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Visual Tracking in High-Dimensional State Space
by Appearance-Guided Particle Filtering

Wen-Yan Chang, Chu-Song Chen, and Yong-Dian Jian

Abstract—In this paper, we propose a new approach, appear-
ance-guided particle filtering (AGPF), for high degree-of-freedom
visual tracking from an image sequence. This method adopts
some known attractors in the state space and integrates both ap-
pearance and motion-transition information for visual tracking.
A probability propagation model based on these two types of
information is derived from a Bayesian formulation, and a par-
ticle filtering framework is developed to realize it. Experimental
results demonstrate that the proposed method is effective for high
degree-of-freedom visual tracking problems, such as articulated
hand tracking and lip-contour tracking.

Index Terms—Appearance-guided particle filtering (AGPF), ar-
ticulated hand tracking, lip-contour tracking, particle filtering, se-
quential Monte Carlo method, visual tracking.

I. INTRODUCTION

TRACKING in high-dimensional space is a challenging
problem. Unlike the 2-D tracking, which focuses on

locating the target in images, high degree-of-freedom (DOF)
tracking further involves highly complex searching or matching.
In recent years, high DOF tracking has been addressed on the
topics of articulated hand and body gesture tracking in arbitrary
situations. In general, two types of approach are used to solve
this problem: appearance-based and dynamic model-driven
methods.

In this paper, we mainly focus on articulated hand tracking;
however, it can be demonstrated that our method is also ap-
plicable to other high DOF visual tracking problems. Appear-
ance-based approaches employ mainly static appearance infor-
mation about an object of interest. By collecting a set of im-
ages of distinct poses of the target object, articulated motion
states can be estimated directly from the images by learning
the mapping from an image feature space to the object state
space [2], [3], [29], [33], [36]. In line with this research track,
Rosales et al. [29] proposed the specialized mappings archi-
tecture (SMA), a state recovery method that learns the map-
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ping between image features and their corresponding states for
3-D hand posture estimation. In [36], an image of an object is
represented as a graph on which the nodes are labeled with a
local image description and the edges are labeled with a dis-
tance vector. Elastic graph matching (EGM) with multiple fea-
tures is then used to identify a proper posture. Athitsos and
Sclaroff [2] formulated high DOF tracking as an image data-
base indexing problem, and used a hierarchical retrieval method
to find a proper state from a database containing images with
simple backgrounds. To apply this concept to a cluttered en-
vironment and improve its performance, Euclidean embedding
and probabilistic line matching methods are suggested in [3].
Furthermore, image matching by significant point groupings
can also be used for appearance retrieval, as proposed in [7].
Stenger et al. [33] introduced a tree-based representation with a
Bayesian filtering search technique to speed up tracking, while
Shakhnarovich et al. [32] proposed a hashing-based approach
for efficient searching of appearances.

In appearance-based approaches, precollected appearances
can be treated as discrete samples in an object state space.
However, a major difficulty with such approaches is that a large
number of samples of appearances are required for high-DOF
tracking in nearly arbitrary situations, which is infeasible in
practice. On the other hand, dynamic model-driven approaches
focus on dynamic and continuous information. In this type of
approach, a dynamic system is formulated for visual tracking,
and state-estimation techniques are suggested to solve it.
Tracking in high DOF has been formulated as an optimiza-
tion problem [26], [38]. In [38], Wu and Huang suggested a
divide-and-conquer framework for tracking hand motion by
dividing it into global motion and local finger motion. Lu et al.
[26] injected multiple cues, including edges, optical flow,
and shading information, into a deformable model to capture
articulated hand motion in a simple environment. However,
temporal coherence of sequential motions is not considered in
these optimization methods.

For temporal information to be applied effectively, a dynamic
system is formulated for state estimation in high-dimensional
space so that estimation can be performed sequentially and
optimally based on the system’s dynamics. To this end,
Isard and Blake [17] introduced particle filtering for visual
tracking of a dynamic system based on sequential Monte
Carlo estimation. As particle filtering can cope with diffi-
cult nonlinear/non-Gaussian problems, the methodology has
been widely used for dynamic model-driven articulated hand
tracking [6], [25], [34], [39] in recent years. Wu et al. [39]
proposed a method that represents the motion state in low-di-
mensional space by a set of linear manifolds constructed from
base configurations, and used particle filtering to track hand
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Fig. 1. Concept of attractors: Attractors in the state space are represented as
red points and their corresponding appearances in the image feature space are
represented as green points. The black solid curve represents the ground-truth,
the green dash-dotted curve in the image feature space represents an observa-
tion sequence, and the blue dotted curve illustrates that tracking may easily drift
when the posterior is evaluated solely on the observations in a motion-transi-
tion model. In contrast, with attractors, appropriate guidance can be given for
tracking, as shown by the red dashed curve.

