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Abstract 

We propose a model-based tracking method, called 

appearance-guided particle filtering (AGPF), which 
integrates both sequential motion transition information 

and appearance information.  A probability propagation 

model is derived from a Bayesian formulation for this 

framework, and a sequential Monte Carlo method is 
introduced for its realization.  We apply the proposed 

method to articulated hand tracking, and show that it 

performs better than methods that only use either 

sequential motion transition information or only use 

appearance information. 

1. Introduction 

High degree-of-freedom (DOF) tracking, such as 

articulated hand tracking in arbitrary situations, is a 

challenging task.  In general, there are two approaches 

suggested for high DOF tracking.  One is the 

appearance-based approach [2][9][13][14] that estimates 

articulated motion states directly from images by learning 

the mapping from an image feature space to the object 

state space [9].  The other is the model-based approach 

[3][7][12][15][16] that estimates articulated motion states 

by projecting a 3D model on to the image space and then 

compares the projections with the observations.  One 

advantage of the former is that observations from 

arbitrary viewpoints can be processed.  However, large 

and dense reference images should be collected in 

advance to get an accurate estimation.  Also, effective 

learning or retrieval in a large image set is very 

demanding.  The latter approach can provide an accurate 

estimation when a 3D model is well initialized, but 

searching in a high-dimensional space is very complex. 

In the model-based approach, the motion state is 

recovered from the 3D configuration with the maximal 

similarity.  This problem has been formulated as an 

optimization problem [8][15], and can also be treated in a 

probabilistic framework as the state estimation of a 

dynamic system.  Since closed-form solutions of a 

highly non-linear dynamic system are intractable, 

sequential Monte Carlo methods such as particle filtering 

were introduced to solve this problem.  In the past, Isard 

and Blake [5] introduced the concept of particle filtering 

to visual tracking, named CONDENSATION.  Rui and 

Chen [10] integrated unscented Kalman filter and particle 

filtering to generate a better proposal distribution.  

Particle filtering has been widely used in articulated hand 

tracking [3][7][16] recently.  Wu et al. [16] suggested a 

method to represent the motion state in low-dimensional 

space by a set of linear manifolds constructed from base 

configurations and used particle filtering to track.  Bray 

et al. [3] integrated the stochastic meta-descent 

optimization into particle filtering to find good particles 

for tracking, while Lin et al. [7] proposed a stochastic 

simplex search algorithm by combining the Nelder-Mead 

algorithm with particle filtering in a feasible space. 

However, most of the particle filtering-based high DOF 

hand-tracking methods only use visual information from 

previous time steps.  Although applying state estimators 

to a dynamic system has been shown to be effective for 

visual tracking, it has certain limitations.  First, only 

initial states are employed; thus, the tracking process may 

get trapped in local minimums.  Second, existing state 

estimation methods find it difficult to apply known object 

appearance information to boost the tracking performance, 

even when such information is easy to acquire.  To 

overcome these difficulties, we study the state estimation 

of a dynamic system under the assumption that there are 

some known attractors, in addition to the initial state, in 

the state space.  In this paper, an attractor is referred to 

as a state space vector whose observation is known.  For 

a visual tracking problem, attractors are some reference 

images of the objects with known motion states, and serve 

as prior knowledge to guide the tracking in a 

high-dimensional space. 

2. Statistical Model and Its Derivations 

2.1. Observation Model for Hand Tracking 

Let the state parameter vector of a target at time t be 

denoted as xt, and its observation as zt.  The history of 

observations from time 1 to t is denoted as Zt = {z1,…, zt}.  

A generic 3D hand model that has 22 DOFs is used for 

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 



hand tracking in our work, where each finger has 4 DOFs 

and the palm has 2 DOFs of rotation.  In our current 

implementation, the likelihood p(zt| xt) is measured by 

using hand silhouettes.  A hand area HR is rendered from 

the 3D hand model under the state xt.  For each input 

hand area HI, we define the likelihood by calculating the 

difference area between HI and HR.  In practice, two 

forces are formulated to minimize the difference area.  

