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Linear Spectral Mixture Analysis via Multiple-Kernel
Learning for Hyperspectral Image Classification
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Abstract—Linear spectral mixture analysis (LSMA) has re-
ceived wide interests for spectral unmixing in the remote sensing
community. This paper introduces a framework called multiple-
kernel learning-based spectral mixture analysis (MKL-SMA) that
integrates a newly proposed MKL method into the training pro-
cess of LSMA. MKL-SMA allows us to adopt a set of nonlinear
basis kernels to better characterize the data so that it can enrich
the discriminant capability in classification. Because a single ker-
nel is often insufficient to well present all the data characteristics,
MKL-SMA has the advantage of providing a broader range of
representation flexibilities; it also eases the kernel selection process
because the kernel combination parameters can be learned auto-
matically. Unlike most MKL approaches where complex nonlinear
optimization problems are involved in their training process, we
derived a closed-form solution of the kernel combination param-
eters in MKL-SMA. Our method is thus efficient for training and
easy to implement. The usefulness of MKL-SMA is demonstrated
by conducting real hyperspectral image experiments for perfor-
mance evaluation. Promising results manifest the effectiveness of
the proposed MKL-SMA.

Index Terms—Linear spectral unmixing analysis (LSMA),
multiple-kernel learning (MKL), spectral unmixing (SU).

I. INTRODUCTION

HYPERSPECTRAL imaging has been a popular topic in
the remote sensing community [1]. Recent advances in

hyperspectral imaging have been successively applied to many
real-world applications such as geology, ecology, agriculture,
mineral mapping, land cover classification, chemical, envi-
ronmental monitoring, and military defense [2]. Opposite to
conventional multispectral images that contain tens of discrete
bands with a broad bandwidth around 100–200 nm, the hyper-
spectral images usually consist of hundreds of contiguous bands
with fine spectral resolutions that are approximately 10 nm.
Owing to the wealth of spectral information collected from
the advanced hyperspectral imagine sensors, the hyperspectral
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image systems have greater potential in data exploration [3].
Although the recently developed sensors may achieve a con-
siderably better resolution in the spatial domain, the ground
spatial distance (i.e., the spatial distance covered by a pixel)
is still high. As a result, a pixel in the hyperspectral image
usually captures the mixture of spectral information of differ-
ent substances. Classifying or quantifying a so-called “mixed
pixel” (or subpixel) is a crucial topic in hyperspectral image
processing, which is known as spectral unmixing (SU) [4].

The mixed pixels refer to the image pixels containing dif-
ferent land cover substances or spectral endmembers. Unlike
hard classification techniques, which assign each pixel to one of
the predefined classes, SU is a soft classification technique that
measures the fractional abundances corresponding to distinct
endmembers produced by unsupervised target generation algo-
rithms or given by prior knowledge. Many methods have been
developed for SU in the past, such as [3] and [5]–[13]. Among
most of them, the theory that has been widely used in the remote
sensing community is linear spectral mixture analysis (LSMA)
[2], [7], [10]–[13]. LSMA follows the linear mixture model
(LMM), which assumes that data samples are linearly mixed
by a number of the so-called image endmembers from which
they can be further unmixed as abundance fractions of these
endmembers. Although the simplest least square approach can
achieve LSMA, it could not attain good performance. Over the
past years, three representative least-square-based approaches
were developed to carry out LSMA. Orthogonal subspace pro-
jection (OSP) [8] is an abundance-unconstrained technique for
LSMA. Following OSP, nonnegativity constraint least squares
(NCLS) [11] and fully constrained least squares (FCLS) [12]
were developed for the better abundance estimation. The three
methods have shown their effectiveness in remote sensed image
classification.

Unfortunately, due to its nature in the inherited constraints,
the performance of SU based on LMM, i.e., linear SU, is still
limited when the problems are not linearly separable. In order
to resolve this dilemma, two branches of nonlinear SU methods
have been adopted. Methods in the first branch directly use a
nonlinear mixture model (NMM), which considers the scattered
light of different materials involved in the mixing process. The
intimate spectral mixture [14] was thus proposed to perform
nonlinear SU with NMM. Intimate spectral mixture was further
investigated in [15] and [16], where neural network approaches
were employed to approximate the unknown nonlinear mixing
model.

Methods in the second branch, e.g., [17]–[29], are known
as kernel-based methods, which generalize linear classification
algorithms by nonlinearly mapping data to a high-dimensional
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implicit feature space. For example, Camps-Valls and Bruzzone
[17], [18] proposed the kernel-based methods for hyperspec-
tral image classification via support vector machine (SVM).
Inspired by this trend, LSMA has been also enhanced with
its kernel-based version, which is called kernel-based LSMA
(KLSMA). Kwon and Nasrabadi [24] first extended OSP to
kernel-based OSP (KOSP) for hyperspectral target classifica-
tion. Later, two techniques, i.e., NCLS and FCLS, have been
also extended to their kernel-based counterparts, namely, kernel
NCLS (KNCLS) [23], [28] and kernel FCLS (KFCLS) [23],
[27], [28], to achieve better SU performance, respectively.
KLSMA in general is implemented by casting features in the
original space into an implicit feature space via a nonlinear
mapping, and thus, it is regarded as a nonlinear SU method.

KLSMA introduces a reproducible kernel in its formulation
and performs SU in the high-dimensional feature space so that
nonlinearly separable classification problems can be resolved.
It has shown noticeable improvement in the classification of
multispectral/hyperspectral images [29] and medical images
[30]. However, the performance of KLSMA could be limited
when a single kernel is insufficient to well represent the whole
data. This shortcoming becomes even more evident when ad-
dressing increasingly complex unmixing, which means that the
variations between pixels are too extensive so that unmixing
based on a single similarity measure (a kernel) is generally
insufficient. It also imposes the difficulty of selecting an appro-
priate kernel for a given data set, where trial-and-error-based
and empirical settings are commonly adopted for most single-
kernel methods. Meanwhile, like traditional kernel methods,
KLSMA ignores the fact that the sample values of different
dimensions (bands) may require different kernels to produce the
best classification results and lacks for a systematic mechanism
to choose the appropriate kernel functions. Consequently, the
general applicability of KLSMA is still restricted.

Recently, multiple-kernel learning (MKL), which is referred
to as learning a kernel machine with a set of basis kernels,
has been developed in machine learning society [31]. MKL
was developed and originated from solving the optimization
problems in SVM. The advantages of MKL are twofold:
1) It can infer the coefficients of combining the basis kernels
(or features) directly from the training data, and thus, the
kernel selection problem is solved automatically; and 2) it can
simultaneously use numerous kernels (or features) to enrich the
data similarity representations.

Apart from those SVM-based approaches [32]–[35], there
are many extended applications that are also beneficial by
MKL, such as fuzzy clustering [36] and dimensionality reduc-
tion [37]. Recently, MKL has also shown its availability of
improving the conventional single-kernel methods in remote
sensed image classification. These studies focus on hard clas-
sifications [38], [39] or solve SU under the predeveloped SVM
structure [40], [41], where the abundance is estimated by the
distance to class boundaries (hyperplanes) without exploiting
the spectral mixture model in the feature space. Among them,
how to conduct an effective MKL scheme for solving the
LSMA problem has not been well explored yet.

In this paper, we propose a new SU method for hyperspec-
tral image classification, which is called MKL-based LSMA

(MKL-SMA). Our method integrates MKL into the training
process of LSMA. It takes advantages of MKL to enhance
the data interpretability and the discriminant capability of the
learned LSMA models and leads to better unmixing perfor-
mance. As a kernel method, MKL-SMA accomplishes SU in
a high-dimensional feature space and alleviates the linearly
nonseparable problems. Different from KLSMA, the feature
space in MKL-SMA is spanned by a set of basis kernels instead
of a single kernel. This way, multiple similarity measures
corresponding to different kernels are available for depicting
the relationship between data samples.