motions. Bray et al. [6] integrated stochastic meta-descent
optimization into particle filtering to find good particles for
tracking, while Lin et al. [25] proposed a stochastic simplex
search algorithm that combines the Nelder–Mead algorithm
with particle filtering in a feasible space. Sudderth et al. [34]
used multiple independent trackers for each hand articulation,
and applied Nonparametric Belief Propagation (NBP) to adjust
particles iteratively for obtaining better estimations. In addition
to particle filtering, Bors and Pitas [5] suggested a Bayesian
approach for multiobject tracking and prediction in an image
sequence. Based on the median radial basis function network,
both the segmentation and the optical flow of moving objects
can be estimated with their method.

Although applying state estimators to a dynamic system has
been proven effective for visual tracking, most dynamic model-
driven high-DOF tracking methods only use visual information
from previous time steps. Some limitations thus arise. First, as
tracking is only initiated from a single state whose appearance is
known, the dynamic transition information from previous time
steps plays a decisive role during tracking, and the tracking
process may easily get trapped in local minima. Second, it is
difficult to apply known object appearance information to boost
the tracking performance, even when such information is easy
to acquire.

To resolve these limitations, we study the state estimation
problem of a dynamic system under the assumption that, in ad-
dition to the initial state, there are some known attractors in
the state space. In this paper, an attractor is defined as a state
space vector whose observation is known. For a visual tracking
problem, attractors can be treated as some motion states of the
objects with known reference images. In other words, an at-
tractor is a static state containing appearance information in the
image feature space, and serves as prior knowledge to guide
the tracking in a high-dimensional state space. The concept is
illustrated in Fig. 1. Note that, unlike some studies based on
grid-based filtering [33], [35] in which the state space is discrete
and consists of a finite number of states, the state space in our
method is continuous and unlimited. The attractor formalism
can be seen as a specific constraint on a high-dimensional par-
ticle filtering.

Fig. 2. Dynamic Bayesian network structure of particle filtering.

The advantages of considering attractors in a dynamic
system include that they can regulate the configuration space
for a high-DOF tracking problem, and can be precollected or
pregenerated to boost the tracking performance of a dynamic
model-driven approach. Given an observation sequence in
the image feature space, we endeavor to find the maximum
a posteriori (MAP) solution based on an attractor-regulated
dynamic model. When the state of time in the dynamic model
is represented as a first-order Markov chain, particle filtering
is an efficient means of inferring an approximation of the
optimal solution if no attractors are involved. However, it is not
applicable formally to the case when attractors are applied. In
this paper, we extend particle filtering to appearance-guided
(or attractor-guided) particle filtering (AGPF), and derive a
probability propagation framework to find its MAP solution.

The remainder of this paper is organized as follows. The
AGPF framework is introduced in Section II. In Section III, we
introduce the mixture-based AGPF and describe some filtering
distributions used in our work. Sections IV–VI present the ap-
plications of AGPF to articulated hand tracking and lip-contour
tracking, respectively. Section VII contains a discussion of
AGPF. Then, in Section VIII, we present our conclusions.

II. APPEARANCE-GUIDED PARTICLE FILTERING

We begin with a concise review of particle filtering and then
introduce the AGPF framework.

A. Review of Particle Filtering

Let the state parameter vector of a target at time be denoted
as , and its observation as . The history of observations from
time 1 to is denoted as . The Bayesian
formulation of particle filtering is expressed as

(1)

where a first-order Markov chain of the states is considered, and
the likelihood is the observation model. The observa-
tion, , is conditionally independent of the history of the ob-
servations from time 1 to , , given the state . The
Bayesian network (BN) structure of particle filtering is shown
in Fig. 2.