One is the shrink force, Fshrink, which has a tendency to 

shrink fingers of the 3D model to minimize the area, 

Eshrink = HR−(HI∩HR).  The other force is the stretch 

force, Fstretch, which has a tendency to expand fingers of 

the 3D hand model to minimize the difference area, Estretch

= HI−(HI∩HR).  The likelihood is defined by combining 

these two forces.  Then, the likelihood is defined as 

p(zt| xt)

∝ exp(−[w1⋅Area(Eshrink)+w2⋅Area(Estretch)]
2
/2σ2

),   (1) 

where Area(E) denotes the area of E, σ is a variance 

constant, and w1 and w2 are two weights. 

Note that when w1 = w2 = 0.5, p(zt| xt) ∝

exp (−Area[(HI∪HR)−(HI∩HR)]
2
/8σ2

),

which is the total area of the non-overlapping regions. 

2.2.  Bayesian Formulation of AGPF 

Assume that there are n attractors, A1,…, An, in the state 

space.  These attractors are pre-collected training 

samples whose observations are known and affect the 

states in Xt = {x1,…, xt} in such a way that the state xt is 

not only influenced by its previous state, xt−1, but also by 

A1,…, An.  With such prior information, the problem we 

focus on is as follows: 

Given a set of observations from time 1 to t, Zt = {z1,…,

zt}, and a set of attractors A = {A1,…, An}, find the 

maximal posterior (MAP) estimation of the state xt

according to the observations Zt and the attractors A.

To achieve this, we investigate the probability: 

p(xt| Zt, A).      (2) 

Suppose that  

(i) The history of observations, Zt, is conditionally 

independent of the attractors, A, given Xt.

(ii) The state at time t, xt, is conditionally independent of 

the previous states Xt−2, given xt−1 and A.

The dynamic Bayesian network (BN) structure considered 

in our work is shown in Fig. 1(a).  Note that if the nodes 

and links in associations with A are all removed, it 

degenerates to a BN structure used for the classical 

particle filtering, where simply a first-order Markov chain 

is concerned; thus, the states are only influenced by 

previous time steps. 

By condensing {A1,…, An}, {x1,…, xt−1}, and {z1,…, zt−1}

to the super nodes A, Xt−1, and Zt−1 in the BN, respectively, 

(as shown in Fig. 1(b)), it is easy to observe from the 

D-separation property [11] that there are some other 

conditional independencies inherent in the BN as shown 

below: 

(iii) The observation at time t, zt, is conditionally 

independent of Zt−1 and Xt−1, given the state xt.

(iv) The state at time t, xt, is conditionally independent of 

Zt−1, given the previous states Xt−1.

From (i) to (iv), equation (2) can be resolved as  

p(xt| Zt, A) = 
−11 t...xx p(Xt | Zt, A) ∝

−11 t...xx p(Xt, Zt, A)

=
−11 t...xx p(A| Xt, Zt)⋅p(Xt, Zt)

=
−11 t...xx p(A| Xt)⋅p(Xt, Zt)     (3) 

=
−11 t...xx p(A| Xt)⋅p(zt| xt)⋅p(xt| Xt−1, Zt−1)⋅p(Xt−1, Zt−1)

=
−11 t...xx p(A| Xt)⋅p(zt| xt)⋅p(xt| Xt−1)⋅p(Xt−1, Zt−1).  (4) 

In (4), the term p(A| Xt) can be rewritten as 

p(A| Xt) = p(A, Xt−1, xt)/p(Xt−1, xt)

= p(xt| Xt−1, A)⋅p(A| Xt−1)/p(xt| Xt−1)

= p(xt| xt−1, A)⋅p(A| Xt−1)/p(xt| Xt−1).  (5) 

Note that from (3), 

p(xt−1| Zt−1, A) ∝
−21 t...xx p(A| Xt−1)⋅p(Xt−1, Zt−1).

     (a)      (b)

Figure 1.  (a) The dynamic BN structure of AGPF.  (b)A 

concise representation. 

