image patch is measured
by fusing local contrasts with spatial priors, thereby the seed-patches of foreground and background are
constructed. Later, the global-homogeneous information is utilized to refine the saliency results by
evaluating the ratio of the foreground and background likelihoods propagated from the seed-patches.
Despite the idea is simple, our method can effectively achieve consistent performance for detecting
object saliency. The experimental results demonstrate that our proposed method can accomplish
remarkable precision and recall rates with good computational efficiency.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Identifying the visually attentive area in an image without a
priori knowledge about the scene is the fundamental to our vision.
Let us take a look at the image shown in Fig. 1(a) as an example. In
this figure, people can easily identify the most salient words
appeared. This image was generated by wordle.net, a web-tool
converting a textfile into a figure. It extracts the keywords
frequently occurred in the textfile and generates a figure consist-
ing of those words for visualization, where a higher-frequency
word is generated to occupy a larger area with more distinctive
colors or brightness, which thus presents higher “visual saliency.”
Note that such a salient-words synthesis process can be seen as an
inverse problem of salient object detection. Since the textfiles to
be submitted are arbitrarily composed of web users, there is no
prior knowledge about the frequency of the words (almost all
words, except several stop words, have the same opportunities of
becoming the keywords). Nevertheless, due to the bottom-up
nature of saliency region detection, people can still find the salient
objects even when there is no high-level or prior object-categorical
information.

Salient regions, referred to as the image part attracting most
human's attention, are fundamental for many high-level tasks in
computer vision. Recent advance shows that salient regions
provide useful information for image segmentation [1], object
recognition [2,3], and motion detection [4]. They also contribute to
improve the performance of many image quality metrics [5] and
aesthetics value assessment [6–8]. Early studies of computational
saliency [9,10] used biology-inspired models to simulate the
selection mechanism of Human Vision System (HVS). In such
model, visual input is decomposed into a set of feature maps by
several pre-attentive filters based on image features such as colors
or intensity. The saliency in a feature map is regarded as the
competition result of neurons (or locations) in the spatial domain,
where the prominent neurons significantly differ from their
surrounds can survive. Then, the saliency intensities in all feature
maps are integrated into a final map.

Later, several studies were introduced to enhance the saliency
detection performance of biology-inspired models. Gopalakrish-
nan et al. [11] and Wang et al. [12] employed random walk to
model the competition process. Valenti et al. [13] designed several
new pre-attentive filters based on edge and color responses. Wang
et al. [14] learned the dictionary from a large-scale set of images
for estimating the intrinsic and the extrinsic saliency. Murray et al.
[15] explored the integration step of the feature maps for further
refinement purpose.

In practice, the performance of most biology-inspired methods
is still limited, which could be owing to the difficulties encoun-
tered in choosing or learning the filters. Thus, various approaches
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adopting other kinds of models or frameworks were proposed to
resolve this dilemma. For instance, Achanta et al. [16] designed a
band-pass filter to preserve a reasonable range of spatial frequency
for detecting the salient regions. Lu et al. [17] found that the shape
information, such as convexity and concavity, can reveal significant
clues for locating the salient regions. In general, these approaches
employ global information via frequency or shape analysis. How-
ever, they would often fail to detect small objects due to the fact
that distinctive smaller regions are easily overlooked.

In order to solve the certain issues suffered from the global-based
methods, another technique, referred to as local contrast, was
proposed. It was derived from the concept of the so-called “center-
surround” concept. Center-surround contrast has already been
employed by Itti et al. [9,10], which reflects the local spatial-
discontinuities of visual contrast. Local contrast, inspired from this
mechanism, was thus developed to emphasize the uniqueness of a
certain region by accentuating the contrasts to neighbors. It has been
widely exploited by window-based approaches in [18,19]. Rahtu et al.
[18] conducted an effective Bayesian formulation to measure the
salient regions from color. To present the regionality, they separate a
sliding window into the inner and collar sub-windows. Then a pixel's
saliency is directly determined by the color contrast between the two
sub-windows. This approach achieves nice results owing to the
appropriate consideration of local contrasts. Klein et al. [19] further
extended it by using Kullback–Leibler divergence. However, without
knowing the object size, the methods of local contrast have to change
their window size to locate the saliency for different scales of object.
The problem caused by object-sized variation would degrade their
performance significantly in many cases.

Based on the above-mentioned reasons, how to relax the spatial
constraints of window-based approaches could be a main issue of
improving the performance. Goferman et al. [20] presented the
spatially weighted color contrast (or called the surrounding contrast)
for saliency detection. The surrounding contrast of a pixel is measured
from the weighted distances (the color distances multiplied by the

inverse of spatial distances) to the other patches. The saliency values of
different scales are then averaged to obtain a single saliency map.
Although their results are useful for certain applications such as image
re-targeting, this approach usually suffers from the problem that the
detection results are sensitive to the edges in an image, and tends to
overlook homogeneous foreground regions.

From the above point of view, an ideal contrast-driven saliency
detector should take both local perspective and global-homogeneous
property into consideration. Many recent studies focused on the local
saliency estimation based on the principles such as Rareness [18,24],
Contrast [10,23], and Center-Surrounding [19,25]. They might neglect
that a salient region usually differs from its neighborhood outside the
region besides containing homogeneous parts inside the region. How
to link locally distinctive patches/regions that could be homogeneously
associated to the foreground is a crucial key.

In this paper, we propose to detect the salient objects from an
initial local saliency estimation process, where several seed regions
can be selected from the initialization. Then a homogeneity-growing
competition process is designed to precisely locate the salient fore-
ground region. Our approach can perform better than state-of-the-art
results (such as [16,18,20–23], and is efficient to implement. Fig. 2
shows the examples of salient object detection results obtained by
various methods.

This paper is organized as follows. Some of the related works
are discussed in Section 2. The problem formulation and the
proposed method are introduced in Sections 3 and 4, respectively.
Experimental results and comparisons are shown in Section 5.
Finally, conclusions and future works are drawn in Section 6.