To compute the posterior probability, , a closed-form
solution with an integral over all possible state values in each it-
eration is formulated [1], [17]; however, it is computationally in-
tractable. In particle filtering, sequential Monte Carlo methods
using importance sampling or re-sampling have been adopted
to realize the computations [1], [18]. The use of importance
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Fig. 3. Some attractors used in our work. The appearance of an attractor is obtained by rendering the associated 3-D hand model.

sampling has been shown to be a powerful strategy for sequen-
tial signal processing. With the dynamic/temporal propagation,
particle filtering has been widely used for tracking applications
[6], [25], [27], [39], [40]. Nevertheless, tracking with particle
filtering that depends only on the previous time step and the
current frame tends to cause undesirable drifting in high-DOF
tracking, particularly for fast moving targets.

B. Probability Propagation of AGPF

Unlike particle filtering, in which the tracking only employs
sequential state probability propagation information, we show
how to obtain Bayesian optimal solutions when further prior
knowledge of object appearances is introduced, and derive suit-
able importance sampling strategies for finding the solutions.
Existing appearance-based approaches require dense samples in
the state space. In our approach, however, only a limited number
of samples (referred to as attractors), need to be selected in the
state space. Once the attractors have been selected, their appear-
ances can be generated by the observation model. For instance,
in articulated hand tracking, appearances are generated from the
projections of a generic 3-D hand model with distinct configu-
ration parameters, examples of which are shown in Fig. 3. The
generic model we currently use is textureless; thus, silhouettes
of the rendered hand images serve as the main visual clues of
appearances.

In this work, we assume that there are attractors,
, in the state space. These attractors affect the

states in in such a way that the estimation
of state is not only related to its previous state, , but also
to the attractors . With the prior knowledge
inherent in the appearances, we investigate the probability

(2)

Fig. 4(a) shows the BN structure considered in our frame-
work. Note that if the nodes and links associated with are
removed, it degenerates to a BN structure for particle filtering,
where only a first-order Markov chain is considered. By con-
densing , , and as
the super nodes , , and in the BN, respectively, as
shown in Fig. 4(b), it can be derived from the D-separation prop-
erty [31] that there are two properties.

i) The observation at time , , is conditionally indepen-
dent of the observations , the attractors , and
the previous states , given the state . That is,

.
ii) The state at time , , is conditionally independent of

the observations , given the previous states ,
and the attractors . That is,

.

Fig. 4. (a) Dynamic Bayesian network structure of the AGPF. (b) Concise rep-
resentation of the AGPF.

According to the above properties, (2) can be resolved as fol-
lows:

(3)

Equation (3) relates the posterior probabilities
to recursively, which shows how the posterior
probabilities propagate, given the prior probabilities and .
Likewise, the MAP estimation of can be iteratively obtained
from previous time steps. Compared to the formulation in (1),
there is a major distinction between the original particle filtering
and that of AGPF. In the MAP solution (3), the state transition
probability becomes , instead of . This
shows how the attractors affect the Bayesian optimal solution in
probability propagation.

C. Sequential Monte Carlo Framework of AGPF

The probability propagation solutions of (3) are still com-
putationally infeasible, since the integral over all possible
state values is too complex to evaluate. To realize (3),
as in standard particle filtering, we represent the poste-
rior distribution by a set of weighted samples

at time step , where is the
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sample and is the associated weight. The weights are
chosen by using the principle of importance sampling [14]
with , where
is an importance distribution (or proposal function) from
which it is easier to draw samples than from the proba-
bility density . In this case, we suggest that

is a suitable choice for
the proposal function. This is similar to the common choice
in particle filtering, , but the
influence of is imposed. The weight can then be shown as

(4)

We refer readers to [8] for the details of the derivation.

III. MIXTURE-BASED AGPF

We have laid the theoretical foundation for AGPF and de-
rived the probability propagation (3) that is related to the at-
tractor-guided BN shown in Fig. 4. In addition, an importance
sampling strategy is described for finding its approximate so-
lution. We now consider how to set the state transition proba-
bility (or proposal function) , which is an impor-
tant issue when employing the AGPF framework for tracking.

The transition probability can be set in various ways. We ap-
proximate it by setting as a mixture distribution
of and ,

(5)

where . In (5), the probability is
caused by the state transition, and the probability is
caused by the attractors that regulate the state transition prob-
ability. We refer to this setting as a mixture-based AGPF. Using
the mixture model in the transition probability does not have a
strong physical background, but is based on a heuristic argument
that is introduced to come to a feasible solution. Other nonmix-
ture ways of specifying are possible as long as
such ways allow multimodal distributions. A characteristic of
the mixture-based AGPF is that its particle set can be clearly
separated into an online subset associated with the previous state

and an offline subset associated with the attractors , as
analyzed below.