A1 An

xt−1 xtx1

zt−1 ztz1 ……

……

…… A

Xt−1 xt

Zt−1 zt

An−1
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Then, by substituting (5) into (4), we have  

p(xt| Zt, A) ∝ p(zt| xt) −1tx
p(xt| xt−1, A)⋅p(xt−1| Zt−1, A). (6) 

Equation (6) relates the posterior probabilities p(xt| Zt, A)

to p(xt−1| Zt−1, A) recursively, which shows how the 

posterior probabilities propagate given the prior 

probabilities zt and A.  Like the original particle filtering, 

the MAP estimation of xt can be iteratively obtained from 

previous time steps.  A major distinction is that xt is 

further affected by the attractors in A which contain prior 

appearance information. 

3. Realization of AGPF 

The Bayesian formulation of classical particle filtering is 

expressed as 

p(xt|Zt) ∝ p(zt|xt)⋅p(xt|Zt−1),  (7) 

To precisely compute the posterior probability p(xt|Zt) for 

obtaining a Bayesian optimal solution is computationally 

infeasible for nonlinear/non-Gaussian systems.  In 

particle filtering, sequential Monte Carlo methods using 

importance sampling or re-sampling have been adopted to 

realize the computations [1][6][10].  The use of importance 

sampling has been shown to be a powerful methodology 

for sequential signal processing, since it can cope with 

difficult nonlinear and/or non-Gaussian problems. 

However, tracking with particle filtering that depends 

only on the previous time step and the current frame 

suffers from undesirable drifting effects, particularly for 

long image sequences and/or high DOF moving objects.  

Unlike classical particle filtering in which tracking 

employs only sequential state probability propagation 

information, we have shown (in Section 2.2) how to 

obtain Bayesian optimal solutions when further prior 

knowledge of object appearances is imposed.  A suitable 

importance sampling strategy for finding the solutions, 

referred to as AGPF, is derived below. 

To realize (6), like classical particle filtering, we represent 

the posterior distribution p(xt−1| Zt−1, A) by a set of 

weighted samples {(st
i
−1, πt

i
−1), i = 1,…, N} at time-step 

t−1, where st
i
−1 is the sample drawn from p(xt−1| Zt−1, A)

and πt
i
−1 is the associated weight.  The weights are 

chosen using the principle of importance sampling [4] 

with πt ∝ p(Xt| Zt, A)/q(Xt| Zt, A), where q(Xt| Zt, A) is an 

importance distribution (or proposal function) from which 

it is easier to draw samples than from the probability 

density p(Xt| Zt, A).

To derive a useful iteration scheme in which prior 

appearance information is considered, similar to the 

derivation of classical particle filtering, we use an 

importance function that can be factorized as q(Xt| Zt, A)

= q(xt| Xt−1, Zt, A)⋅q(Xt−1| Zt−1, A), where st
i
 can be 

generated from q(xt| Xt−1, Zt, A) and St
i
−1 = {s1

i
,…, st

i
−1; i = 

1,…, N} can be generated from q(Xt−1| Zt−1, A).  

Consider that 

πt ∝ p(Xt| Zt, A)/q(Xt| Zt, A) ∝ p(Xt, Zt, A)/q(Xt| Zt, A).  (8) 

In addition, according to (3) and (4), the term p(Xt, Zt, A)

can be rewritten as 

p(Xt, Zt, A) = p(xt| xt−1, A)⋅p(A| Xt−1)⋅p(zt| xt)⋅p(Xt−1, Zt−1)

∝ p(zt| xt)⋅p(xt| xt−1, A)⋅p(Xt−1| Zt−1, A). (9) 

By substituting (9) into (8), we have 

πt ∝ πt−1⋅[p(zt| xt)⋅p(xt| xt−1, A)]/[q(xt| Xt−1, Zt, A)] (10) 

= πt−1⋅[p(zt, xt| xt−1, A)]/[q(xt| Xt−1, Zt, A)].