The proposed MKL-SMA possesses the following three main
characteristics. First, the flexibility of MKL-SMA allows us to
explore more prior knowledge for SU and to employ multiple
complementary descriptors to precisely depict the data. Second,
we prove that MKL in LSMA has an optimal closed-form
solution. Thus, MKL-SMA can be learned very efficiently com-
pared with off-the-shelf MKL algorithms that involve semidef-
inite programming or other optimization techniques of high
computational costs. Third, MKL-SMA is developed in a gen-
eral way. A family of KLSMA algorithms, such as KLSOSP,
KNCLS, and KFCLS, can be generalized to their multikernel
versions. LSMA and KLSMA are the special cases of MKL-
SMA when only a single basis kernel is used.

In MKL-SMA, users can select any types of KLSMA al-
gorithms as the abundance estimator and select certain types
of basis kernels to fulfill the effective SU according to the
applications. For performance evaluation, we adopt two real
hyperspectral images collected by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) and the Reflective Optics Sys-
tem Imaging Spectrometer (ROSIS) image sensors and demon-
strate that MKL-SMA can achieve superior performance than
LSMA/KLSMA.

The remainder of this paper is organized as follows. An
introduction to LSMA is presented in Section II. Section III
describes kernel methods and KLSMA, and Section IV intro-
duces the proposed MKL-SMA. We propose several ways of
compiling multiple kernels in Section V. Section VI describes
the data and experimental settings. The results conducted on
real data are demonstrated in Section VII. Finally, the conclu-
sion is drawn in Section VIII.

II. LSMA

LSMA is a widely used technique to unmix multicomponent
composition in remote sensing imagery. It assumes that a spec-
tral pixel is linearly mixed by a number of so-called endmem-
bers or signatures, which are the basic constituents in images
and are denoted by {si ∈ R

d}pi=1, where p and d are the number
of endmembers and the spectral dimensionality, respectively. In
LMSA, the signature matrix is defined as S = [s1 s2 . . . sp] ∈
R

d×p, and an input pixel vector x ∈ R
d is supposed to be

represented as a linear mixture of signatures, i.e.,

x = Sα+ n (1)

where n∈R
d accounts for noise or model error, and α =

[α1 α2 . . . αp]
�∈R

p is an unknown p-dimensional abundance
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vector with αi representing the abundance fraction of the
signature si in x. Given a set of remote sensing image pixels
D = {xi ∈ X}Ni=1, LSMA aims to find the abundance vectors
{αi}Ni=1, one for each pixel, via the following objective
function:

min
{αi}Ni=1

N∑
i=1

‖Sαi − xi‖2. (2)

The performance of SU can be further improved by in-
troducing physical constraints in solving (2). Two abundance
constraints generally imposed on (2) are the abundance sum-
to-one constraints specified by ‖αi‖1 = 1 for 1 ≤ i ≤ N and
the abundance nonnegativity constraints specified by αi ≥ 0
for 1 ≤ i ≤ N . In other words, the LSMA unmixes each pixel
xi by seeking the most plausible abundance vector αi via p
signatures with or without the abundance constraints.

In the development of LSMA, the representative of the un-
constrained methods is OSP (LSOSP) [2], [8]. With the above
abundance constraints imposed, NCLS [2], [11] and FCLS [2],
[12] were successively proposed. They have been widely used
for unmixing remote sensed images.

III. KERNEL METHOD AND KLSMA

A. Kernel Method

Suppose D={xi∈X}Ni=1 is a given data set. Let φ : X → F
denote the implicit feature map that transforms data from input
domain X to a reproduced kernel Hilbert space (RKHS) F by

xi �→ φ(xi), for i = 1, 2, . . . , N. (3)

The corresponding kernel function k(·, ·) is employed to
efficiently compute the inner products of data in F , without
explicitly mapping them to F , i.e.,

k(xi,xj) = 〈φ(xi), φ(xj)〉 , for 1 ≤ i; j ≤ N. (4)

Commonly adopted kernel functions include radial basis kernel,
polynomial kernel, and sigmoid kernels [21].

In the sequel, we extend the notation of the implicit mapping
φ(·) and kernel k(·, ·) by allowing its arguments to be matrices
for the ease of introducing MKL-SMA. For matrix A ∈ R

m×n,
φ(A) is defined as [φ(a1)φ(a2) . . . φ(an)], where ai is the ith
column of A. For two matrices A and B, k(A,B) is defined
as φ�(A)φ(B). Note that we use k(·, ·) to denote the kernel
function with at least one argument to be a matrix.

B. KLSMA

The kernel trick provides the feasibility to implement LSMA
in a higher dimensional feature space. KLSMA aims to find the
abundance vectors {αi}Ni=1 via the objective function

min
{αi}Ni=1

N∑
i=1

‖φ(S)αi − φ(xi)‖2 . (5)

Three KLSMA approaches, i.e., KOSP (KLSOSP), KNCLS,
and KFCLS, were developed accordingly to solve nonlinear

problems for remote sensing images. KOSP was first derived in
[24] using singular value decomposition. A simpler approach
was later proposed in [28] by directly applying the kernel trick
to the formulation of OSP. The abundance vectors derived by
KOSP/KLSOSP are presented by

αKOSP
i (xi) = k(d,xi)− k(d,U)k(U,U)−1k(U,d)

αKLSOSP
i (xi) =

αKOSP
i (xi)

k(d,d)− k(d,U)k(U,U)−1k(U,d)
(6)

where d is the target signature of interest, and U is composed
of undesired signatures. Refer to [24] and [28] for the details.
KNCLS and KFCLS were developed in [23], [27], and [29].
Since NCLS does not have analytic forms, it needs two iterative
equations to find the solutions. To realize KNCLS, the two
kernelized equations are

αKNCLS
i (xi) =k(S,S)−1k(S,xi)− k(S,S)−1λ (7)

λ =k(S,xi)− k(S,S)αKNCLS
i (xi). (8)

The KNCLS solution can be obtained by substituting (7) and (8)
into the NCLS algorithm. As for KFCLS, a new signature ma-
trix S′ =

[
δS
1�

]
and an auxiliary vector x′

i =
[
δxi

1

]
are employed

to replace S and xi, respectively, where 1 = [1, 1, . . . , 1]� ∈
R

p, and δ controls the rate of convergence. The implementation
details can be found in [27] and [29].

IV. PROPOSED APPROACH MKL-SMA

Here, we first give a brief introduction to MKL. Then,
our approach to MKL and its integration with KLSMA are
respectively described.

A. MKL

Recent advances in MKL, such as [31], have shown that
learning SVMs with multiple kernels often increases the ac-
curacy. In contrast to many kernel methods, MKL can offer
very nice a posteriori interpretation about data characteristics.
In most MKL algorithms, an ensemble kernel, which is referred
to as a convex combination of the input basis kernels, is derived
to fuse the information carried by the basis kernels. Specifically,
suppose there are a total of M kernel matrices {Km}Mm=1 avail-
able, corresponding to the induced feature maps {φm : X →
Fm}Mm=1. The ensemble kernel K, which is parameterized by
kernel weights {γm}Mm=1, is defined as

K =

M∑
m=1

γmKm, s.t. γm ≥ 0. (9)

The task of MKL is to learn a kernel machine and derive the
kernel weights {γm}Mm=1. Compared with traditional methods
using a single kernel, MKL allows us to make more appropriate
use of the available data. We could include the prior knowledge
to design a set of kernel functions (matrices) to better extract
information from the data, such as adopting complementary
feature descriptors or employing different types of kernels
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with various hyperparameters. Therefore, MKL enhances the
interpretability of the decision function and theoretically pro-
vides a higher generalization capability in both hard and soft
classifications. This paper aims to generalize LSMA/KLSMA
to MKL-SMA and leverage the flexibility of MKL to tackle the
difficulties of hyperspectral image unmixing.