Since a sample set is generated from
via the proposal function defined

as a mixture of and in (5), we gen-

erate particles for both of them. Let

and be sets of samples generated from
and , respectively, where .

To draw the mixture distribution in (5), is set as and
is set as . Hence, the sample set at time step ,

, is .

Note that, unlike , which have to be gen-

erated online from during tracking, ,
the particles from , can be constructed offline and stored
before tracking since are known in advance. More flex-
ibly, the particles can also be randomly chosen from a
larger set of samples generated offline. The appearances of
the pregenerated samples can be prerecorded for likelihood

Fig. 5. Graphical representation of the mixture-based AGPF method at time
step t. The black particles are generated from the attractors, i.e., p(xxx jAAA), and
the gray particles are generated from the transition model according to the pre-
vious time steps, i.e., p(xxx jxxx ). Note that, for efficiency, the black particles
can be generated “offline” via pseudo randomness.

estimation; thus, our method combines particles related to both
dynamic model-driven information and appearance information
for tracking. Fig. 5 shows an illustration of the mixture-based
AGPF. In our work, the re-sampling procedure [1] is also
adopted as suggested in many particle filter-based methods.

Accordingly, in a mixture-based AGPF, some particles are
generated from the attractors , and others are
produced from the previous state, ; whereas in the orig-
inal particle filtering, all particles are taken from . Also,
note that in [39], particles are generated on a linear approxima-
tion of the appearance manifold; thus, under tracking, the state
is restricted to being synthesized from the precollected appear-
ances. However, our method does not have this restriction and
we allow the tracking to be performed in a free (state) space.
For state space regions not covered by the precollected appear-
ances in high-DOF tracking, our method can thus still work by
tracking with the system dynamics. A more detailed relation-
ship between mixture-based AGPF and particle filtering can be
shown by substituting (5) into (3) as follows:

(6)

The larger is, the more important the sequential motion
transition information will be and vice versa. When is set
to one, it degenerates to the original particle filtering in which
only dynamically propagated information is used. In contrast, if

is set to zero, only static information is used and our method
degenerates to a pure appearance-based approach.

In our work, the probabilities and are
modeled as Gaussian distributions

respectively, where and are diagonal covariance matrices.
In practice, since the attractors far away from the current state
usually have small probabilities that can be neglected, we only
use the most significant attractors, which have the largest
probability values of . As particles are generated
from the local attractors and the previous tracked state, the
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Gaussian-mixture-based AGPF can be viewed as an instance of
tracking by modeling the appearance locally and adaptively with
a point (sample)-based representation. The appearance is locally
approximated by both the pretracked state and some local attrac-
tors close to the pretracked state, and Bayesian probability prop-
agation serves as a foundation of selecting appropriate sample
points in the state space for the approximation.

IV. AGPF-BASED HAND TRACKING

A major difficulty with articulated hand tracking is that
the motion DOF is too high, resulting in too many possible
appearances. Although some approaches use a large number
of precollected appearances [3], [29], collecting all the ap-
pearances for comparison would be infeasible. On the other
hand, by starting from the initial state in association with an
articulated configuration, all the configurations (in associa-
tion with their appearances) can be recovered by gradually
changing the articulated motion parameters. This is one reason
that state-space methods (such as particle filtering) have been
widely used in recent studies. However, since articulated
configurations are only estimated from sequential transition
information, state-space methods easily mis-track, especially
when the motions between two consecutive images are large.
In addition, once mis-tracking occurs, it cannot be corrected
by later input images. Since the AGPF method integrates the
motion transition model and appearance information, it avoids
these difficulties.

For tracking applications, the likelihood has
to be specified based on . As in many approaches [33], [39],
an area of the skin color region and edge information are used
to measure the likelihood for articulated hand tracking. Assume
that these two visual clues are independent. Given , the prob-
ability can be measured by the two factors, skin color
area and edge information

(7)

To evaluate , the 3-D model corresponding to
is projected onto the image plane to obtain a binary silhou-
ette image , where means the pixel be-
longs to the projected silhouette; otherwise, . For

, we compute the area difference, , between and
as

(8)

where is a pixel-wise skin-color classifier. The output value
of is set as one if is a foreground-color pixel;
otherwise, it is set to zero if is a background pixel. In this
work, the pixel-wise binary classifier, , is constructed by the
method proposed by Jones and Rehg [21]. We then set

(9)

where is a standard deviation.
Note that when a particle is generated from (i.e.,

for some ), is online synthesized from the corresponding

TABLE I
AGPF ALGORITHM FOR ARTICULATED HAND TRACKING

3-D hand model; otherwise, if it is generated from an attractor
(i.e., for some ), is the silhouette of a prestored
appearance that is offline generated. Since projecting a 3-D hand
model onto the image plane is time-consuming, applying several
prestored silhouettes directly makes the implementation more
efficient.