2. More of the related works

In addition to the above-mentioned works, new methods about
saliency detection is proceeding to be explored. For instance, Duan
et al. [26] further addressed this problem by employing the PCA

Fig. 1. What are the salient keywords? (a) wordle.net provides us an efficient tool to summarize frequently appeared topic words in a document. Such a saliency-synthesis procedure
poses an inverse problem of saliency detection. (b) The saliency detection result (per-pixel saliency degree) obtained by our proposed method. (c) The objective ground truth.

Fig. 2. Examples of salient object detection. (a) shows the original images. (b)–(f) demonstrate the state-of-the-art saliency maps from FT [16], CA [20], SS [18], CAS [21], RC
[22], and SF [23]. The map obtained by our method LGA(h) is plotted as well. The (i) shows the ground truths (GT). From these results, the propose salient methods not only
detect the salient regions well, but also reduce the noises better in the background clutter.
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to reduce the patches' dimensionality. Thus some noises are
eliminated in the calculation of saliency. Yeh et al. [21] proposed
a contrast-aware method that combines local and global contrasts
to achieve the compactness nature of salient objects. Huang et al.
[25] presented a unifying perspective that the saliency area of an
image is described by center-surround divergence. Vikram et al.
[27] computed image saliency map based on local saliencies
among random rectangular regions of interest.

Recently, using a prerequisite technique to increase the accu-
racy of saliency detection became a main trend. Feng et al. [28]
presented a method for detecting window saliency from the
composition prospective, in which a segmentation method is
employed to decompose image. They assume that the cost for
composing a region with visual uniqueness is more than that of
composing an ordinary region. Cheng et al. [22] developed a
region-based saliency detector by combining the regional repre-
sentation with the histogram-based acceleration, where the spa-
tial weighted contrast and image pre-segmentation are adopted.
Perazzi et al. [23] took similar idea to introduce a contrast-based-
filtering method based on super-pixel pre-segmented abstraction
images.

Despite the above works [22,23,28] reach good success in both
accuracy and efficiency, using a pre-processing technique (i.e.
image segmentation) as a prerequisite undoubtedly brings addi-
tional computational cost. Furthermore, the pre-segmentation
would be sensitive to different image structure and noises, which
could make it difficult or inflexible to accommodate on various
kinds of datasets. Our work does not rely on any complicated pre-
processing techniques, which still produces comparative saliency
results.

3. Problem formulation and our framework

We propose a two-stage approach where a local contrast
measure is implemented to detect the initial saliency seeds, then
a global-homogeneity propagating method is followed to generate
and refine the saliency map.

A salient object detector f takes an n�m input image I and
generates a saliency map SMARn�m, where the salient value for a
pixel x (i.e. SMðxÞA ½0;1�) indicates its saliency degree. The higher
the SM(x) is, the more salient the pixel x is. In this paper, we use
CIELab color space1 to represent the visual input since it has
shown the high efficiency for detecting image saliency [18,20].

Our method adopts patch-based representation instead of
pixel-wise process to reduce computational complexity. An input
image I is divided into r non-overlapped square patches
fP1; P2;…; Prg where each patch Pi is located in 2D spatial location
liAR2, for 1r irr. Each patch presents a w�w sub-image, thus
its colors can be vectorized into ciARw�w�3. We set w¼5 in the
implementation.

A patch is then represented as a vector Pi ¼ ½li; ci�T by con-
catenating its spatial location and colors. We further define
dspaðPi; PjÞ ¼ J li� lj J2 and dcolðPi; PjÞ ¼ Jci�cj J2 to represent the
distance between patches Pi and Pj in the spatial and color
domains, respectively, where the J :J2 denotes the L2 norm.

3.1. Overview of our approach

An overview of proposed framework is given at first. Each patch
Pi will be associated with a local saliency (LS) strength (denoted as
LSðPiÞA ½0;1�) in advance, and how to compute it will be detailed
later. Later, we select some patches as the foreground seeds and

some others as the background seeds, where the former consist of
patches of higher LS strengths, and the latter consist of patches of
lower LS strengths.

In our empirical study, no matter how a method is designed to
estimate the LS strengths, the method based simply on such local
(or relatively local) information around a patch can only provide
us several isolated spots. It will then fail to detect the entire salient
object. Hence, instead of using the LS information only, we choose
the foreground seeds that are highly probable to be part of the
salient object at first. These foreground seeds present the ‘dis-
tinctive’ or ‘uniqueness’ spots/locations in an image. Then, we seek
to refine the results by finding the other salient patches of the
object based on their similarities to the foreground seeds in the
space-color domain. An example of the foreground seeds con-
ducted by our approach is shown in Fig. 3(b) (green dots).

However, locating the salient objects based only on the fore-
ground seeds would be difficult to yield a discriminating result.
Hence, we further consider the background seeds that are the
most ‘repetitive’ patterns which are almost impossible to be part
of the salient object. An example of the background seeds is shown
in Fig. 3(b) (red dots). Regions grown from the foreground and
background seeds based on the space-temporal similarities then
form a competitive process, yielding a more discriminating deci-
sion of the salient detection results.

Our proposed framework thus includes two stages. Firstly, the
local saliency seeds are estimated by the uniqueness property via a
local contrast measure LSð�Þ. Secondly, the global-homogeneity
seed-propagating method is used to refine the saliency map. The
details are given in the following.

3.2. Seed propagation process and saliency map presentation

In this section, we assume that the foreground and background
seeds have been given, and focus on the problem of constructing
the saliency map based on these seeds. Denote SFG and SBG to be
the patch sets consisting of the foreground and background seeds,
respectively. How to construct SFG and SBG will be presented in
Section 4. Basically, these seeds are determined so that they
belong to the foreground (i.e., saliency region) or background (i.e.,
non-saliency region) with high confidence as discussed above. We
formulate the salient object detection as a process of propagating
the strengths of the foreground and background seeds and then
construct the saliency map SMð�Þ based on the propagated
strengths.

