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Abstract. Many previous works on photometric stereo have shown how
to recover the shape and reflectance properties of an object using multi-
ple images taken under a fixed viewpoint and variable lighting conditions.
However, most of them only dealt with a single point light source in each
image. In this paper, we show how to perform photometric stereo with
four images which are taken under distant but general lighting condi-
tions. Our method is based on the representation that uses low-order
spherical harmonics for Lambertian objects. Attached shadows are con-
sidered in this representation. We show that the lighting conditions can
be estimated regardless of object shape and reflectance properties. The
estimated illumination conditions can then help to recover the shape and
reflectance properties.

1 Introduction

Photometric stereo methods recover the shape and reflectance properties of an
object using multiple images under varying lighting conditions but fixed view-
point. Most works on this problem assumed that lighting comes from a single
source, generally a point source or a controlled, diffused source of light. Wood-
ham [1] first introduced photometric stereo for Lambertian surfaces assuming
known albedos and known lighting directions. The method was based on the
use of the so-called reflectance maps in the form of look-up tables. Three im-
ages were used to solve the reflectance equation for recovering surface gradients
and albedos of a Lambertian surface. Coleman and Jain [2] used four images
to detect and exclude highlight pixels. They used four combinations of three
light sources to compute four albedo values at each pixel. Presence of specular
highlight will make the computed albedos different, indicating that some mea-
surement should be excluded. Barskey and Petrou [3] showed that the method
in [2] is still problematic if shadows are present, and generalized it to handle
color images.

Moses [4] and Shashua [5] have pointed out that one can only recover the
scaled surface normals up to an unknown linear transformation when each image
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of the target object is lit by a single point source with unknown intensity and
direction. Hayakawa [6] used [4, 5]’s result in a factorization framework to han-
dle many images. These results assumed there is no shadow. In [7, 8, 9], it has
been shown that integrability reduces the ambiguity to a generalized bas-relief
transformation, which allows the recovery of a surface up to a stretch and shear
in the z-direction.

By considering non-Lambertian surfaces, Tagare and deFigueriredo [10] de-
veloped a theory of photometric stereo for the class of m-lobed reflectance map.
Kay and Caelly [11] continued their work and investigated the problem from a
practical point of view. They applied nonlinear regression to a larger number of
input images. Solomon and Ikeuchi [12] extended the method in [2] by separat-
ing the object into different areas. The Torrance-Sparrow model was then used
to compute the surface roughness. Nayar et al. [13] used a hybrid reflectance
model, and recovered not only the surface gradients but also parameters of the
reflectance model. In these approaches, the models used are usually somewhat
complex, and more parameters need to be estimated.

Hertzmann and Seitz [14] used a reference object and presented an ap-
proach to compute surface orientations and reflectance properties. They made
use of orientation consistency to establish correspondence between the unknown
object and a known reference object. In many cases, however, obtaining a refer-
ence object for correspondence can be very difficult. Goldman et al. [15] fur-
ther extended this method so that the reference object is no longer needed
but assumed that objects are composed of a small number of fundamental
materials.

Previous work on this problem shows a progression towards lighting con-
ditions that are less constrained, but most of them still focused on recovering
structure based on the assumption of a single point source in each image. For
complicated lighting environments, Basri et al. [16] and Ramamoorthi et al. [17]
have provided a new way to describe the effect of general lighting on a Lam-
bertian object. Their results showed that only the low frequency components of
lighting have a significant effect on the reflectance function of a Lambertian ob-
ject. These components are represented as low-order spherical harmonics. They
showed that the set of images produced by a convex Lambertian object under
arbitrary lighting can be well approximated by a low dimensional linear set of
images. This set is 4D for a first-order approximation, 9D for a second-order
approximation.

Basri and Jacobs [18] used this representation to handle the photometric
stereo problem under general lighting. They assumed that the zero- and first-
order harmonics, which correspond to the albedos and surface normals scaled by
albedos, will show up in the space spanned by the principal components obtained
by performing SVD on input images. Their method can reconstruct object shape
well when a large number of images are available.