To estimate , we use the directed Chamfer dis-
tance (DCD) [4], which is relatively robust against small transla-
tions, rotations, and deformations of edge images, and has been
successfully applied to object recognition and contour align-
ment. In essence, an edge image can be represented as a set of
points corresponding to edge pixel locations. Given two sets of
edge points, and , obtained from the contours of and

, respectively, the likelihood of an edge is defined as

(10)

where is the Chamfer distance between and , and
is another standard deviation. In our work, the distance trans-

form [16] is used for efficient computation of the DCD.
The weight of each sample in is calculated from the

observation distribution based on (7). Thus, the
desired posterior distribution can be represented by
the set of weighted samples . The state at time
step for the display is estimated by the maximum mode, as
suggested in [13]

(11)

We summarize the algorithm in Table I.

V. EXPERIMENTAL RESULTS OF HAND TACKING

The generic 3-D hand model used in the experiments is
shown in Fig. 6(a). It has been used in a number of works
[33], [39]. There are two global rotations; and . Each
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Fig. 6. (a) Hand structure and articulations. (b) Three selected states of the
index finger.

finger has three joints, the MCP, PIP, and DIP, which have
two degrees, one degree, and one degree of freedom (DOF),
respectively. In this work, we assume that there is no a priori
knowledge about the hand gestures in the test sequence; that
is, all the hand articulations have an equal possibility of ap-
pearing. Therefore, to deal with the input sequence in a general
hand-tracking problem, we select attractors that are uniformly
distributed in the state space. Since one of the rotations of the
MCP joint, , is usually small, we neglect it when selecting
the attractors. Then, only three angles are con-
sidered. For each finger, we coarsely sample the three states

, as shown in Fig. 6(b). The
sampled states of different fingers are combined to form the
attractors. Hence, there are attractors if fingers
are involved in the tracking. In addition, nine states associated
with and are precollected for global hand motion by ro-
tating the palm at different angles, so there are attractors
in the experiments when global rotations are considered.

To choose the most significant attractors efficiently, a
complete graph is constructed in the state space beforehand,
on which the attractors are the nodes and the edge cost is the
distance between nodes in the state space. Instead of computing

for all , only a limited number of attractors,
which have the minimum edge costs for the selected attractors
at time , are evaluated for selecting the most significant
attractors.

We perform a series of experiments on both simple and clut-
tered backgrounds. Image sequences with a large range of mo-
tions are captured, and the image resolution is 320 240. Two
hundred particles (i.e., ) are employed for each experi-
ment, and is set to , for ( is set to 2
in our experiments). The elements of diagonal matrices and

are set to 70 degrees . We compare the tracking results of
the AGPF method with those obtained by using standard par-
ticle filtering only, and by using appearance information only.
Images are registered along one of the sides of the foreground
region’s bounding box which has the maximum likelihood.

In the first experiment (Fig. 7), a 14-DOF model obtained
by bending three fingers and rotating the palm with 2 DOFs is
used. There are attractors. Fig. 7(a) shows part
of the input images. The tracking results of standard particle
filtering, the pure appearance-based approach (by choosing an
attractor with the maximum probability ),
and the AGPF method are shown in Fig. 7(b)–(d), respectively.
One can see that simple particle filtering fails to track in several

images. Moreover, the tracking performance is poor when pure
appearance information is used. In contrast, the proposed AGPF
method recovers these motions, as shown in Fig. 7(d).