B. Interpretation of RKHS With Multiple Kernels

Before deriving MKL-SMA, we discover the nonlinear
structure of the feature spaces spanned by multiple implicit
mappings and the relationship between the implicit mappings
and Mercer kernels. Given a data set D = {xi ∈ X}Ni=1, we
consider to adopt implicit mappings, i.e., Φ = {φm : X →
Fm}Mm=1, where each mapping φm projects the data sample xi

to an RKHS Fm of dimension Lm by

xi �→ φm(xi), for i = 1, 2, . . . , N. (10)

According to Mercer’s theorem, there exists a kernel function
km(·, ·) : X × X → R corresponding to each φm. That is, for
each pair of data xi,xj ∈ D, we have

km(xi,xj) = 〈φm(xi), φm(xj)〉 . (11)

Since these implicit mappings project data into different spaces,
we aim at leveraging diverse data characteristics captured in
these spaces for better data analysis.

To combine these kernels for information fusion, we would
consider a nonnegative combination of these feature maps
φ′(x), i.e.,

φ′(x) =
M∑

m=1

κmφ(x), with κm ≥ 0. (12)

However, the implicit mappings {φm(·)}Mm=1 may have differ-
ent dimensionalities, and thus, such a direct linear combination
is infeasible. To address this problem, we consider the Cartesian
product space spanned by {Fm}Mm=1. More specifically, we
construct a new set of implicit mappings Ψ = {ψm}Mm=1 from
the original mappings Φ = {φm}Mm=1, which maps the data
sample x to the space of a higher dimension L, i.e.,

ψ1 =

⎡
⎢⎢⎣
φ1

0
...
0

⎤
⎥⎥⎦ , ψ2 =

⎡
⎢⎢⎣

0
φ2
...
0

⎤
⎥⎥⎦ , . . . , ψM =

⎡
⎢⎢⎣

0
...
0
φM

⎤
⎥⎥⎦ (13)

where L =
∑M

m=1 Lm. The new feature maps {ψm}Mm=1 then
forms a set of orthogonal bases; they are of the same dimension
and have the following property:

〈ψm(xi), ψm′(xj)〉 =
{
km(xi,xj), if m = m′

0, otherwise.
(14)

Remark: There would be the case where some feature spaces
φm(·) have infinite dimensionalities. In this case, we can always
interlace the dimensions of {φm(·)}Mm=1 to form the associated
Cartesian product space, so that the resulted bases still fulfill
the orthogonal property (14).

We then consider fusing information by seeking a convex
combination of these new feature maps, i.e.,

ψ(x) =β1ψ1(x) + β2ψ2(x) + · · ·+ βMψM (x)

s.t.
M∑

m=1

βm =1, βm ≥ 0, for m = 1, 2, . . . ,M. (15)

It can be proven that, by considering an arbitrary pair of data,
i.e., xi,xj ∈ D, we have

〈ψ(xi), ψ(xj)〉 =
〈

M∑
m=1

βmψm(xi),

M∑
m′=1

βm′ψm′(xj)

〉

=

M∑
m=1

M∑
m′=1

βmβm′ 〈ψm(xi), ψm′(xj)〉

=
M∑

m=1

β2
mkm(xi,xj). (16)

The 〈ψ(xi), ψ(xj)〉 in (16) is equivalent to element (i, j) of the
ensemble kernel matrix K, i.e., K(i, j). Thus, the composite
feature map in (15), which is parameterized by the nonnegative
kernel weight vector β = [β1 β2 . . . βM ]�, has the correspond-
ing ensemble kernel matrix

K = β2
1K1 + β2

2K2 + · · ·+ β2
MKM (17)

where Km denotes the kernel matrix produced by feature
mapping ψm.

It follows that our formulation of MKL can exploit the kernel
trick to efficiently compute the inner product of data in the
space induced by the composite feature map in (15). A simple
illustration of the induced spaces of MKL-SMA is shown in
Fig. 1(a).

C. MKL-SMA and Its Optimization

We here generalize the LSMA/KLSMA techniques in
Sections II and III to deal with multiple kernels simultaneously,
which is referred to as MKL-SMA. This framework consists
of two stages, namely, the training and testing stages. Fig. 1(b)
shows the flowchart of the proposed MKL-SMA.

1) Training Stage: Given a set of training samples Dt =
{xi}Ni=1 and a set of feature mappings Ψ = {ψm}Mm=1, our
goal in the training stage is to determine the optimal kernel
weight vector β in (15) and the abundance vectors {αi}Ni=1.
By integrating (15) into the objective function of LSMA in (2),
it leads to the following constrained optimization problem:

min
{αi}Ni=1

,β

N∑
i=1

‖(ψ(S)αi − ψ(xi))‖2

s.t. ψ(xi) =

M∑
m=1

βmψm(xi), for i = 1, 2, . . . , N

M∑
m=1

βm = 1, βm ≥ 0, for m = 1, 2, . . . ,M.

(18)
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Fig. 1. (a) Three kinds of spaces in MKL-SMA: the input space of spectral
pixels, the RKHS induced by each basis kernel, and the new RKHS induced by
the ensemble kernel. (b) Flowchart of the MKL-SMA algorithm.

Since direct optimization of (18) is difficult, we instead
adopt an iterative two-step strategy to alternately optimize
the abundance vectors {αi}Ni=1 and the kernel weight vector
β. At each iteration, one of {αi}Ni=1 and β is optimized,
whereas the other is fixed, and then, their roles are switched.
Iterations are repeated until the convergence of the objective
values.

On optimizing abundance vectors {αi}Ni=1: By fixing β,
the feature map ψ and its corresponding kernel are then de-
termined as well, namely, K =

∑M
m=1 β

2
mKm, conducted in

(17). Furthermore, all the constraints in (18) are irrelevant to the
abundance vectors {αi}Ni=1. Thus, the optimization problem in
(18) is reduced to the single-kernel LSMA problem and can be
effectively solved by KLSMA.

Since the prior knowledge about the weights of basis kernels
is generally unavailable, in the beginning of the training stage,
we simply assume that they are uniformly distributed, i.e., β1 =
β2 = · · · = βM = 1/M . It gives stable performance, and the
optimization procedure converges after only a few iterations in
our experiments.

On optimizing kernel weight vector β: In the other case of
optimizing β with fixed {αi}Ni=1, it is shown that a closed-form
solution can be derived and efficiently computed. By expanding
composite feature map ψ in (18), the objective function can be
represented as ∥∥∥∥∥

M∑
m=1

βmvm

∥∥∥∥∥
2

(19)

where

vm =

N∑
i=1

(ψm(S)αi − ψm(xi)) . (20)

Since 〈vm,v′
m〉 = 0 if m �= m′ by jointly considering (14) and

(20), it follows that∥∥∥∥∥
M∑

m=1

βmvm

∥∥∥∥∥
2

=

M∑
m=1

‖βmvm‖2. (21)

By substituting the derived objective function (20) into the
constrained optimization problem (18), it results in

min
β

c1β
2
1 + c2β

2
2 + · · ·+ cMβ2

M

s.t.
M∑

m=1

βm = 1,

βm ≥ 0, for m = 1, 2, . . . ,M (22)

where

cm = 〈vm,vm〉

=

p∑
j=1

α∗
j

⎧⎨
⎩

p∑
j′=1

α∗
j′km (sj , sj′)− 2

N∑
i=1

km(sj ,xi)

⎫⎬
⎭

+

N∑
i=1

N∑
j=1

km(xi,xj), for m = 1, 2, . . . ,M. (23)

In (23), α∗
j =

∑N
i=1 αij , and αij is the jth element of αi.