In this paper, we also consider images produced by general lighting condi-
tions that are not known ahead of time, and we require only four images of
the target object. The starting point of our method is the spherical harmonic
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representation. We first estimate the lighting condition without knowing the ob-
ject shape with the 4D approximation. Then we couple our refinement techniques
for surface normal, albedo, and lighting condition into an iterative process, where
improved shape results in improved lighting and albedo estimation and vice
versa. We confirm experimentally that these optimization procedures produce
good results in spite of the approximations made by the low-order spherical har-
monic representations. Existing techniques can then be used to translate these
normals into an integrable surface, if desired. We also present some experiments
to illustrate the potential of our method.

We formulate our problem and show the spherical harmonic representation
used by our method in Section 2. Lighting estimation method without knowing
object shape is described in Section 3. The shape and reflectance reconstruction
process is shown in Section 4, where we also propose an iterative optimization
algorithm to obtain a more robust solution. Section 5 shows experimental results
of both synthetic and real images, while conclusions and future work are made
in Section 6.

2 Problem Formulation

The inputs of our method are four images of a static object taken at a fixed pose
but under different illuminations. The lighting conditions, shape, and reflectance
properties are all unknown. From these inputs, we seek to estimate the lighting
conditions, and to reconstruct the shape and reflectance properties.

We assume that the surface of the target object has Lambertian reflectance.
The only parameter of this model is the albedo of each point on the object, which
describes the fraction of the light reflected. We also assume that this object is
illuminated by distant light sources, so that the directions and intensities of light
sources are the same for all points of this object. We do not model the effects of
cast shadows and interreflections.

The output of our method are albedos, surface normals of each pixel, and the
lighting conditions of four input images. We can then reconstruct the surface by
integrating the normal field. We can also render novel images under new lighting
conditions or new viewpoints.

2.1 Modeling Reflection

We use the symbol Ii to represent the intensity of a certain pixel in input image i,
i = 1 . . . 4. With distant light source assumption, the intensities of a Lambertian
object under general lighting conditions can be represented as follows:

Ii = ρ

∫
Li(l)max(l · N, 0) dl, (1)

where ρ and N are the albedo and surface normal of this pixel, l is the unit vector
indicating the direction of incoming light, and Li(l) is the radiance intensity from
direction l in image i. The integral is over all possible lighting directions.
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In [16, 17], the authors viewed this process of light reflection as a convolu-
tion, where the incident illumination signal is filtered by the reflective properties
of the surface, which is the Lambertian kernel in our case. They also showed
that the Lambertian kernel acts like a low-pass filter, preserving only the lowest
frequency components of the lighting. According to their results, the effects of
general lighting on a Lambertian object can be represented by spherical har-
monics:

Ii = ρ

∞∑
n=0

n∑
m=−n

√
4π

2n + 1
knlnmYnm(N), (2)

where Ynm are the surface spherical harmonics, kn and lnm are the coefficients of
harmonic expansions of the Lambertian kernel and lighting, respectively. It has
been proved in [16] that for any distant and isotropic lighting, at least 98% of the
resulting function can be captured by the second-order spherical harmonic ap-
proximation. A first-order approximation captures at least 75% of the reflectance.
These bounds are not tight, and in fact many common lighting conditions yield
significantly better approximations. For example, under a point source illumina-
tion the first- and second-order harmonics approximate the reflectance function
to 87.5% and 99.22% respectively.

Then, we can relate the intensity quadruple of the same pixel in four input
images to the spherical harmonics with the second-order approximation:

I =

⎡
⎢⎢⎣

I1
I2
I3
I4

⎤
⎥⎥⎦ = ρL4×9H9×1 = ρL4×9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Nx

Ny

Nz

3N2
z − 1

NxNy

NxNz

NyNz

N2
x − N2

y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where I is the stack of intensity quadruple, each row of L4×9 is the lighting
configuration of each image, and H9×1 is the spherical harmonics which can be
decided analytically when the surface normal N = [Nx, Ny, Nz]T is known. Note
that we omit additional constant factors since they do not change the space
spanned by these bases.