To quantify the proposed method, numerical evaluations are
also performed. Since the ground truth of hand articulation in
real video sequences is difficult to obtain, we measure the errors
in the image space to evaluate the performance approximately.
In our test, the hand region of each input image is segmented
manually in advance. The area difference between the preseg-
mented hand region and the projected silhouette of an estimated
state is then computed, and the ratio of the area difference to
the hand area serves as the error measurement for the evalua-
tion. Note that the articulated 3-D hand model used in our work
is a generic one, which does not match the hands in the images
of our experiments exactly. Nevertheless, the ratio defined still
serves as a relatively accurate measurement to quantify the re-
sults. The evaluation results of this experiment are shown in the
second column of Table II. The average area-difference ratios of
standard particle filtering, the pure appearance-based approach,
and the AGPF method are 0.229, 0.277, and 0.201, respectively.
In this evaluation, it shows that AGPF outperforms the other two
methods.

Next, we use the above experiment to demonstrate how the
tracking trajectory is influenced by the attractors. Fig. 8 shows
the tracking trajectories of simple particle filtering and AGPF,
where principal component analysis (PCA) is used to reduce the
high-dimensional representation of samples to a 2-D space for
visualization. The blue points and line represent, respectively,
some of the samples and the trajectory generated by simple par-
ticle filtering; the red points and line represent those generated
by the AGPF method. The point sign and cross sign represent the
samples generated by the motion transition model. The star sign,

, represents the samples generated by attractors. In addition,
the attractor with the maximum probability, ,
is shown as a green circle. From this figure, we observe that the
attractors can guide the tracker toward a distinguishing motion
trajectory in the state space.

In the second experiment (Fig. 9), a 16-DOF model by
bending four fingers and attractors are used. As with
the first experiment, the tracking results using simple particle
filtering or pure appearance information are not very accurate
in this experiment either. However, our method provides better
results, as shown in Fig. 9(d) and Table II.

Some other experiments were performed with different DOFs
and different numbers of attractors. Fig. 10 shows the results of
tracking four fingers, where the DOF is 16 with 81 attractors,
while Fig. 11 shows the tracking results of global hand motion
with five-finger articulation, where the DOF is 22 with 2,187 at-
tractors. The fourth and the fifth columns of Table II show their
numerical results, respectively. The experiment results demon-
strate that, with a limited number of precollected appearances,
our approach significantly refines the performance of particle
filtering in which only a motion transition model is used, and
also performs better than cases when only appearances are used.

VI. AGPF-BASED LIP-CONTOUR TRACKING

Although we used articulated hand tracking as an example in
the above discussion, AGPF serves as a general framework for
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Fig. 7. Global hand motion with three-finger articulation in 14 DOFs: (a) input sequence, (b) tracking results using simple particle filtering, (c) tracking results
using appearance information only, and (d) tracking results using the AGPF method.

TABLE II
AVERAGE AREA-DIFFERENCE RATIOS OF THE ARTICULATED HAND-TRACKING EXPERIMENTS

appearance-guided state estimation of a dynamic system. It is
also applicable to other high DOF model-based tracking or con-
tour-based tracking applications. In this section, we apply AGPF
to lip-contour tracking. Though the problem complexity is rela-
tively lower than that of articulated hand tracking, our objective
is to demonstrate that AGPF is effective for tracking applica-
tions of both simple and complex cases, as long as the nature
of the problem allows a state-observation mapping relationship

(i.e., attractors with known observations) to be established in
advance.

Due to the smoothness and elasticity constraints, active
contours [22] are popular for lip-contour tracking. However,
the unclear boundary between lip and facial skin makes the
snakes unreliable. It is also difficult to tune the parameters of
the snakes. To track the lip-contour robustly, methods based
on a priori shape knowledge have been suggested recently.
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Fig. 8. Tracking trajectories reduced to a 2-D PCA space (PC1�PC2) in association with simple particle filtering and the AGPF of the first experiment (Fig. 7),
where PC1 and PC2 are the first and second principle components, respectively. (a) The trajectories of these two methods. (b) The samples generated from these
two methods.

The active shape model (ASM) [12] and the active appearance
model (AAM) [11] are two successful methods in this field.
Although the ASM/AAM can provide relatively convincing
results, they share some limitations with common appear-
ance-based approaches: A large training set is necessary to
obtain the eigen-bases for covering the lip shape variability
generally and the control points of the training set have to be
carefully labeled in advance. To avoid these limitations, we
adopt the AGPF method for lip-contour tracking. Limited shape
priors are precollected and treated as attractors in AGPF-based
lip-contour tracking.