More specifically, given a foreground seed patch ZASFG, its
propagated strength to an arbitrary patch PAfP1; P2;…; Prg is
defined by the distance between P and Z in the space-color domain
and the local saliency degree of P, and is formulated by the
following distribution:

ProbFGðPjZÞ ¼ CF exp �dcorðP; ZÞ
scor

� �
exp �dspaðP; ZÞ

sspa

� �
LSðPÞ; ð1Þ

where CF is a normalization constant making the summation of the
probabilities ProbFGðPjZÞ over PAfP1; P2;…; Prg equal to 1.

We employ a mixture distribution to superimpose the influ-
ence of seeds. The foreground likelihood is then defined as the
mixture distribution centered at the foreground seeds with equal
weights:

ProbðPjSFGÞ ¼ ∑
ZASFG

1
jSFGj

ProbFGðPjZÞ; ð2Þ

where jSFGj is the cardinality of SFG.
Similarly, for a background seed ZASBG, its propagated strength

to an arbitrary patch PAfP1; P2;…; Prg is defined by the distance1 We normalize the values into [0,1] for each channel in CIELab color space.
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between P and Z and the local non-saliency degree of P:

ProbBGðPjZÞ ¼ CB exp �dcorðP; ZÞ
scor

� �
exp �dspaðP; ZÞ

sspa

� �
ð1�LSðPÞÞ;

ð3Þ
where CB is a normalization constant making the summation of
the probabilities ProbBGðPjZÞ over PAfP1; P2;…; Prg equal to 1. The
background likelihood is then defined as a mixture distribution
given the background seeds:

ProbðPjSBGÞ ¼ ∑
ZASBG

1
jSBGj

ProbBGðPjZÞ; ð4Þ

We use the likelihood ratio ProbðPjSFGÞ=ProbðPjSBGÞ of the fore-
ground and background to present the saliency degree of image
patch P. We deploy a alternative form which can limit the saliency
output for better visual representation as the following form:

SMðPÞ ¼ 1

1þProbðPjSBGÞ
ProbðPjSFGÞ

: ð5Þ

In our implementation, the scale parameters scor and sspa above
are set as 1 and 200, respectively, for a 400�300 image in CIELab
color space. How to evaluate the local saliency LS(P) and build the
seeds SFG and SBG remain an issue, which will be introduced in the
next section.

4. Local saliency estimation and seeds generation

Estimating the local contrast property is regarded as the
fundamental step in many works for visual-attention evaluation
[9,10,21,23,29]. We name the saliency generated from such prop-
erty as local saliency. The local saliency can catch the regional
uniqueness, which is easily ignored by global-contrast-based
saliency detector. According to a recent study conducted by Huang
et al. [25], most of the existing bottom-up saliency estimation
methods can be explained by a unified center-surround principle.
From this perspective, most approaches share the same idea that
the saliency degree is determined from the dissimilarity between
the center and surround regions, which can be jointly represented
in a mathematical framework called center-surround divergence
in [25]. Different approaches are simply variations of computing
the center-surround divergences.

In our work, without loss of generality, we enhance the idea of
one of the approaches, surround-contrast (SC) in [20], for local
saliency degree estimation. We introduce a new method called
Surrounding Contrast with Consistency (SCC) that employs further
the patch-consistency information to construct an improved local

contrast measure. In the following, we first review the SC in
Section 4.1, and then introduce the SCC in Section 4.2.

4.1. Review of surrounding contrast (SC)

Salient regions usually contain higher local contrasts since they
are distinctive from their neighborhoods. Thus, an appropriate
contrast detector is required to measure such ‘uniqueness’ prop-
erty. In traditional methods, the local contrast is merely measured
by color distance so that it makes no difference when any two
patches are spatially far-away from or close to each other. Because
the salient regions tend to group together in spatial domain, the
spatial distance should be further considered for better local
contrast presentation.

To do so, the surrounding contrast (SC) was proposed [20].
It assumes that the nearby patches of current location play more
importance than the far-away ones in local contrast acquisition.
By simply weighting with the inverse of spatial distance, the ‘color
gaps’ between nearby patches and current patch become more
conspicuous than distant ones. The SC is defined as

SCðPiÞ ¼ ∑
Pj ;8 j

dcolðPi; PjÞ
1þλ� dspaðPi; PjÞ

; ð6Þ

where λ is use to control the proportion of color/spatial weighting.
(We use λ¼ 1 in our implementation.)

4.2. Surrounding contrast with consistency (SCC)

Although SC is useful to highlight local salient regions, the
salient response of object boundaries is often too strong, as the
results shown in [20]. The reason is that the patches located inside
the same object may have similar colors with their neighbors. It is
often the case that they are failed to be highlighted by their
surrounding patches. In this case, Eq. (6) fails to highlight the
salient regions inside an object. A vivid example is shown in Fig. 4b
where the patches inside the yellow leaf were failed to be
detected.

To address this issue, we consider again that the contrasts for
those color-similar patches inside a salient object should be
consistent; the local contrast of a certain image patch Pj is
determined by its similar neighbors in color domain instead of
purely by itself. This newly designed contrast, called surrounding
contrast with consistency (SCC), is calculated by the weighted sum
of SC values of k color-similar patches of current patch. The SCC is
defined as

SCCðPiÞ ¼ ∑
Pj ANkðPiÞ

ConsistencyðPi; PjÞ � SCðPjÞ; ð7Þ

Fig. 3. Example of the foreground and background seeds. (a) shows the original image. (b) shows the geographical location of foreground seeds (green), background seeds
(red), and indeterminate region (blue). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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where NkðPiÞ contains the k-nearest neighbors for current patch Pi
in terms of color distance. The term Consistency measures the
weighted color similarity between patches Pi and its neighbor Pj:

ConsistencyðPi; PjÞ ¼
expð�dcorðPi; PjÞÞ

∑Ph ANkðPiÞ expð�dcorðPi; PhÞÞ
: ð8Þ

By taking this design in (7), the issue of inconsistent contrast
values inside an object can be resolved. One should note that SC is
a special case of SCC when k¼1. As k is growing, the salient values
of the patches inside the same object are thus able to be high-
lighted. However, too large k will over-smooth the saliency
between the foreground and the background patch. In our imple-
mentation, we adopt k¼8. A visualization result is illustrated in
Fig. 4c. According to the result, the regions near leaf's veins were
able to be filled by SCC. It shows that SCC can consistently
emphasize the salient regions for the patches located either in
the salient region or in its border.