3 Lighting Estimation

In an uncalibrated photometric stereo problem, the lighting condition L, albedo
ρ, and surface normal N are all unknown, making it highly unconstrained. How-
ever, with first-order approximation of spherical harmonics, we show in this
section that, regardless of object shape and reflectance, the lighting conditions
are constrained and can be estimated up to a subgroup of the 4× 4 linear trans-
formation, called Lorentz transformations (also in [18]).
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When first-order approximation of spherical harmonics is adopted, the inten-
sity quadruple can be rewritten from (3) as follows:

I = ρL4×4H4×1 = ρL4×4
[
1 Nx Ny Nz

]T
. (4)

When L is known, the albedo and surface normal can be recovered simply
by inverting this equation as:

ρH =
[
ρ ρNx ρNy ρNz

]T = L−1I . (5)

However, in a photometric stereo problem under general lighting, L is usually
unknown. In the following, we show how to estimate L with this first-order
approximation.

Since N is the unit surface normal, NT N = 1. Let J = diag{−1, 1, 1, 1}, it
can be easily verified that

(ρH)T J (ρH) =
(
IT L−T

)
J

(
L−1I

)
= IT BI = 0, (6)

where B = L−T JL−1 is a 4 × 4 symmetric matrix. Equation (6) indicates that
intensity quadruples are constrained to lie on a quadratic surface regardless of
what the albedos and surface normals are:

0 = B11I
2
1 + B22I

2
2 + B33I

2
3 + B44I

2
4 +

2B12I1I2 + 2B13I1I3 + 2B14I1I4 + (7)
2B23I2I3 + 2B24I2I4 + 2B34I3I4 .

This equation has only ten unknowns, which follows from the fact that the matrix
B is symmetric, and we can list one equation per pixel.

The ten unknowns of B can be determined even when the lighting conditions
L is unknown and even when there is no object point where the albedo ρ and
surface normal N are given. All that is required is having sufficient measured
intensity quadruples. A standard linear least-squares method can be used to
estimate these ten unknowns. This least-squares estimation should be robust
since the number of image pixels are usually large and each measured intensity
quadruple contributes useful information. However, because this linear system
is homogeneous, B can only be solved up to an unknown scale. This ambiguity
comes from (4). For any scalar s > 0,

I = (
ρ

s
)(sL)H, (8)

which means that we cannot distinguish between brighter surfaces lit by a dim-
mer illumination or darker surfaces lit by a brighter illumination. In the remain-
der of this paper, we will therefore ignore this scale ambiguity.

Thus, empirical measurements determine the matrix B. The constraint that
B imposes on the lighting condition L can be interpreted when expressed in
terms of B−1:

B−1 = (L−T JL−1)−1 = LJLT , (9)
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where J−1 = J . Because B−1 is also symmetric, B−1 can be factorized as follows
by Symmetric Schur Decomposition:

B−1 = QJΛQT , (10)

where Q contains the orthogonal eigenvectors and Λ = diag{|λ1|, λ2, λ3, λ4} is
the eigenvalue matrix. Without lost of generality, we order Λ and Q so that the
negative eigenvalue λ1 is the first, and we move the negative sign into J to ensure
that every element of Λ is positive. Then we can decide that L =

√
ΛQ. If there

is only one positive eigenvalue we reverse the sign of B−1.
When there is significant noise, or when the assumptions do not strictly hold

(Lambertian surfaces, distant light source, etc.), the eigenvalues of B may not
have the proper signs. In that case we resort to an iterative optimization to find
L that minimizes the Frobenous norm ||B−1 − LJLT ||.

At this point we have recovered a valid L. However, there is still an unsolved
ambiguity. For any matrix C that satisfies CJCT = J , B−1 = (LC)J(LC)T =
LJLT . This set of transformations forms the Lorentz group [19]. Because the
symmetric quadratic form CJCT = J gives ten quadratic equations in the 16
unknown components of C, a Lorentz transformation has six degrees of freedom.
We can resolve this ambiguity, for example, if we know the surface normals and
albedos of two points, or we can remove this ambiguity by enforcing surface
integrability as in [9].

In sum, the lighting condition can be estimated using the first-order approx-
imation of spherical harmonics, regardless of the albedo and surface normal.
Although not very accurate, this first-order approximation suffices for good ini-
tial lighting conditions. It helps us reconstruct shape and reflectance properties
of the target object and can be refined afterwards.