To reduce the labeling burden, we adopt the radial vector
model [9] as shown in Fig. 12 to represent the contour of a
lip in AGPF-based lip-contour tracking. The radial vectors
are uniformly spread over 360 , and each vector originates
from the centroid of the contour and links to a contour point.
The shape of the contour is deformed by varying the distances

of the radial vectors, and the centroid of the
contour moves during the deformation. The angular interval

controls the smoothness of the contour and the number of
control points in the lip contour is equal to . There
are some advantages in using this representation. We can avoid
the effort of labeling control points and easily control the di-
mension of state variables to compromise between the tracking
time and the visual results.

With the radial vector model, we define the state vector as
, where represents the ra-

dial vector at time and is the centroid of the lip. A set of pre-
collected shape priors represented by the radial vector model, is
treated as attractors. Besides generating particles by using (5),
uniform sampling scheme can also be adopted [19]. To distin-
guish the regions of facial skin and the lip, a discriminative fea-
ture representation is required. In our method, we adopt the fea-
ture selection algorithm proposed by Collins et al. [10] to obtain
a linear color projection function such that the
feature value has high discriminability between the color of the

facial skin and that of the lip. For a pixel , its feature value F
is computed by its RGB values and the color projection function

, i.e., , R G B. Given a color projec-
tion function , let be a histogram of the feature value
for pixels inside the lip contour, and be a histogram for
pixels from outside that contour, where index ranges from 1 to
, the number of histogram bins. Then, discrete probability den-

sities, for the lip and for the background, are ob-
tained by normalizing each histogram. The variance ratio (VR)
defined in [10] is used to quantify the difference between
and under feature

(12)

where

(13)

and is a small positive value that ensures the denominator is
nonzero.

The likelihood is defined as being proportional to the
VR between the interior and exterior histograms

(14)

where is a standard deviation. Fig. 13 shows a lip image and
its likelihood image via a color projection function.

To demonstrate AGPF’s performance in lip-contour tracking,
two sequences with 640 480 resolutions are used in our ex-
periments. Two hundred particles are employed in these experi-
ments and the weight is also set to where .
The first elements of diagonal covariance matrices, and
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Fig. 9. Four-finger articulation with 16 DOFs: (a) input sequence, (b) tracking results using simple particle filtering, (c) tracking results using appearance infor-
mation only, (d) tracking results using the AGPF method.

, represent the variances of the distances between the cen-
troid and contour. In the experiments, we set these elements as 9
pixel . The last two elements of the diagonal covariance ma-

trices represent the 2-D motion variances of the centroid, and
we set them as 4 pixel . The angular interval of the radial
vector model is 20 ; thus, we have 18 control points on the lip
contour and the DOF of lip-contour tracking is 20, including the
2-D position of the centroid of the contour. The number of bins
for the lip and background histograms is set as 32. An algorithm
similar to that shown in Table I is also performed by using the
likelihood measurement in (14).

As with the experiments on articulated hand tracking, we also
compare the tracking results of AGPF with those by using par-
ticle filtering and using appearance/attractor information only.
Figs. 15 and 16 show the experimental results of lip-contour
tracking for different people using ten and eight attractors, re-
spectively, and some of the attractors are shown in Fig. 14. Since
the shape variation of lip-contours is not as large as that of ar-
ticulated hand tracking, the attractors are not distributed over

the state space. Instead, they are selected empirically based on
contours, which are easily mis-tracked in particle filtering. The
color projection function used in these experiments is

. By computing the difference of the area inside the
tracked lip-contour and the ground truth labeled manually, er-
rors in the area-difference ratio are also measured. In the exper-
iment associated with Fig. 15, the area-difference ratios of the
method only using attractor information and our AGPF method
are 0.175 and 0.141, respectively, while the tracker using simple
particle filtering begins to drift in the 75th frame (out of a total of
300 frames), and its error is far larger. In this application, AGPF
again outperforms the other methods. The experimental results
demonstrate that the AGPF framework can accurately estimate
the contour between the lip and the facial skin.

VII. DISCUSSION

The AGPF framework introduced in this paper incorporates
appearance information into state-space tracking to form a
combined approach. In AGPF, we assume that a mapping
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Fig. 10. Four-finger tracking with 16 DOFs: (a) input sequence, (b) tracking results using simple particle filtering, (c) tracking results using appearance information
only, and (d) tracking results using the AGPF method.

from the state space to the observation space is available,
or equivalently, the observation is a function of the state to
be estimated. It is clear that, without this assumption, the
concept of attractors can not be clearly defined, and AGPF
can not be well formulated.