The resulting optimization problem (22) is an instance of
the quadratic programming (QP) problem. Although there are
a number of off-the-shelf QP solvers, we can derive the optimal
closed-form solution to (22) by exploiting Cauchy–Schwarz
inequality. Thus, the proposed approach does not suffer from
the high computational cost or numerical approximation of the
QP solvers.

Consider two vectors a = [
√
c1β1

√
c2β2 . . .

√
cMβM ]�

and b = [(1/
√
c1) (1/

√
c2) . . . (1/

√
cM )]�. By intro-

ducing the Cauchy–Schwarz inequality ‖a‖2‖b‖2 ≥ (a�b)2,
we have

(
c1β

2
1 + c2β

2
2 + · · ·+ cMβ2

M

)( 1

c1
+

1

c2
+ · · ·+ 1

cM

)

≥ (β1 + β2 + · · ·+ βM )2 = 1. (24)
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Since the term ((1/c1) + (1/c2) + · · ·+ (1/cM )) is fixed, the
lower bound of the objective function (c1β

2
1 + c2β

2
2 + · · ·+

cMβ2
M ) is 1/((1/c1) + (1/c2) + · · ·+ (1/cM )). It is clear that

the equality in (24) holds if

c1β1 = c2β2 = · · · = cMβM . (25)

By taking (25) and the constraint
∑M

m=1 βm = 1 into account
jointly, the optimal solution to (22) is

βm =
1
cm

1
c1

+ 1
c2

+ · · ·+ 1
cM

, for m = 1, 2, . . . ,M. (26)

That is, the optimal βm is the harmonic mean of {ci}Mm=1.
In addition, βm is nonnegative because cm defined in (23) is
nonnegative. β = [β1 β2 . . . βM ]� in (26) is thus the optimal
solution to (22).

2) Testing Stage: After completing the training stage, it is
ready to apply the learned model to predict the unseen testing
samples. We first construct the ensemble kernel function based
on the learned kernel weight vector β = [β1 β2 . . . βM ]�, i.e.,
k̂(·, ·) =

∑M
m=1 β̂

2
mkm(·, ·). For each testing sample, the SU

is performed by any abundance estimator with the ensemble
kernel k̂(·, ·). In this paper, we use KLSOSP [29], KNCLS [23],
[29], and KFCLS [23], [29] introduced in Section III to serve
as the abundance estimators in the experiments, respectively.

We summarize the training and testing procedures for the
proposed MKL-SMA in Algorithms 1 and 2, respectively.

Algorithm 1 Training Procedure of MKL-SMA

Input: Basis kernels {km(·, ·)}Mm=1 and training set {xi}Ni=1

1: Initialization: β1 = β2 = · · · = βM = 1/M .
2: Construct ensemble kernel k(·, ·) =

∑M
m=1 β

2
mkm(·, ·);

3: Compute abundance vectors {αi}Ni=1 by using KLSMA
with k(·, ·) and {xi}Ni=1;

4: Update kernel weights {βm}Mm=1 via (26);
5: Check convergence. If the value of the objective function

does not change, denote {β̂m = βm}Mm=1. Otherwise,
go to step 2;

Output: Optimized kernel weights {β̂}Mm=1

Algorithm 2 Testing Procedure of MKL-SMA

Input: Basis kernels {km(·, ·)}Mm=1 with weights {β̂}Mm=1

and testing set {ri}Nt
i=1

1: Construct the optimized ensemble kernel k̂(·, ·) =∑M
m=1 β̂

2
mkm(·, ·);

2: Compute abundance vectors {αt
i}Nt

i=1 by using KLSMA
with k̂(·, ·) and {ri}Nt

i=1;
Output: Abundance fractions {αt

i}Nt
i=1

V. BASIS KERNEL CONSTRUCTION

The performance of conventional kernel methods crucially
relies on the features extracted from the data. We often put
emphasis on the design of feature extractors and use all the
features to build a better kernel matrix. In the cases of MKL,
we need not only to design the features but also to construct
the basis kernels according to our prior knowledge about the
problem. Although MKL methods can automatically figure out
appropriate kernel combinations, their accuracies and gener-
alization capabilities still depend on whether informative and
complementary basis kernels are provided. In addition, the
basis kernels with larger learned weights are usually more
important. Such a property can be further exploited for feature
redesigning and ranking. In what follows, three ways for kernel
construction are proposed and discussed. We build the basis
kernels with different hyperparameter values in the first way
and design the basis kernels by investigating the characteristics
of the hyperspectral images in the last two ways.

A. DHV Kernels

MKL algorithms were originally designed to work on the
basis kernels constructed with different values of the hyper-
parameter. In this paper, we use radial basis function (RBF)
kernels in our implementation, but other types of kernels can
be used in our framework as well.

Let xi and xj be two arbitrary hyperspectral data samples.
The resulting different hyperparameter valued (DHV) basis
kernels are

kDHV
m (xi,xj)

= exp

(
−‖xi − xj‖2

σ2
m

)
, for m = 1, 2, . . . ,M (27)

where {σm}Mm=1 are M different hyperparameter values. Like
previous MKL approaches, the whole data features are used in
the construction of all the basis kernels. Except for supporting
multiscale data similarities, one main advantage of using DHV
kernels is that model selection is integrated into training.

However, the DHV basis kernels tend to induce similar fea-
ture spaces since they take identical data features into account
with only the hyperparameters varying. The large redundancy
among basis kernels would result in less performance improve-
ment. To avoid this situation, the selected basis kernels should
be more informative and complementary.

B. SS Kernels

In the above, the whole spectral features (bands) are used
to build basis kernels, and we referred them to as spectral
kernels. Since hyperspectral sensors are probably interfered
by many extrinsic environmental factors, the collected spectral
pixels usually contain a certain level of random noise that may
reduce the accuracy of SU, particularly for the pixel-based
classification techniques without denoising. To alleviate such
a problem, we consider the spatial continuity of class labels
in hyperspectral images and leverage the information of spatial
correlation to filter out the unfavorable random noise.
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Inspired by the idea in [18], [25], and [42], where a single
stacked kernel was established by concatenating all spatial con-
textual information, we instead compile a set of spectral–spatial
(SS) kernels, each of which carries distinct spatial information.
By so doing, we can work with different types of spatial
information without predefining their relatively importance nor
dealing with the scaling issue in feature concatenation.

Specifically, we use the union of two sets of kernels, i.e., the
spectral and spatial kernels, as the bases, i.e.,{
kSSm (xi,xj)

}Mμ+Ms

m=1

= {km(xi,xj)}Mμ

m=1

⋃{
ksm

(
xs
i ,x

s
j

)}Mμ+Ms

m=Mμ+1
. (28)

While the former set takes the spectral pixels to be predicted
into account, the latter set considers their surrounding neigh-
bors. Suppose xi is the feature representation of pixel i. xs

i is
the mean of its spatial neighbors. Mμ and Ms are the numbers
of basis kernels (obtained by varying the parameter values or
the neighborhood sizes) in the two sets, respectively. The main
virtue of SS kernels is that MKL algorithms would balance the
contributions provided by spectral and spatial statistics, and the
trained classifier is expected to be more resistant to noise.

C. PSR Kernels

It was mentioned in [33] and [39] that each basis kernel
may either use the full set or subsets of variables describing
the sample vector. To construct a set of basis kernels that are
complementary to each other, we further assume that different
spectral bands capture distinct information for SU. In practice,
we consider that each basis kernel occupies one particular
spectral dimensionality so that the information carried by the
basis kernels is independent.