4.3. Fusion with prior information and seeds generation

In general, the patches with higher luminance easily arouse the
audience's attention [30], and people naturally select the regions
of interest close to the image center [31]. Thus, we simply use
Intensity Prior (IP) and Spatial Center Prior (SCP) as supportive
prior information to enhance the saliency results:

IPðPiÞ ¼ expðmeanLðPiÞÞ; ð9Þ
where meanL calculates the averaged value of Pi respect to L
channel, and

SCPðPiÞ ¼ exp �dspaðPi; P Þ
sspa

 !
; ð10Þ

where P denotes the center patch of image and sspa is the same as
that in Eqs. (1) and (3).

We integrate the above formulation to acquire our local
saliency (LS) measure. The LS for patch Pi is defined by combining
Eqs. (7), (9) and (10):

LSðPiÞ ¼ SCCðPiÞ � IPðPiÞ � SCPðPiÞ: ð11Þ

Finally, the values of LSðPiÞ are limited to a certain range [0,1]. (i.e.
Those values that are larger than one are assigned one, and negative
values are assigned zero.) A simple result of LSmap is shown in Fig. 4e.

To generate foreground and background seeds, the image
patches are first ranked by their degrees of LS ðPiÞ; 8 irr. Then
we simply assign the foreground seeds (SFG) which contain the
patches with higher LS degrees, and background seeds (SBG) which
contain those with lower LS degrees. More specifically, the SFG
collects the patches which are ranked in top γf%, and the BS
gathers the patches ranked in the lowest γb%:

SFG ¼ fPjjϕðPjÞrr � γf%g; ð12Þ

SBG ¼ fPhjϕðPhÞZr � ð1�γb%Þg; ð13Þ
where ϕð�Þ is the sorting function in descending order according
the LS values.

The boundaries between foreground and background that
cannot be explicitly defined are referred to as an ‘indeterminate’
or ‘unknown’ class, such as well-known Trimap Segmentation
[32]. Similarly, such a gap remains between SFG and SBG (i.e.,
γf rð1�γb)) to avoid grading the performance caused by such
uncertain regions. The ambiguity is then solved by the seed region
propagation process from the mixture distributions of the fore-
ground and background introduced in Section 3.2.

After the LSð�Þ of each patch is estimated and SFG and SBG are
generated, we then use Eqs. (2) and (4) to compute the foreground
and background likelihoods, respectively. Finally, the saliency map
is determined by Eq. (5). Our algorithm is named as LG and its
procedure is given as follows.

Algorithm 1. Local seed global homogeneity (LG).

Input A color image.
1: Input image separates into patches fP1; P2;…; Prg.
2: For each patch, compute the local saliency LSðPiÞ using

Eq. (11).
3: Select foreground seeds and background seeds using

Eqs. (12) and (13).
4: Calculate foreground and background likelihoods using

Eqs. (2) and (4), respectively.

Fig. 4. (a) shows the original image. (b) and (c) show the local contrast results of SC and SCC, respectively. (d) shows the IP for the given image. With the combination of
(c) and (d) with SCP, the local saliency is obtained and plotted in (e). Based on the local saliency, the geographical location of foreground seeds (green), background seeds
(red), and indeterminate seeds (blue) are depicted in (f). (g) shows the saliency map detected by the proposed method, and (h) is the given ground truth. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5: Compute saliency degree SMðPiÞ using Eq. (5).
Output: A saliency map reconstructed for all SMðPiÞ,

i¼ 1;2;…; r.

5. Experimental results

5.1. Datasets

Our experiments are implemented on two benchmark datasets
which are widely used in related works. According to the compre-
hensive investigation in [33], there are up to five benchmark datasets
for salient object detection. Among those datasets, we choose the two
largest ones, MSRA-B and MSRA-ASD, for our experiments because
they contain larger amounts of images and are regarded as the
primarily comparative and representative datasets in most works.

MSRA-B2: This dataset contains 5000 images, and each image
was labeled by 9 users requested to draw a rectangle bounding the
salient object [29] as the multiple ground truth. Its sample images
are shown in the first row of Fig. 5 and the corresponding
window-based ground truth is shown in the second row of Fig. 5.

MSRA-ASD: It is a pixel-wise salient object dataset released by
Achanta et al. [16]. They thought the window-based ground truth is
imprecise for evaluating the performance of object detection. They
thus refined the ground truths of 1,000 images selected from the
MSRA-B dataset into a pixel-wise matter3 as shown in the last row of
Fig. 5.

Undoubtedly, the ground truth of MSRA-ASD is annotated more
accurately, and thus MSRA-ASD should be a benchmark for evaluating
the performance of salient object detection. Nevertheless, MSRA-ASD
contains a relatively small portion of images, which may degrade its
reliability. Therefore, we use both MSRA-ASD and MSRA-B databases
to do a more comprehensive evaluation in the experiments.

5.2. Implementation

Except for the implementation of proposed LG, we further
conduct an approximated version of LG, named as LGA, to increase
computational efficiency in local saliency estimation.