4 Shape and Reflectance Reconstruction

In the previous section we show how to estimate the initial lighting conditions
without knowing the albedos and surface normals of the target object. With
this initial estimation L4×4, we can easily recover the albedo ρ and surface
normal N by (5). However, the results could not be accurate enough because
only first-order spherical harmonics are used. In this section, we apply the es-
timated lighting conditions and surface normals from the first-order approxi-
mation as initial, and iteratively refine lighting conditions, albedos, and surface
normals by incorporating second-order spherical harmonics into an optimization
process.

4.1 Refine Lighting Estimation

When the surface normals are reconstructed to some extent, they can really help
the re-estimation of lighting conditions even if they are not very accurate. In the
following, we show how to refine the lighting conditions with the second-order
spherical harmonics when surface normals are available.
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Given a surface normal N and two image intensities Is and It, its albedo can
be estimated using Equation 3 as:

ρs =
Is

LsH9×1
or as ρt =

It

LtH9×1
, (11)

where Ls and Lt are the sth and tth rows of L4×9, respectively. By expanding
ρs = ρt, we obtain:

[
−Is It

]
1×2

[
Lt

Ls

]
2×9

H9×1 = 0, (12)

where H9×1 can be derived analytically given surface normal N , and Is, It are
the observed intensities in two input images. This forms a linear equation where
only the lighting conditions Ls and Lt are unknown. Four observed intensities in
the four input images yield three independent equations for every pixel. With P
pixels, we have 3P equations to solve the 36 unknown coefficients of L4×9. Since
usually 3P � 36, we can solve L4×9 effectively using least-squares methods with
the help of known surface normals.

4.2 Refine Reflectance

Once we have a better estimation of the lighting conditions, we can improve the
albedo estimation with known surface normals. This can be easily done with the
following equation:

ρL4×9H9×1 = ρ

⎡
⎢⎢⎣

L1H
L2H
L3H
L4H

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

I1
I2
I3
I4

⎤
⎥⎥⎦ . (13)

The optimal albedo which has the least square error can be derived as:

ρ =
4∑

i=1

(LiHIi)/
4∑

s=1

(LiH)2 . (14)

4.3 Refine Surface Normals

With refined lighting conditions and albedos, we can further improve the esti-
mation of surface normals. For each pixel, we seek to find the best unit surface
normal N that minimizes the following energy function:

E(N) = ||ρL4×9H9×1 − I||2 =
4∑

i=1

(ρLiH9×1 − Ii)2 . (15)

Instead of using conventional convex minimization over the continuous sur-
face normal field and enforcing unity constraint explicitly on N , we adopt dis-
crete optimization over a fixed number of available unit normals. We seek an
optimal labeling which minimizes (15)

v∗ = argmin
v

E(N̂v), (16)
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where {N̂v|v = 1, 2, . . . V } is the set of available unit directions. Then the surface
normal N is refined as N̂v∗ . To produce uniform sampling of normal directions,
we start with an icosahedron, and perform subdivision on each face 5 times
recursively [20]. Totally, 10168 points are uniformly sampled on the unit sphere.

One problem of the above estimation is that the surface normals are refined
one by one independently. The generated normal field is not guaranteed to be
consistent with a 3D surface, thus we enforce integrability by solving a Poisson
equation to obtain a least-squares surface reconstruction, and subsequently the
normals are recomputed by differentiate this surface. To compute a 3D surface
from the estimated surface orientations, given the normal field N(x, y), we solve
the height field z(x, y) that minimizes

Ψ(z) =
∑
x,y

(
δz(x, y)

δx
+

Nx(x, y)
Nz(x, y)

)2

+
(

δz(x, y)
δy

+
Ny(x, y)
Nz(x, y)

)2

. (17)

This amounts to integrating the normal field. The minimization gives rise to
a large but sparse system of linear equations. The normals are then recom-
puted from this surface approximation. This step can be viewed as projecting
the possibly non-integrable normal field into the subspace of feasible normal
fields.

4.4 Iterative Algorithm

We couple our lighting, albedo, and shape estimation techniques described above
into an iterative process, where improved shape estimation leads to improved
lighting and albedo estimation and vice versa.

Initialization. Get an initial estimation of lighting condition L4×4 as described
in Section 2, then recover the surface normal N by (5).