Let xl
i and xl

j be the responses of xi and xj in band l,
respectively. We then establish a kernel bank with L basis
kernels by {

kPSR
m

(
xl
i,x

l
j

)}L

l=1
. (29)

The kernel weights learned by partial spectral range (PSR)
kernel can be used for the studies about the importance of
spectral features in SU. Moreover, the usage of PSR kernels
also can be extended to feature selection. The analogous idea
was also mentioned in [39].

VI. DATA SETS AND EXPERIMENTAL SETTINGS

A. Hyperspectral Data Sets Used for Experiments

The first data set1 used for experiments is the real hyperspec-
tral image collected by the ROSIS optical sensor over an urban
area of the University of Pavia, Italy, on July 8, 2002. The Pavia
image is of the size 610 × 340 with very high spatial resolution
about 1.3 m per ground pixel. The original data contain 115
spectral bands ranging from 0.43 to 0.86 μm. After removing

1http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes

Fig. 2. ROSIS image scene: University of Pavia. (a) Band 80. (b) Ground truth
map for nine classes. (c) Spectral signatures of ten classes.

the noisy bands, the remaining 103 bands are used for the
experiments. Fig. 2(a) and (b) shows the image of band 80 and
the ground truth map of all target classes, respectively.

In Fig. 2(b), there are nine classes in this image scene,
consisting of several urban targets such as vegetation, soil,
and roads. The corresponding spectral signatures are shown in
Fig. 2(c). The sample sizes of all the nine classes are 6631
(asphalt), 18 649 (meadows), 2099 (gravel), 3064 (trees), 1345
(painted metal sheets), 5029 (bare soil), 1330 (bitumen), 3682
(self-blocking bricks), and 947 (shadows), respectively.

The second data set2 used in our experiments is the real
AVIRIS image data, Purdue’s Indiana Indian Pine test site,
which has been extensively studied in the literature and pro-
vides a good candidate for those who are interested in algorithm
design and analysis. It has 20-m spatial resolution and 10-nm
spectral resolution in the range of 0.4–2.5 μm with size 145 ×
145 pixel vectors taken from an area of mixed agriculture and
forestry in Northwestern Indiana, USA. It was recorded in
June 1992 with 220 bands, among which bands 104–108 and
150–162 were removed, whereas the remaining 202 bands were
retained. Fig. 3(a) and (b) shows the image of band 20 and the
ground truth map, respectively.

There are 17 classes in this image scene, including the
background labeled by class 17, which has a wide variety of

2https://engineering.purdue.edu/biehl/MultiSpec/documentation.html
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Fig. 3. AVIRIS image scene: Purdue Indiana Pine test site. (a) Band 20.
(b) Ground truth map. (c) Spectral signatures of 17 classes.

TABLE I
LABELS OF 17 CLASSES

targets such as highways, railroad, houses/buildings, and veg-
etation that may not be of interest in agriculture applications.
The spectral signatures of all classes of interest are shown
in Fig. 3(c). The total number of data samples in the scene
is 145× 145 = 21 025. Table I lists the labels of these 17
classes, where the numeral in the brackets denotes the number
of data samples in that class. Compared with Pavia data, the
Purdue data set is more heavily mixed because of its lower
spatial resolution, less precise class annotation, and the higher
similarity of the spectral signatures. Thus, processing Purdue
data is more challenging.

B. Acquisition of Training and Testing Samples

Since the training samples should reflect the class proportion
of the images for SU, the training data set D is obtained by
randomly selecting a certain percent of data samples from all
target classes. Thus, the resulting training data are unbalanced,
but the class proportion is kept. For unmixing, the endmember
si is calculated by taking the mean of the training pixels
belonging to class i, 1 ≤ i ≤ p.

Once the training samples are selected from the image,
we use the rest of image pixels as the testing samples for
performance evaluation. In the experiments, the acquisition of
training and testing samples is repeated ten times, and the
averaged results are reported.

C. Experimental Setup for MKL-SMA

As mentioned in Section V, three ways for kernel con-
struction can be used. In the construction of the DHV ker-
nels, we empirically set M = 5 by employing the RBF
kernels with different values of the hyperparameter, i.e.,
[σ/4, σ/2, σ, 2σ, 4σ]. As suggested in [21], σ in (27) is set as
the average pairwise distance among training data. That is

σ = E (‖xi − xj‖) ∀i, j = 1, 2, . . . , N. (30)

In the construction of the SS kernels, we use one RBF
kernel to represent the spectral features and four RBF kernels to
represent the spatial features of different spatial mixing degrees,
i.e., Mμ = 1 and Ms = 4 in (28). For the Pavia data set,
we set the neighborhood area as a w × w window with w ∈
{5, 10, 15, 20}. The spatial features are the mean vectors of
those pixels inside the windows. For the Purdue data set, we set
w ∈ {3, 5, 8, 10} since its image size is relatively smaller. The
suggested RBF parameter of each basis kernel is determined
by (30).

In the construction of the PSR kernels, an RBF kernel is
established for each band. Similarly, the RBF parameter is also
determined by (30).

D. Performance Metrics and Evaluation

Unlike hard classification that makes decisions by assigning
each data sample to one specific class, the SU gives real-valued
abundance fractions representing the mixing degrees of the
spectral signatures. As a result, the abundance fractions cannot
be simply evaluated by the hard-decision-based method.

Because the unmixing ground truth is unavailable in most
public data sets, research studies in SU cannot but use the
data sets with only hard classification labels for performance
evaluation. We adopt area under the receiver operating charac-
teristic (ROC) curve (AUC) as the main measure to evaluate
the classification performance for unmixed abundance vector
set α̂(ri) = (α̂1(ri), α̂2(ri), . . . , α̂p(ri))

� of testing sample ri.
First, we normalize α̂(ri). We then utilize abundance percent-
age mixed-to-pure pixel converter (MPCV) [2] with a threshold
τ ∈ [0, 1] to convert the normalized abundance to pure class. If
the estimated abundance fraction of a signature, for example,
sj , exceeds threshold τ , sample ri is then assigned to class j.
The preceding procedure allows us to perform ROC analysis
on the testing pixels. Since there are multiple signals of interest
specified by s1, s2, . . . , sp, to extend a single-signal detection-
based ROC analysis to a multiple-signal detection model, we
first compute the detection rate RD(sj) and the false alarm rate
RF (sj) for the jth signal source sj , ∀j = 1, 2, . . . , p, where

RD(sj) =
ND(sj)

N(sj)
RF (sj) =

NF (sj)

Nt −N(sj)
. (31)

In (31), ND(sj) is the number of the pixels that belong to class
j and are correctly detected. NF (sj) is the number of the pixels
that are not of class j but detected as class j. N(sj) is the
number of the pixels of class j, and Nt is the total number of test
pixels. For the multiple signal sources, we calculate the mean
detection rate R̄D and the mean false alarm rate R̄F by

R̄D =

p∑
j=1

h(sj)RD(sj) R̄F =

p∑
j=1

h(sj)RF (sj) (32)

where h(sj), i.e., the weighting factor of class j, is defined as

h(sj) =
N(sj)∑p
j=1 N(sj)

. (33)
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Fig. 4. AUC± standard deviation by applying LSMA, KLSMA, and MKL-SMA to Pavia data with abundance estimator. (a) LSOSP. (b) NCLS. (c) FCLS.

Finally, we can calculate the AUC of R̄D versus R̄F for
quantitative performance analysis by varying threshold τ .