Once patch representation is done by step 1 in Algorithm 1, the
image is further represented by non-overlapping square blocks
with size ð2lþ1Þw� ð2lþ1Þw, where w denotes the patch size
defined in Section 4. For each block, the step 2 in Algorithm 1 is
simplified by which we only compute the local saliency value LSð�Þ
for the center patch (of size w�w), and then duplicate the value to
the other patches in the block. In the experiments, we use two
versions of the algorithm by setting l¼0 and l¼1, which are
referred to as LG (w/o local saliency approximation) and LGA (with
local saliency approximation), respectively. Both of them are
compared to recent studies including FT [16], CA [20], RC [22],
SS [18], BITS [19], SF [23], CAS [21] and ICC [13] on the MSRA-ASD
and MSRA-B datasets. The results are shown below.

In addition, we set γb ¼ 70 and γf ¼ 10 for the experiments
conducted in Sections 5.3 and 5.4.

5.3. Performance evaluation using MSRA-ASD database

MSRA-ASD database provides 1000 images, where each image
has its corresponding pixel-wise binary ground truth (i.e. fore-
ground/background). We compare the segmentation performance
in a fixed threshold condition, referred to as precision-and-recall,
which is popularly used in related literature. Since the ground
truth is binary, the saliency map should be evaluated by varying
the threshold T from 0 to 255. More specifically, for each threshold
T, we compute its averaged precision and recall value among all
1000 images. Then those values are collected and used to plot a PR
curve as shown in Fig. 6. Such evaluation setting is same as the
compared methods: FT [16],4 CA [20],5 RC [22],6 SS [18], BITS [19],
SF [23],7 and CAS [21].

Fig. 6(a) shows the comparative quantitative performance
using local saliency w/o and with global-homogeneity refinement.
Apparently, the refinement process can improve the precision
performance. It implies that global refinement process indeed
smoothens the salient spots in the homogeneous regions very
well. Fig. 6(b) further displays the comparative analysis between

Fig. 5. The examples and the corresponding ground truth of MSRA-B and MSRA-ASD datasets. The first row shows the original sample images. The second row displays the
window-based ground truth images (for MSRA-B). The last row shows the pixel-wise ground truth images (for MSRA-ASD).

2 http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salien
t_object.htm

3 http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/index.html

4 This result is from their project page, one should note the erratum.
5 Since Goferman et al. do not use this dataset for comparison, we use the

results generated by their released code instead.
6 This performance is obtained from the saliency map released by the authors.

See http://cg.cs.tsinghua.edu.cn/people/�cmm/saliency/ for details.
7 The results of [18,19,23] are reported from their papers directly.
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state-of-art methods and the proposed LG and LGA. As the results
shown in the figure, LG demonstrates remarkable performance. It
significantly outperforms almost compared methods, and achieves
roughly 80% precision while maintaining 90% recall under a
specific threshold. It suggests that with a simple threshold, the
segmented foreground and background regions are highly consis-
tent with human's experience. Surprisingly, LGA further improves
LG. The possible reason that LGA surpasses LG is that the
additional approximation process further shares the saliency
information spatially in an appropriate object scale so that it
makes local salient values more uniformly distributed inside the
object instead of being accumulated in border.

To further identify whether the performance improvement is
significant, we analyze the experimental results conducted on
MSRA-ASD dataset in a statistical way. We follow the method in
[34] to apply the paired t-test between each state-of-art method
and the proposed LGA. (i.e., we implement t-test on all the pairs
[LGA, X], where X is selected as FT, CA, SS, CAS, RC, and SF). To do
so, for each obtained saliency result of each method, we fix the
recall at a ceratin value and calculate the corresponding precision
value for the testing purpose. So the saliency results of each
method are represented by 1000 values for a fixed recall. Table 1
lists the p values generated by the paired t-test with the recall
values setting on 0.1, 0.3, 0.5, 0.7, and 0.9. All the p values shown in
the Table are very small, and all the null hypothesis are thus valid
under the significant level 0.05. Statistically, this test verified the
effectiveness of proposed method.

The visual results are shown in Fig. 7 for additional qualitative
comparison. Apparently, our proposed methods LG and LGA own
better capability either in salient object detection or background
suppression. For instance, LG and LGA can detect the leaves of
flower shown in the fifth row of Fig. 7 while others barely detect
the borders or the center part of flower. Note that the results of LG
and LGA are similar but actually different. Compared to LG, the
LGA can produce more uniform and consistent saliency values
inside the objects.

On the other hand, the computational efficiency is another
point worthy of being noted. Table 2 tabulates the average
computation time of some state-of-arts and the proposed methods
processing on MSRA-ASD images. Those time were calculated by
the average cost of ten runs among all images with the PC of Intel
Core i7 2.50 GHz, 12GB RAM and Matlab2011b. The results of RC
are directly reported by [23] since we could not implement its
code in a batch mode. Based on Table 2, our proposed LG and LGA
require less time to process MSRA-B images than SS, CA, and CAS
do. Meanwhile, they retain better precision-and-recall perfor-
mance as shown in Fig. 6(b). Additionally, it should be noted that
both RC and SF are implemented in Cþþ so that they require
much less processing time than those implemented by Matlab. The
difference in computing time required by Matlab and Cþþ can be
observed in the case of FT. Hence, we expect that the cost of LG
and LGA can be significantly reduced by using Cþþ . In conclusion,
our proposed LG and LGA reach a good balance between detection
performance and computational efficiency among all the com-
pared methods.

5.4. Performance evaluation using MSRA-B database

Unlike the wide use of MSRA-ASD dataset in the literature,
there are only very few works (such as the ICC [13] and [29])
showing the experiments on MSRA-B dataset because it is more
challenging due to its larger data volume. Since there is no
standard way to evaluate the saliency performance for MSRA-B,
we follow the criterion in [13] for the comparison. The procedure
is described as follows.