Step 1. Refine lighting conditions L4×9 with the help of the estimated surface
normal N by solving (12).

Step 2. Refine albedos with currently estimated surface normals and lighting
conditions according to (14).

Step 3. Search the optimal surface normal for each pixel by (16). Integrate
the normal field to get an approximated surface according to (17) and then
recompute the surface normals again.

Termination. Step 1-3 are iterated until the estimated components no longer
change or the specified maximum iteration number is reached.

Each step in our iterative algorithm is guaranteed to monotonically decrease
the reconstruction error |ρLH − I| between reconstructed images and input im-
ages, except the enforcement of integrability. However, this integration step only
makes little changes to the surface in our experience and the reconstruction er-
ror does not change much after a few iterations. Therefore, our optimization
algorithm is likely to find a solution near a local optimum.
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5 Experiments

We now present experiments to evaluate our method. Because we use the second-
order approximation of spherical harmonics, certain built-in errors persist even
in the ideal case. So we first describe experiments on synthetic data to verify
some basic properties of our method.

We generate four images of a diffuse unit sphere with uniform albedo under
four different lighting conditions. We then use our method to recover the surface
normals of this sphere. Since we have ground truth, we can resolve the Lorentz
ambiguity by some known surface normals. Figure 1 shows the four input images
of this unit sphere. The recovered surface normals are shown in Figure 2, where
positive values are shown in green, and negative values are shown in red. The
mean error between the recovered and real surface normals is 0.12 degrees. This
experiment tells us that our method will produce good results in ideal situation,
that is, in the absence of sensing error, cast shadow, specularity and any other
source of noise.

We have also run our method on real images from Yale Face Database B [21].
To reduce the effect that may be caused by cast shadows, only frontally illumi-
nated images are used. Each image is lit by a single point source; thus we average
pairs of images to simulate complicated lighting conditions. This time we enforce
the integrability constraint to resolve the Lorentz ambiguity. Figure 3(a) shows
the four input images. The recovered albedos and surface normals are shown in
Figure 4. Note that there are some cast shadows, noises, unreliable pixels that
have been saturated in the four input images. But the results of our method
are still quite satisfactory. Noticeable artifacts occur in the eyes which exhibit
highly specular reflection, in the side of the nose where there are cast shadows
that we do not model, as well as in the outline of eyebrow because of alignment
error since this target object is not really static.

Fig. 1. Four input images of an unit sphere

Fig. 2. Recovered surface normals of the unit sphere. Positive values are shown in
green, and negative values are shown in red.
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(a) Input images.

(b) Surface normals rendered under estimated lighting conditions.

(c) Re-rendered images under estimated lighting conditions.

(d) De-lighted images.

Fig. 3. Experiments on real images

Albedo Nx Ny Nz

Fig. 4. Recovered albedo and surface normals. Positive values are shown in green, and
negative values are shown in red.
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Fig. 5. Re-rendered images under novel lighting and viewpoints

Figure 3(b) shows the recovered surface normals rendered with uniform albe-
dos under the estimated lighting condition of each input image. The re-rendered
images with the estimated albedos reproduce the four input images quite well, as
shown in Figure 3(c). The de-lighted images shown in Figure 3(d) exhibit much
less structure than original ones, because shading effects that are accounted for
changes in shape have been greatly attenuated. We also render novel views under
different lighting conditions and viewpoints, as shown in Figure 5. These novels
views are quite realistic, which indicates the usefulness of our method for many
applications, such as recognition under novel lighting conditions and viewpoints.

6 Conclusions and Future Work

In this paper, we proposed a method that handles the 4-source photometric
stereo problem under general unknown lighting conditions. We showed that the
lighting conditions can be estimated regardless of the albedos and object shape
when first-order approximation of spherical harmonics is adopted. Then we used
this initial estimation in an iterative process, where second-order spherical har-
monics were incorporated. During the optimization process, improved shape es-
timation leads to improved lighting and albedo estimation and vice versa. The
effects of attached shadows are considered, which benefits from the spherical
harmonic representation. The experimental results showed that our method can
derive quite satisfactory results even when only four input images are used. Fu-
ture work will be focused on introducing specularity models, prediction of cast
shadows, and utilization of color information.
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