The expectation value of πt, conditional upon Xt−1, Zt and 

A, is 

=
−

][E ),,|( 1 tq ttt
π

AZXx tx
),,|( 1 AZXx tttt q −⋅π

∝
tx

),|,( 11 Axxz −− ⋅ tttt pπ = ),|( 11 Axz −− ⋅ ttt pπ .

Theoretically, an optimal importance distribution can be 

chosen by minimizing the variance of the importance 

weights conditional upon Xt−1, Zt and A [4].  That is, 

][Var ),,|( 1 tq ttt
π

AZXx −

2

),,|(

2

),,|( ])[(E][E
11 tqtq tttttt

ππ
AZXxAZXx −−

−=

[)( 2

1−∝ tπ
tx )],|(

),,|(

),|,(
1

2

1

1

2

Axz
AZXx

Axxz
−

−

− − tt

ttt

ttt p
q

p .

Since p(zt, xt| xt−1, A) = p(xt| xt−1, zt, A)⋅p(zt| xt−1, A), the 

variance is minimized to zero when the importance 

distribution is chosen as q(xt| Xt−1, Zt, A) = p(xt| xt−1, zt, A).  

In this case,  

q(xt| Xt−1, Zt, A) = p(zt| xt, xt−1, A)⋅p(xt| xt−1, A)/p(zt| xt−1, A)

= p(zt| xt)⋅p(xt| xt−1, A)/p(zt| xt−1, A). (11) 

Substituting (11) into (10), the optimal weight is  

πt ∝ πt−1⋅p(zt| xt−1, A) = πt−1 ′tx p(zt| x′t)⋅p(x′t| xt−1, A).   (12) 

However, the optimal importance weight (12) is difficult 

to evaluate since an integral is needed.  In practice, we 

choose q(xt| Xt−1, Zt, A) = p(xt| xt−1, A) instead.  This is 

similar to the common choice for classical particle 

filtering, q(xt| Xt−1, Zt) = p(xt| xt−1), but the influence of A

is imposed.  In this case, πt ∝ πt−1⋅p(zt| xt), which is the 

same as that in classical particle filtering. 
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4. AGPF Filtering Distributions 

We set the distribution of p(xt| xt−1, A) as a mixture of 

p(xt| xt−1) and p(xt| Ai), where i = 1, …, n.

p(xt| xt−1, A) = α0⋅p(xt| xt−1) + Σi=1,…,nαi⋅p(xt| Ai), (13) 

where Σi=0,…,n αi = 1. 

In (13), the probability p(xt| xt−1) is the probability caused 

by state transition, and p(xt| A) is the probability caused 

by appearance similarity.  By substituting (13) into (6), 

we have 

p(xt| Zt, A) ∝ p(zt| xt)⋅[Σi=1,…,nαi⋅p(xt| Ai) + 

−1tx
α0⋅p(xt| xt−1)⋅p(xt−1| Zt−1, A)].  (14) 

When α0 is set to one, we obtain the classical particle 

filtering.  In contrast, if α0 is set to zero, our method 

degenerates to a pure appearance-based approach. 

In AGPF, a sample set {st
i
, i = 1,…, N} is randomly 

selected and generated from {st
i
−1} via the transition 

model p(xt| xt−1, A).  Since p(xt| xt−1, A) is defined as a 

mixture distribution of p(xt| xt−1) and p(xt| A) in our 

approach, we generate particles for both of them.  Let 

{ t
k
, k = 1,…, M1} and {a

j
, j = 1,…, M2} be sets of 

samples generated from p(xt| xt−1) and p(xt| A),

respectively, where M1+M2 = N.  To draw the mixture 

distribution in (6), M1 is set as α0⋅N and M2 is set as 

(1−α0)⋅N.  Hence, the sample set at time-step t {st
i
, i = 

1,…, N} is { t
k
}∪{a

j
}.  The weight πt

i
 of each sample in 

{st
i
} is calculated from the observation distribution p(zt| xt

= st
i
) by comparing the similarity between observation zt

and the state xt.  Finally, the desired posterior 

distribution p(xt| Zt, A) can be represented by the set of 

weighted samples {(st
i
, πt

i
)}.  The state xt at time-step t is 

estimated by 

xt
*
 = st

*
, where πt

*
 = max(πt

i
).   (15) 