5.4.1. Ground truth preparation
As mentioned in Section 5.1, each image in MSRA-B owns nine

window-based ground truths that locate the salient objects. To
unify them as single one, we generate an averaged ground truth by

Fig. 6. The comparative performance of averaged precision and recall curves among 1000 images in MSRA-ASD database. (a) The performance using the proposed local
saliency only, and local saliency with global refinement (LG). (b) The exhaustive comparison of our proposed methods to state-of-art approaches. The compared methods are
FT [16], CA [20], RC [22], SS [18], BITS [19], CAS [21], SF [23], LG (the proposed method w/o approximation), and LGA (the proposed method with approximation).

Table 1
The p values of paired t-test implemented on state-of-arts and the proposed LGA at different recall settings.

Method FT [16] CA [20] SS [18] CAS [21] RC [22] SF [23]

Recall¼0.l 4.2e�092 3.3e�155 7.8e�066 5.8e�034 3.2e�015 6.0e�004
Recall¼0.3 3.0e�114 2.9e�193 3.3e�052 6.9e�031 3.5e�017 3.0e�005
Recall¼0.5 5.3e�139 9.1e�211 4.3e�050 1.6e�029 2.5e�015 3.1e�007
Recall¼0.7 1.5e�183 3.9e�214 2.1e�055 1.7e�035 1.3e�010 3.2e�007
Recall¼0.9 2.8e�264 1.5e�199 5.2e�095 2.6e�062 4.5e�010 1.4e�007
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using the labeling consistency metric [29]:

GðxÞ ¼ 1
g

∑
g

z ¼ 1
AzðxÞ; ð14Þ

where g is the number of users, and AzðxÞAf0;1g is the annotated
binary label for user z at pixel x. We regard the regions with
GZ0:5 as foreground, and the rest is background. Finally, we draw
a rectangular window that tightly bound all the foreground
regions as the ground truth.

5.4.2. Saliency map to window conversion
Since the ground truth is a rectangular region, we must convert

the obtained saliency map SM to a rectangular window (denoted
as WSM) for the comparison purpose. Intuitively, if the saliency
result is accurate, the detected window's location should be

precise as well. There are four parameters (i.e. window's 2D
position: horizontal coordinate, vertical coordinate, width, and
height, denoted as wx, wy, ww, and wh, respectively) needed to be
optimized for the obtained saliency map. To this end, we perform
exhaustive search on SM to find such four parameters which reach
the maximum saliency response. To reduce the computational
complexity, we assume that the size of detected window is equal
to the size of ground truth. In this case, the location of the detected
window is only the variable required to be considered, and can be
simply retrieved by applying sliding window approach on saliency
map. This setting is also adopted in ICC [13]. Intuitively, if the
saliency result is accurate, the detected window's location should
be precise as well.

In this section, we adopt LGA as the saliency map generator,
and name the LGA detection followed by the saliency map to
window conversion as LGAW.

Table 2
The comparison of average computational time processing on single image in MSRA-ASD database.

Method FT [16] CA [20] SS [18] CAS [21]

Time (s) 0.13 (0.012n) 43.9 8.5 6.6
Code Matlab (Cþþ) Matlab Matlab Matlab

Method RC [22] SF [23] LG LGA

Time (s) 0.14n 0.18 (0.15n) 4.1 2.5
Code Cþþ Cþþ Matlab Matlab

n The results with n are reported by [23].

Fig. 7. (a) shows some example images. (b)–(g) demonstrate the detected results from FT [16], CA [20], SS [18], CAS [21], RC [22], and SF [23]. (h) and (i) plot the image
saliency by the proposed LG and LGA respectively. (j) presents the ground truths.
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5.4.3. Graph Cut pre-processing
Since ICC [13] employs Graph Cut as post-processing to

increase performance, we do the same way for a more fair
comparison. We further consider another method that includes
Graph Cut as the pre-processing on LGAW method, referred to as
GC-LGAW, for the experiments.

The GC-LGAW is performed by the following steps: An input
image is first segmented into α regions by using Graph Cut.
Second, implementing LGA on input image to produce the saliency
map. Once the saliency map is obtained, each segmented region is
weighted by the averaged salient values inside it. Finally, exhaus-
tive window search is performed on the weighted regions to find
the best rectangle (wn

x , w
n
y , w

n
w, w

n

h). In our experiment, we use the
source code8 and set α¼ 30.

5.4.4. Evaluation
Assume that the optimal rectangle window for obtained

saliency map is Wn

SM (¼wn
x , w

n
y , w

n
w, w

n

h). Let D be the subimage
obtained by cropping the saliency map SM with Wn

SM . To evaluate
the performance of detection result D respect to ground truth G,
we define the precision and recall as

precision¼∑xGðxÞDðxÞ
∑xDðxÞ

; recall¼∑xGðxÞDðxÞ
∑xGðxÞ

: ð15Þ

The weighted harmonic mean of precision and recall, referred to as
F-measure, is also computed:

F�measure¼ ð1þβÞ � precision� recall
β � precisionþrecall

; ð16Þ

where β¼ 0:5 is used.
Table 3 shows the comparative performance of ICC, LGAW, and

GC-LGAW in MSRA-B dataset. It can be seen that the LGAW
produces nearly identical result with ICC, despite ICC has already
employed Graph Cut and others clues for enhancing its perfor-
mance on salient object detection.

With the assistance of Graph Cut, our GC-LGAW considerably
surpasses ICC and LGAW. It suggests that locating salient regions/
objects becomes easier with the combination of Graph Cut and the
saliency map generated by our proposed method, which is also
demonstrated by the qualitative results shown in Fig. 8.

5.5. Discussion

There are a few parameters required to be set in the proposed
method. Among those parameters, determining the proportion of
foreground/background seeds is particularly worth being noted.
To obtain SFG and SBG, we have experimented with different settings of
parameters in a wide range, γf ¼ f5;10;20g and γb ¼ f10;30;50;70g,
on MSRA-ASD dataset. (The reason why the proportion of foreground
is selected as smaller number since the area of salient object
appearing in an image is usually relatively smaller than background
regions.) Fig. 9(a) shows the precision-and-recall of LGA among those
parameters, and Fig. 9(b) further plots corresponding averaged

Table 3
The comparative performance in MSRA-B salient object dataset.