AUC provides a quantitative analysis between the detection
power and the false alarm probability and is commonly used
in performance assessment for soft classification or unmixing
[2, 24, 30]. We also consider the SU as a hard classification
problem in which three common measures, namely, average
accuracy (AAC), overall accuracy (OAC), and Kappa coef-
ficient, are used to evaluate the performance. As mentioned
previously, SU does not classify a data sample to a certain
class, but estimates the abundance fraction of each signature
contained in the data sample. Here, we make assumption that
an ideal abundance estimation holds the following property: the
signature class of the maximum value in an abundance vector
will be consistent with the ground truth class. Hence, we assign
each estimated abundance vector to a dominant class by MPCV
via the winner-take-all rule. That is, for the unmixed abundance
vector α̂(ri) = [α̂1(ri) α̂2(ri) . . . α̂p(ri)]

� of testing sample
ri, the j∗th class is predicted if

j∗ = arg max
1≤j≤p

α̂j(ri). (34)

In the experiments, the primary comparison of interest is to
check whether the proposed MKL-SMA can effectively lever-
age the abundant information carried by multiple kernels and
outperforms LSMA and KLSMA. The SVM is also selected
as the reference if we convert SU results to hard classification
results by MPCV.

VII. EXPERIMENTAL RESULTS

We conduct a comprehensive and comparative study of the
performance evaluation and analysis for LSMA, KLSMA, and
the proposed MKL-SMA.

A. ROSIS (Pavia) Data

To evaluate the unmixing performance of our approach and
the adopted baselines with different numbers of training data,
we randomly selected 0.1%, 0.3%, 0.5%, 1%, 3%, and 5% of
data of each class as the training samples in the Pavia scene.
The unmixing results in AUC by LSMA, KLSMA, and MKL-
SMA with three types of basis kernels, i.e., DHV, SS, and PSR,

are shown in Fig. 4, where the three subfigures correspond to
the results of using LSOSP, NCLS, and FCLS, as abundance
estimators, respectively.

As shown in Fig. 4(a), KLSMA is superior to LSMA in
all cases. It does imply that kernel methods can effectively
solve the linear nonseparability problem in Pavia data. Further-
more, using multiple kernels provides the opportunity of fur-
ther improvement. MKL-SMA with the PSR kernels (denoted
by MKL-SMA+PSR) slightly outperforms KLSMA in lower
training sizes. Such improvement may owe to the flexibility
of assigning different weights to the PSR kernels, each of
which corresponds to a single spectral band. With the aid
of spatial information, MKL-SMA using the SS kernels, i.e.,
MKL-SMA+SS, significantly outperforms KLSMA no matter
how many training samples are used. MKL-SMA+SS achieves
significant performance gains around 0.1–0.17 over KLSMA
in AUC. It points out that MKL-SMA+SS can effectively make
use of the additional spatial information to assist the classifier in
making more accurate decisions so that the weak unmixing ca-
pability of LSOSP could be improved. In addition, we observed
that MKL-SMA with DHV kernels, i.e., MKL-SMA+DHV,
does not provide any improvement over LSMA and KLSMA.
It may result from information redundance among the DHV
basis kernels.

Fig. 4(b) shows the performance of various unmixing ap-
proaches when NCLS is the abundance estimator. Compared
with LSOSP, NCLS employs the additional nonnegative con-
straint, which is helpful for abundance estimation. Hence, most
approaches coupled with NCLS get better outcomes. As shown
in the figure, MKL-SMA with any type of basis kernels outper-
forms KLSMA. MKL-SMA+DHV slightly surpasses KLSMA
in this case. As aforementioned, DHV basis kernels tend to
carry redundant information and do not complement each
other. However, using DHV kernels in MKL sometimes works,
particularly when the optimal hyperparameters are difficult to
be determined. MKL-SMA+PSR also surpasses KLSMA a
little bit since it can better interpret the data in terms of the
independence of the bands. Again, MKL-SMA+SS provides
significant improvement over KLSMA. The AUC values of
KLSMA are around 0.83, whereas those of MKL-SMA+SS
are 0.86–0.88. It implies that the NCLS estimator can well
utilize the additional spatial information introduced by the
SS kernels.
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Fig. 5. Representative ROC curves of Pd versus Pf by applying LSMA,
KLSMA, and MKL-SMA to Pavia data with abundance estimator FCLS. The
experiment is conducted with 0.5% randomly selected training samples.

Fig. 4(c) shows the performance of SU methods when FCLS
is adopted as the abundance estimator. Similar to the observa-
tions found in Fig. 4(b), we obtained the following ranking in
AUC: 1) MKL-SMA; 2) KLSMA; and 3) LSMA, except for
MKL-SMA+PSR. FCLS performs poorly because the imposed
sum-to-one constraint suppresses its unmixing capability on
Pavia data. Fortunately, this issue can be solved by carrying
out SU in the feature space expanded by kernels. Interest-
ingly, MKL-SMA+PSR could not surpass KLSMA. It probably
results from that the two abundance constraints imposed by
FCLS suppress the capability of the PSR kernels in the fea-
ture space. In conclusion, using MKL-SMA with appropriate
abundance estimators and basis kernels can provide remarkable
improvements.

Fig. 5 shows the ROC analysis of all the methods with FCLS
estimator when 0.5% randomly selected training samples are
used. It can be found that the ROC performance (Pd versus Pf)
can be improved by using kernels, as shown in Fig. 5. It again
indicates that the PSR kernels cannot afford obvious benefits for
unmixing Pavia data. The possible reason is that the importance
of the spectral bands in Pavia data is almost equal so that there
is no room for improving the performance by reweighting the
bands. However, we will show that MKL-SMA+PSR achieves
unmixing results of high quality on Purdue data and further
discuss the reasons later. Thus, the effectiveness of the PSR
kernels is data dependent.

Note that the AUC performance shown in Fig. 4 does not
increase as the training size grows. The main reason is that
LSMA (KLSMA and MKL-SMA) is an approximate model
for SU. Approaches based on LSMA compile the endmembers
by computing only the first-order statistics, i.e., mean, from
training samples. The strength is that only few training data are
sufficient to achieve satisfactory results. However, they ignore
the high-order statistics, which can be reliably extracted when
more training data are available.

To gain insight into this phenomenon, we computed the AUC
values of each class by varying the sizes of training data. An

interesting observation was found: As the training size goes
larger, the AUC values of some large classes, those having more
data, slightly decrease, whereas the AUC values of small classes
significantly improve. Because the overall AUC is the weighted
sum of the AUC values of all classes with the weights propor-
tional to their numbers of data, the unmixing performance in
terms of overall AUC does not benefit from large training set.

In addition, LSMA and its variants are not biased models
in the sense that one endmember is computed for each class
no matter how many training data it has. In the cases of fewer
training data, the endmembers of the small classes are more
likely to be badly estimated. However, a high AUC can still be
obtained as long as good performance are achieved in larger
classes. In the cases of more training data, the endmembers of
all classes are accurately estimated. The accurately estimated
endmember of a small class may degrade the performance of a
larger class if their endmembers are close to each other. These
circumstances usually happen. As large classes dominate the
AUC measure, it therefore causes the degradation of the overall
performance.

The classification performance converted from unmixing
results via MPCV is also concerned. Table II tabulates the AAC,
OAC, and Kappa coefficient (in brackets) values of LSMA,
KLSMA, and the proposed MKL-SMA with three types of
basis kernels, respectively. Several findings in the table can be
concluded as follows.

1) KLSMA outperforms LSMA in most cases, and MKL-
SMA+SS further increases the classification accuracy
over KLSMA. It points out that using multiple ker-
nels also helps make more accurate decisions for
classification.

2) Compared with the DHV and PSR kernels, the SS kernels
accomplish better classification outcomes in all the mea-
sures because SS kernels carry spatial information that
can alleviate the problem of misclassification in the noisy
regions. Similar to the conclusions drawn in the literature
of MKL, using the DHV kernels is not very effective
for classification, because MKL with the DHV kernels
is reduced to model selection instead of feature fusion.

3) The abundance estimator plays an important role. NCLS
and FCLS work more effectively and stably. LSOSP per-
forms poorly due to its unconstrained nature. Fortunately,
this dilemma is mitigated when multiple kernels are taken
into account, particularly the SS and PSR kernels.