5. AGPF-based Hand Tracking 

A primary difficulty of articulated hand tracking is that 

the motion DOF is too high, resulting in too many 

possible appearances.  Although there are some 

approaches that use a large quantity of pre-collected 

appearances [2][9], collecting all the appearances for 

comparison is still too hard to be feasible.  On the other 

hand, by starting from the initial state in association with 

an articulated configuration, all the configurations (in 

association with their appearances) can be reached by 

gradually changing the articulated motion parameters.  

This is a significant reason why state-space methods (such 

as particle filtering) have been widely used in recent 

studies.  However, since articulated configurations are 

estimated only from sequential updating information, 

state-space methods easily mis-track, especially when 

motions between two consecutive images are large.  The 

AGPF method integrates both the motion transition model 

and appearance information, and thereby avoids both 

difficulties. 

To construct the appearances for AGPF, only a limited 

number of the appearances are needed, since sequential 

motion-transition information is also available.  In our 

work, three appearances for each finger and nine 

appearances for global hand motion are pre-collected by 

bending the finger and rotating the palm to different 

levels.  An example of the appearances of the index 

finger is shown in Fig. 2. 

In our framework, all the attractors affect the state to be 

estimated with certain probabilities.  Nevertheless, to 

make our implementation more efficient, we use the most 

significant K attractors which have the largest probability 

values of p(zt| Ai) instead.  As the attractors far away 

from the current state usually have small probabilities that 

can be neglected, our method becomes more efficient by 

using this strategy.

6. Experimental Results 

In our experiments, we compare the tracking results of the 

AGPF method with those obtained by either using 

classical particle filtering, or by using appearance 

information only.  Image sequences with a large range of 

motions are captured.  Twenty particles are used for each 

experiment, i.e., N = 20.  The probabilities p(xt| xt−1) and 

p(xt| Ai) are modeled by Gaussian distributions, 

p(xt| xt−1) ~ N(xt−1, Σ1) and p(xt| Ai) ~ N(Ai, Σ2),

respectively, where Σ1 and Σ2 are diagonal covariance 

matrices. 

In the first experiment (Fig. 3), K is set as one and an 

8-DOF model obtained by bending two fingers is used.  

There are 3
2
 = 9 attractors, where 3 attractors are 

(a)   (b)   (c) 

Figure 2.  Three appearances of the index finger. 
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generated for each finger.  Fig. 3(a) shows part of the 

input images.  The tracking results of classical particle 

filtering, the pure appearance-based approach (by setting 

α0 as zero), and the AGPF method are shown in Figs. 3(b), 

3(c), and 3(d), respectively.  From Fig. 3(b), one can see 

that classical particle filtering fails to track the third, fifth, 

and sixth images.  In addition, tracking also is not very 

accurate when using pure appearance information, as 

shown in Fig. 3(c), particular when no pre-collected 

images match the current motion state (e.g., the second 

image in Fig. 3(c)).  By contrast, the proposed AGPF 

successfully recovers these motions, as shown in Fig. 3(d). 

In the second experiment (Fig. 4), a 14-DOF model and 

9×3
3
 = 243 attractors (containing 3 attractors for each 

finger and 9 attractors for global hand rotation) are used, 

and K is set to one.  As with the first experiment, the 

tracking results from using classical particle filtering or 

pure appearance information are not very accurate in this 

experiment.  Fig. 4 (b) shows that classical particle 

filtering fails to track all of the images, except the first 

one.  Furthermore, the fourth image in Fig. 4(c) shows 

that tracking also is not very accurate when using pure 

appearance information.  However, our proposed method 

provides better results, as shown in Fig. 4(d). 