Method Precision (%) Recall (%) F-measure (%)

ICC [13] 85.77 85.28 85.61
LGAW (proposed) 85.64 85.63 85.64
GC-LGAW (proposed) 87.78 87.76 87.77

Fig. 8. The first row shows some examples from MSRA-B dataset. The saliency maps obtained by our method are shown in the second row. The third row shows the saliency
maps obtained by the postprocessing of Graph Cut. The last row shows the detection results: ground truth (red), the LGAW (blue), and GC-LGAW (green). (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)

8 http://www.wisdom.weizmann.ac.il/�bagon/matlab.html
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computation time of processing single image. The following observa-
tions can help us to conclude our findings:

1. It seems that the performance is not sensitive to the population
of the selected seeds. One of the possible reasons is that we
take the concept in “Trimap Segmentation” to avoid selecting
inappropriate seeds. The spirit of trimap is to further define an
“intermediate” or fuzzy region locating in the boundary of
foreground and background. (For instance, we set the patches
of top 10% LS degree as foreground seeds, and those of below
70% LS degree as background seeds in LGA. So there remains
around 20% intermediate patches not being occupied as effec-
tive seeds for the global-homogeneity refinement). Therefore,
for the cases of retaining the intermediate patches, we believe
that the selected seeds are more appropriate to represent
foreground and background.

2. There is significant color discrepancy between foreground and
background in MSRA images. In this case, the few amount of
well-selected foreground (or background) seeds are able to
represent the foreground (or background) statistics.
Since the visual difference between foreground and back-
ground in MSRA dataset is usually significant, we thought it
is another reason why the performance of proposed method is
not sensitive to seed population. On the contrary, there would
not have been such discrepancy in ordinary images such as
mobile photos, which could be a study-worthy direction for the
future works.

3. The required computation time of LGA highly depends on the
population of seeds. For instance, it cost average 0.69 s with
γf ¼ 5 and γb ¼ 10 while the required running time rapidly
increases to 2.4 s with γb ¼ 70. Based on our study, calculating
the global-homogeneity requires most computing power
because large amounts of similarity measures between image
patches must be carried out. This would be a bottleneck in
computational efficiency where we will address this issue as
our future direction.

5.6. Summary

From the above-mentioned contents, the main features of
proposed methods are the following:

1. An efficient framework is introduced. We use mixture of
distributions to describe the local distinctness linked with
global-homogeneity characteristics to obtain an accurate
saliency map.

2. Unlike somemodernworks, our method does not rely on any pre-
segmentation as a pre-processing step to precisely describe the
discrepancy of foreground and background or object boundaries.
For instance, [22,23] are considered as two most comparative
works in this paper (see Fig. 6). They use Superpixel Segmentation
as a pre-processing to abstract the image into perceptually uni-
form regions. This step does provide enormous benefits in
obtaining accurate saliency boundaries, however, it also increases
burdens of computation and empirical parameter settings, which
would make it more difficult to fulfill saliency detection on a
variety of situations. In addition, the performance of proposed
method even surpasses those comparative methods.

3. Finally, our method is based on patch-based representation for
balancing performance and computational efficiency. In general,
providing a full or fine resolution saliency map requires a lot of
time. However, it is believed that the initial objective of saliency
detection is finding the salient/distinctive locations or spots in the
scene. In this sense, providing a full resolution saliency map is not
absolutely necessary. In fact, our proposed saliency method has
provided precise salient objects' locations which can be used as
priors for further post-processing stage (such as super-pixel
segmentation) to generate a full resolution salient region.

6. Conclusions and future works

In this paper, we present a hybrid approach to detect salient
objects. Our proposed saliency approach is realized by measuring
the local saliency then followed by a global-homogeneous refine-
ment process, which is described by a seed-propagating process
and formulated by mixture distributions. The experimental results
demonstrate that our method can achieve significant saliency
results on well-known benchmark datasets in quantitative analy-
sis. In future work, we will further extend to detect salient objects
in videos with motion information consideration, and explore the
possibility of implementing instant saliency detection on portable
devices to fulfill real-time applications.
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Fig. 9. The comparative performance of LGA by using different parameters γb and γf . (a) The precision and recall performance in range [0.5 1]. (b) The corresponding
computing time for processing single image (in seconds).

H.-H. Yeh et al. / Pattern Recognition 47 (2014) 1740–1750 1749



Author's personal copy

References

[1] Q. Li, Y. Zhou, J. Yang, Saliency based image segmentation, in: ICMT, 2011,
pp. 5068–5071.

[2] U. Rutishauser, D. Walther, C. Koch, P. Perona, Is bottom-up attention useful for
object recognition?, in: CVPR, 2004, pp. 37–44.

[3] D. Gao, S. Han, N. Vasconcelos, Discriminant saliency the detection of
suspicious, coincidences, and applications to visual recognition, IEEE Trans.
Pattern Anal. Mach. Intell. 31 (2009) 989–1005.

[4] C. Liu, P.C. Yuen, G. Qiu, Object motion detection using information theoretic
spatio-temporal saliency, Pattern Recognit. 42 (2009) 2897–2906.

[5] U. Engelke, H. Kaprykowsky, H.-J. Zepernick, P. Ndjiki-Nya, Visual attention in
quality assessment, IEEE Signal Process. Mag. 28 (2011) 50–59.

[6] X. Sun, H. Yao, R. Ji, S. Liu, Photo assessment based on computational visual
attention model, in: ACM MM, 2009, pp. 541–544.

[7] L.-K. Wong, K.-L. Low, Saliency-enhanced image aesthetics class prediction, in:
ACM MM, 2009, pp. 993–966.