4) In most cases, SVM achieves superior performance over
LSMA/KLSMA/MKL-SMA in OAC/Kappa coefficient
due to the fact that SVM is designed for hard classi-
fication, whereas MKL-SMA, which is developed for
unmixing, achieves the best results in AAC. Nevertheless,
the proposed MKL-SMA with properly chosen kernels
is still comparable with SVM, particularly in the cases
where lower training sizes are adopted.

To visualize the classification results, Fig. 6 displays the
hard-decision classification maps of LSMA, KLSMA, MKL-
SMA+DHV, MKL-SMA+SS, and MKL-SMA+PSR, respec-
tively. Those maps are created by assigning each pixel a specific
color according to which class it belongs to. The classification
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TABLE II
PERFORMANCE, IN THE FORM OF [AAC/OAC (KAPPA COEFFICIENT)], BY APPLYING

LSMA, KLSMA, AND THE PROPOSED MKL-SMA TO PAVIA DATA

Fig. 6. Classification maps converted by applying MPCV to the abundance fractions estimated by (a) LSMA, (b) KLSMA, (c) MKL-SMA+DHV, (d) MKL-
SMA+SS, and (e) MKL-SMA+PSR when FCLS is used as the abundance estimator. (f) Map by SVM for additional reference. The results are generated from a
single run of using 3% randomly selected training samples. The values shown in brackets are the corresponding AAC. (a) LSMA (66.3%). (b) KLSMA (71.4%).
(c) MKL-SMA+DHV (72%). (d) MKL-SMA+SS (74.6%). (e) MKL-SMA+PSR (66.1%). (f) SVM (73.5%).

map of LSMA shown in Fig. 6(a) is noisy, whereas all the other
kernel-based methods Fig. 6(b)–(e) produce cleaner maps.
Among all of them, MKL-SMA+SS seems to give the best
results. This can be verified by comparing with the ground
truth shown in Fig. 2(b). For instance, the bitumen signature
located in the center of the image was better classified by
MKL-SMA+SS, whereas the other methods produced the clas-
sification maps that contain more noises in the regions of the
bitumen.

B. AVIRIS (Purdue) Data

Since the image size of Purdue data is relatively smaller, i.e.,
145 × 145, the fractions of training samples are set as 1%, 3%,
5%, 8%, 10%, and 20%, respectively, in the experiments, so
that sufficient training samples for each target class can be
acquired.

Fig. 7 shows the AUC of the unmixing results produced
by LSMA, KLSMA, and three types of MKL-SMA, respec-
tively, where LSOSP, NCLS, and FCLS are used as abundance
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Fig. 7. AUC with standard deviations by applying LSMA, KLSMA, and MKL-SMA to Purdue data with abundance estimator. (a) LSOSP. (b) NCLS. (c) FCLS.

TABLE III
PERFORMANCE, IN THE FORM OF [AAC/OAC (KAPPA COEFFICIENT)], BY APPLYING

LSMA, KLSMA, AND THE PROPOSED MKL-SMA TO PURDUE DATA

estimators. Table III further tabulates the AAC, the OAC, and
the Kappa coefficient for the unmixing results when FCLS is
used. From Fig. 7 and Table III, several findings are summa-
rized in the following.

1) All the kernel methods, including KLSMA and MKL-
SMA, consistently outperform LSMA in most cases of
Purdue experiments.

2) MKL-SMA+DHV could not provide improvement over
KLSMA in AUC, particularly when LSOSP is adopted.
Thus, the performance of MKL-SMA+DHV that captures
highly overlapping spectral information is still restricted.

3) MKL-SMA+SS with either LSOSP or FCLS achieves
the best performance in AUC. As mentioned, using the
SS kernels in the MKL-SMA can reduce the intraclass
spectral variations for those images whose ground classes
are spatially dependent and reduce the unmixing errors
caused by the interference of the noise. The outcomes of
applying MKL-SMA+SS to Purdue data again validate
the effectiveness of using the SS kernels.

4) MKL-SMA+PSR performs diversely with different abun-
dance estimators. For instance, it reaches the highest
AUC over all compared methods in NCLS case, but
performs worse than LSMA in LSOSP case in Fig. 7.
This phenomenon did not appear in the Pavia data set.
It implies that the PSR kernels seem to be very sensitive
to the properties of data and the type of abundance
estimators.

Fig. 8. Abundance maps of class 8 in the Purdue scene estimated by (a) LSMA,
(b) KLSMA, (c) MKL-SMA+DHV, (d) MKL-SMA+SS, and (e) MKL-
SMA+PSR, respectively. (f) Ground truth. The experiment was conducted by
implementing unmixing with 10% randomly selected training samples.

To analyze the unmixing results in a visual manner, Figs. 8
and 9 show the cropped abundance maps corresponding to
target classes 8 and 6 in the Purdue scene, respectively.
Those maps in each figure were respectively compiled by us-
ing LSMA, KLSMA, MKL-SMA+DHV, MKL-SMA+SS, and
MKL-SMA+PSR, with abundance estimator FCLS. In Fig. 8,
it can be seen that LSMA produced low-contrast results in
Fig. 8(a), since more false alarms were induced. KLSMA



2266 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 4, APRIL 2015

Fig. 9. Abundance maps of class 6 in the Purdue scene estimated by (a) LSMA,
(b) KLSMA, (c) MKL-SMA+DHV, (d) MKL-SMA+SS, and (e) MKL-
SMA+PSR, respectively. (f) Ground truth. The experiment was conducted by
implementing unmixing with 10% randomly selected training samples.

TABLE IV
OPTIMIZED KERNEL WEIGHTS BY MKL-SMA+SS ON PAVIA DATA,

WHEN FCLS IS USED AS THE ABUNDANCE ESTIMATOR

in Fig. 8(b) improves a lot in the background suppression,
but it fails to detect the central regions of class 8. MKL-
SMA+DHV generated moderate results in Fig. 8(c), since it
considered different scales of RBF features at the same time.
In Fig. 8(e), MKL-SMA+PSR produced an overenhanced map
that is dissimilar to the maps in Fig. 8(a)–(c). Much satisfactory
outcomes were accomplished by MKL-SMA+SS in Fig. 8(d).
The SS kernels can alleviate the problem caused by large
intraclass variations by additional spatial information, and thus,
a smoother and more accurate abundance map was yielded.
Analogous observations can be found for Fig. 9. Both MKL-
SMA+SS and MKL-SMA+PSR perform well for class 6 and
preserve the area shapes of this class more accurately.

C. Observations and Discussion

The use of multiple kernels not only increases the classifica-
tion performance but also reveals the inherent characteristics of
the data. In the following, several intriguing observations found
in the experiments of MKL-SMA are discussed.

First, it has been mentioned in Section V that the SS ker-
nels provide both spectral and spatial information, whereas
MKL-SMA balances their weights through an optimization
process. To look into the relative importance of the two kinds
of information, Tables IV and V record the optimized kernel
weights β by MKL-SMA+SS coupled with FCLS on the Pavia
and Purdue scenes, respectively. It can be seen that MKL-

TABLE V
OPTIMIZED KERNEL WEIGHTS BY MKL-SMA+SS ON PURDUE DATA,

WHEN FCLS IS USED AS THE ABUNDANCE ESTIMATOR

SMA assigned almost equal weights on the spectral and spatial
kernels for Pavia data, whereas it puts higher weights on the
spatial kernels (w = 5 and 8) for Purdue data. It suggests that
unmixing Pavia data equally relies on both spectral and spatial
information, whereas unmixing Purdue data relies more on
spatial (contextual) information. Such an observation accords
with our expectation since the ground spatial resolution of
Purdue data is relatively lower and the spectral similarity of the
target signatures is higher [see Fig. 3(c)], and pixels located
near the boundaries of two nearby classes are heavily mixed.
In addition, Purdue data are much noisier than Pavia data. The
noisy pixels are frequently misclassified even if are they located
in the pure regions. With the auxiliary spatial information, we
can effectively alleviate the misclassifications by unmixing the
data with low spatial resolution or with noisy appearance.