Some other experiments were performed with different 

DOFs and different numbers of attractors.  Fig. 5 shows 

the results of tracking four fingers with 16 DOFs.  In this 

experiment, 81 attractors are used.  Another four-finger 

tracking with 81 attractors is shown in Fig. 6.  Finally, 

Fig. 7 shows the tracking results of global hand motion 

with five-finger articulation, where the DOF is 22 with 

2,187 attractors.  The K value sets for the above three 

experiments are one, three, and one, respectively. 

To demonstrate how the tracking trajectory is influenced 

by the attractors, we use the first experiment as an 

example.  Fig. 8 shows the tracking trajectories of 

classical particle filtering and AGPF, where principal 

component analysis (PCA) is used to reduce the high 

dimensional representation of samples to a 2D space for 

visualization.  In Fig. 8, the blue points and line 

respectively represent the samples and trajectory 

generated by classical particle filtering, and the red points 

and line respectively represent those generated by the 

AGPF method.  The point sign, •, represents the samples 

generated from the motion transition model and the star 

sign, ∗, represents the samples generated by attractors.  

In addition, the attractor with the maximum probability 

p(zt| Ai) is shown as a green circle.  From this figure, it is 

obvious that attractors can guide the motion trajectory 

toward a more accurate tracking result. 

One can see from the experiments that, with a limited 

number of pre-collected appearances, our approach 

significantly refines the performance of the approach of 

classical particle filtering in which only a motion 

transition model is used, and also performs better than the 

approach when only appearances are used. 

7. Conclusions

In this paper, we give a statistically optimized framework 

for tracking that considers both pre-collected appearance 

and on-line motion transition information.  A probability 

propagation model that integrates both types of 

information is derived.  With the pre-collected 

appearances, the proposed method can still be performed 

efficiently since a sequential Monte Carlo method is 

provided.  By applying prior appearance information, 

our method can recover rapid motions that are difficult to 

solve by using simple particle filtering.  In addition, 

unlike pure appearance approaches, the proposed method 

can handle unseen images by taking advantage of the 

motion transition model, since it is possible to recover 

motion states even if they are not pre-selected in the 

appearance database.  Promising tracking results are 

obtained by using the proposed method in our 

experiments. 
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Figure 3.  Two-finger tracking with 8 DOFs.  (a) Input sequence.  (b) Tracking results by using classical particle filtering.  (c) 

Tracking results by using appearance information only.  (d) Tracking results by using the AGPF method. 

 (a) 

 (b) 

 (c) 

 (d)

Figure 4.  Global hand motion with three-finger articulation in 14 DOFs.  (a) Input sequence.  (b) Tracking results by using classical 

particle filtering.  (c) Tracking results by using appearance information only.  (d) Tracking results by using the AGPF method.
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Figure 5.  Four-finger tracking with 16 DOFs.  (a) Input sequence.  (b) Tracking results by using classical particle filtering.  (c) 

Tracking results by using appearance information only.  (d) Tracking results by using the AGPF method. 

Figure 6.  Four-finger tracking with 16 DOFs.  (a) Input sequence.  (b) Tracking results by using classical particle filtering.  (c) 

Tracking results by using appearance information only.  (d) Tracking results by using the AGPF method. 
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Figure 7.  Global hand motion with five-finger articulation in 22 DOFs.  (a) Input sequence.  (b) Tracking results by using classical 

particle filtering.  (c) Tracking results by using appearance information only.  (d) Tracking results by using the AGPF method.

Figure 8.  Tacking trajectories reduced to a 2D PCA space of classical particle filtering and the AGPF of the first experiment (Figure 3).  

The blue points and line respectively represent the samples and trajectory generated by classical particle filtering, and the red points and 

line respectively represent those generated by the AGPF method.  The point sign, •, represents the samples generated from the motion 

transition model and the star sign, ∗, represents the samples generated by attractors.  In addition, the attractor with the maximum 

probability p(zt| Ai) is shown as a green circle.  From this figure, it is obvious that attractors can guide the motion trajectory toward a 

more accurate tracking result. 
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