[8] H.-H. Yeh, C.-Y. Yang, M.-S. Lee, C.-S. Chen, Video aesthetic quality assessment
by temporal integration of photo- and motion-based features, IEEE Trans.
Multimedia 15 (2013) 1944–1957.

[9] L. Itti, C. Koch, Computational modelling of visual attention, Nat. Rev. Neurosci.
2 (2001) 194–203.

[10] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid
scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 1254–1259.

[11] V. Gopalakrishnan, Y. Hu, D. Rajan, Randomwalks on graphs to model saliency
in images, in: CVPR, 2009, pp. 1698–1705.

[12] W. Wang, Y. Wang, Q. Huang, W. Gao, Measuring visual saliency by site
entropy rate, in: CVPR, 2010, pp. 2368–2375.

[13] R. Valenti, N. Sebe, T. Gevers, Image saliency by isocentric curvedness and
color, in: ICCV, 2009, pp. 2185–2192.

[14] M. Wang, J. Konrad, P. Ishwar, K. Jing, H.A. Rowley, Image saliency: from
intrinsic to extrinsic context, in: CVPR, 2011, pp. 417–424.

[15] N. Murray, M. Vanrell, X. Otazu, C. Parraga, Saliency estimation using a non-
parametric low-level vision model, in: CVPR, 2011, pp. 433–440.

[16] R. Achanta, S. Hemami, F. Estrada, S. Süstrunk, Frequency-tuned salient region
detection, in: CVPR, 2009, pp. 1597–1604.

[17] Y. Lu, W. Zhang, H. Lu, X. Xue, Salient object detection using concavity context,
in: ICCV, 2011, pp. 233–240.

[18] E. Rahtu, J. Kannala, M. Salo, H.J., Segmenting salient objects from images and
videos, in: ECCV, 2010, pp. 366–379.

[19] D. Klein, S. Frintrop, Center-surround divergence of feature statistics for salient
object detection, in: ICCV, 2011, pp. 2214–2219.

[20] S. Goferman, L. Zelnik-Manor, A. Tal, Context-aware saliency detection, in:
CVPR, 2010, pp. 2376–2383.

[21] H.-H. Yeh, C.-S. Chen, From rareness to compactness: contrast-aware image
saliency detection, in: ICIP, Orlando, Florida, USA, 2012.

[22] M.-M. Cheng, G.-X. Zhang, N.J. Mitra, X. Huang, S.-M. Hu, Global contrast based
salient region detection, in: CVPR, 2011.

[23] F. Perazzi, P. Krahenbuhl, Y. Pritch, A. Hornung, Saliency filters: contrast-based
filtering for salient region detection, in: CVPR, 2012, pp. 733–740.

[24] L. Zhang, T.K. Marks, M.H. Tong, H. Shan, G.W. Cottrell, Sun: a Bayesian
framework for saliency using natural statistics, J. Vis. 8 (2008) 1–20.

[25] J.-B. Huang, N. Ahuja, Saliency detection via divergence analysis: a unified
perspective, in: ICPR, 2012.

[26] L. Duan, C. Wu, J. Miao, L. Qing, Y. Fu, Visual saliency detection by spatially
weighted dissimilarity, in: CVPR, 2011, pp. 437–480.

[27] T.N. Vikram, M. Tscherepanow, B. Wrede, A saliency map based on sampling
an image into random rectangular regions of interest, Pattern Recognit. 45
(2012) 3114–3124.

[28] J. Feng, Y. Wei, L. Tao, C. Zhang, J. Sun, Salient object detection by composition,
in: ICCV, 2011, pp. 1028–1035.

[29] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, H.Y. Shum, Learning to detect
a salient object, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2010) 353–367.

[30] C. Koch, S. Ullman, Shifts in selective visual attention: towards the underlying
neural circuitry, Hum. Neurobiol. 4 (1985) 219–227.

[31] T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where humans
look, in: ICCV, 2009, pp. 2106–2113.

[32] C. Rhemann, C. Rother, A. Rav-Acha, T. Sharp, High resolution matting via
interactive trimap segmentation, in: CVPR, 2008, pp. 1–8.

[33] A. Borji, N. Sihite, L. Itti, Salient object detection: a benchmark, in: ECCV, 2012,
pp. 414–429.

[34] J.-H. Zhai, Fuzzy decision tree based on fuzzy-rough technique, Soft Comput.
15 (2011) 1087–1096.

Hsin-Ho Yeh received the B.S. degree in Computer Science from National Chung Cheng University, in 2007 and the M.S. degree from Computer Science department of
National Cheng Kung University, in 2009, respectively. He is currently a Research Assistant at the Institute of Information Science, Academia Sinica, Taipei, Taiwan (R.O.C.). His
research interests include image processing, computer vision, and data mining.

Keng-Hao Liu received the B.S. degree in mathematical sciences from National Chengchi University, Taipei, Taiwan (R.O.C.), and the M.S. and Ph.D. degrees in Electrical
Engineering from University of Maryland, Baltimore County, Baltimore, in 2009 and 2011, respectively. He is currently a Postdoctoral Fellow in Institute of Information
Science, Academia Sinica, Taipei, Taiwan (R.O.C.). His research interests include multi/hyperspectral image processing, pattern recognition, computer vision, and machine
learning.

Chu-Song Chen received a B.S. degree in Control Engineering from National Chiao-Tung University, Taiwan, in 1989. He received an M.S. degree in 1991 and a Ph.D. degree in
1996 both from the Department of Computer Science and Information Engineering, National Taiwan University. He is now a deputy director of Research Center for
Information Technology Innovation (CITI), Academia Sinica, and a research fellow of Institute of Information Science (IIS), Academia Sinica, Taiwan. He is also an adjunct
professor of the Graduate Institute of Networking and Multimedia, National Taiwan University. Dr. Chen's research interests include pattern recognition, computer vision,
signal/image processing, and multimedia analysis.

H.-H. Yeh et al. / Pattern Recognition 47 (2014) 1740–17501750