Second, the optimized kernel weights by MK-LSMA+PSR
represent the degrees of the importance of the corresponding
spectral bands for SU. That is, those spectral bands that cannot
well distinguish signature characteristics are given with lower
weights. For instance, the spectral signatures of Purdue data at
bands 1–5, 40, 57–59, 76–82, 102–107, and 143–148 shown in
Fig. 3(c) are nearly the same so that they are supposed to be
less beneficial for unmixing. To verify it, Fig. 10(a) shows the
optimized kernel weights by MKL-SMA+PSR in Purdue data.
We found that the optimized weights of these less powerful
bands are obviously lower than those of the other bands. It
indicates that the proposed MKL-SMA can effectively put
higher emphasis on the discriminative bands, while reducing
the influence of the bands with less spectral discrepancy. Such a
finding was also observable in the experiments on Pavia data, in
which a spectral region with closer signature values appears at
bands ranged between 70 and 80. The optimized kernel weights
by MKL-SMA+PSR are shown in Fig. 10(b), where the kernel
weights significantly drop in this range.

Removing irrelevant features (or bands here) and reducing
data dimensionality are feasible ways to improve classifica-
tion accuracy in the literature. Since a few spectral bands are
associated with very low weights in Fig. 10(a), e.g., bands
35–105, the unmixing results of removing those insignificant
bands deserve further investigation. In the following, we show
that the performance of KLSMA can be further improved if
the insignificant bands are removed. To this end, we prioritize
all the bands according to their optimized kernel weights in a
decreasing order and then perform KLSMA while progressively
removing those bands with higher ranking orders. The obtained
results are shown in Fig. 11(a), in which the x-axis denotes
the number of the removed bands, and the y-axis denotes the
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Fig. 10. Plots of the optimized kernel weights β, when the three abundance
estimators LSOSP, NCLS, and FCLS are used, respectively. (a) Purdue data.
(b) Pavia data. The experiments were conducted with 10% and 3% randomly
selected training samples, respectively.

Fig. 11. Performance, in AUC, of the three abundance estimators in the cases
where different numbers of the less significant bands are removed on (a) Purdue
data and (b) Pavia data.

AUC. It can be seen that the performance, in AUC, of NCLS
and FCLS dramatically increases when 70 less significant bands
are removed. This suggests that it is unnecessary to exploit full
bands to achieve effective SU. Using less significant bands may
even hurt the performance of unmixing. It is worth mentioning
that the number of the bands with low weights in Fig. 10(a)
is about 70. This result manifests that MKL-SMA+PSR can
identify those bands that do not really contribute to SU. Such a
mechanism can be further utilized to seek redundant or useless
bands for other applications.

Third, the convergence issue of the proposed MKL-SMA is
investigated. As summarized in Algorithm 1, two key com-
ponents are performed iteratively in our approach: One is
to optimize the kernel weight vector β in (15), whereas the
other is to solve the conventional KLSMA problem in (5). We
have proven that the resulting β is globally optimal. However,
the off-the-shelf techniques used to solve KLSMA, such as

Fig. 12. Objective values along the optimization iterations of the proposed
MKL-SMA algorithm on (a) Pavia data and (b) Purdue data.

KNCLS and KFCLS, induce additional constraints to better
optimize KLSMA, and thus, they do not guarantee that the
global optimum can always be found. Thus, the convergence of
the proposed approach is not guaranteed, although it converges
in all our experiments. Fig. 12 shows the convergence curves
of using MKL-SMA with LSOSP and FCLS estimators, where
the x-axis denotes the number of iterations, and the y-axis
represents the objective value of (18) at each iteration. It can be
seen that the proposed algorithm generally reaches convergence
within five iterations. MKL-SMA+PSR requires ten more iter-
ations since it adopts more basis kernels. It is also observed
that the use of the constrained estimator, e.g., FCLS, requires
fewer number of iterations than the unconstrained estimator,
e.g., LSOSP.

Fourth, the computational efficiency of our approach is also
discussed. Most existing MKL approaches suffer from the
problem of excessive computational cost in optimizing the
combination of the basis kernels. However, MKL-SMA shows
its advantage over most of the off-the-shelf MKL approaches
in the sense that it offers a closed-form solution to determining
the optimal convex combination of the given basis kernels.

Fig. 13 shows the comparison of the average computation
time in the training and testing phases required by LSMA,
KLSMA, and the proposed MKL-SMA, via the FCLS estima-
tor. Compared with LSMA and KLSMA, MKL-SMA unmixes
the training data by iteratively optimizing over all the basis
kernels and hence induces higher computational cost. However,
except for PSR cases where 202 basis kernels are involved,
the training time is within a few minutes. It demonstrates the
advantage of the closed-form solution in the proposed MKL-
SMA. As for the testing stage, the computational costs among
different basis kernels are similar, except for those with PSR
basis kernels. Therefore, the main computational issue of MKL-
SMA locates in the training process. Fortunately, MKL-SMA
scales well with the large set of training data.

Finally, the usage of the three types of the basis kernels
and the selection of abundance estimators are discussed. The
DHV kernels are designed for model selection. In general,
the optimal kernel used for KLSMA is unknown in advance.
Using DHV kernels with a wide range of parameter values can
provide acceptable results. If the additional spatial information
is available, the SS kernels can carry both spectral and spatial
information. The SS kernels are very helpful for unmixing
hyperspectral image scenes that are collected from different
altitudes. The PSR kernels are particularly suitable for the
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Fig. 13. In the experiments on Purdue data, the computational costs of LSMA,
KLSMA, and MKL-SMA, in the (a) training stage and the (b) testing stage. The
computing times were calculated under the computer environment with Intel
core i7 2.50-GHz central processing unit, 12-GB random access memory, and
MATLAB2011b.

images containing useless bands for SU. The produced results
can be used for further feature analysis or band selection. On
the other hand, the goodness of the abundance estimators for
MKL-SMA depends on the data and applications. In general,
using FCLS and NCLS are recommended since they commonly
produce better unmixing performance than OSP. Other LSMA
methods can be used in MKL-SMA as long as its kernel
counterpart exists.

VIII. CONCLUSION

This paper has presented a new framework, which is called
MKL-SMA, which integrates MKL into the training process of
LSMA and fulfills better unmixing capability for hyperspectral
image classification. The proposed MKL-SMA is developed
with theoretic merits and boosts the performance of SU in
practice. We derived a closed-form solution to optimizing the
convex combination of the given basis kernels. Compared with
the off-the-shelf MKL algorithms, MKL-SMA scales well with
the large number of training data. On the other hand, MKL-
SMA utilizes a set of basis kernels to precisely characterize
the data and accomplishes much better performance. To demon-
strate the flexibility in MKL-SMA, three ways of basis kernel
construction were introduced, in which the spectral, spatial, or
partial spectral information can be selected as the input feature
and combined in the domain of kernel matrices. The experi-
ments conducted on two real hyperspectral images manifest that
the proposed MKL-SMA can effectively exploit the rich infor-
mation carried by the basis kernels and achieve higher classi-
fication performance than traditional LSMA and KLSMA in
both AUC and classification accuracy. Furthermore, the learned
kernel weights by MKL-SMA reveal the intrinsic properties of
the data. The knowledge is helpful in designing new feature de-
scriptors for hyperspectral images. The unmixing performance
of MKL-SMA critically relies on the basis kernels, which are
compiled prior to the unmixing task. How to establish a kernel
bank to achieve the best results should be the future work.
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