AGPF is not suitable for a few tracking problems about
which the above assumption cannot be made. For example,
when the tracking problem simply involves locating the posi-
tion of a target in an image, the state (i.e., image position) and
the observation (i.e., the target appearance) usually can not be
formulated by a unique preknown mapping. In this case, to
incorporate appearance information into particle filtering, some
approaches treat the appearance as another set of variables
(or states) to be estimated with Rao-Blackwellized particle
filtering [23]. However, this is not an effective way to employ
appearance information when the state-observation mapping
can be clearly identified. On the other hand, AGPF is more
suitable for such situations.

For tracking problems that AGPF can be applied to, we
have shown that the method can improve the performance

of particle filtering or pure appearance-based matching. This
is because static attractors pregathered in the state space can
serve as effective guides to regulate the system dynamics and
prevent drifting. Two examples, 3-D articulated hand tracking
and lip-contour tracking, have been studied to verify AGPF’s
effectiveness.

Another issue worth noting is that the proposed method can
be interpreted in several ways. According to (3), it seems that
we only need to set the proposal function in stan-
dard particle filtering based on the precollected attractors ,
then standard particle filtering can be re-formulated in the same
way as AGPF. This is correct from the implementation point of
view, but we wish to emphasize that this approach can be studied
more formally by the attractor-guided BN in Fig. 4. While the
solution of the BN can be derived such that it has an optimal
belief-propagation form similar to that of particle filtering, we
have a clearer insight into how the attractors can be chosen
appropriately to regulate the system dynamics.

Since the mapping between the state space and the obser-
vation space is known in our framework, fixed appearance in-
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Fig. 11. Global hand motion with five-finger articulation with 22 DOFs: (a) input sequence, (b) tracking results using simple particle filtering, (c) tracking results
using appearance information only, and (d) tracking results using the AGPF method.

Fig. 12. Radial vector model, which decomposes the lip contour into 360=�
control points; c is the centroid of the lip contour and l is the distance of the
ith radial vector from the centroid to a contour point.

Fig. 13. Likelihood image. (a) Lip image. (b) Likelihood image of (a), obtained
by using the method in [10].

formation is adopted for the presented applications. Alterna-
tively, the appearance information (or attractors) can be trained

Fig. 14. Some attractors used in lip-contour tracking. From left to right, the
attractors represent the shapes of closed, half-open and fully-open lips, respec-
tively.

over time. This method is used primarily for applications whose
state-observation mapping cannot be clearly identified in ad-
vance. For example, in [40], the target appearance tracked in
the previous time step is used to update the online appearance
model sequentially. Okuma et al. [27] used Adaboost to gen-
erate attractors online and incrementally updated the attractors
over time. In addition, how to design a good proposal function
is the main issue that arises when using particle filtering for var-
ious applications [13], [15], [18], [20], [27], [30], [37], [39].
Our dynamic BN explanation provides a new and general way
of looking at this type of approach.
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Fig. 15. Lip-contour tracking: (a) tracking results using simple particle filtering, (b) tracking results using attractor information only, and (c) tracking results using
the AGPF method.

Fig. 16. Lip-contour tracking for different people: (a) tracking results using simple particle filtering, (b) tracking results using attractor information only, and (c)
tracking results using the AGPF method.

VIII. CONCLUSION

In this paper, we have presented a model-based tracking
framework that incorporates static appearance information
into a dynamic system. We derive the Bayesian probability
propagation of the MAP solution when known attractors in
the state space are involved in the system, and introduce a
particle filtering approach to find an approximation of the
MAP solution. By representing the transition probability as a
mixture distribution, we introduce the mixture-based AGPF, a
systematic tracking approach in which the appearance manifold
is locally re-modeled via point-based approximation during
tracking. Our approach avoids the drifting effect of particle
filtering by using a limited number of precollected attractors to
guide the tracking in a high-dimensional state space. We also
allow the tracking to be performed via the system dynamics in
free space when complete appearance information is difficult
to collect for a high-DOF tracking problem. The proposed

method yields promising results in applications of articulated
hand tracking and lip-contour tracking.

Currently, the attractors of the AGPF Bayesian network
(Fig. 4) are selected empirically or by uniformly distributing
them in the state space. However, for applications in which
specific motion sequences are targeted, our approach can be
modified to that of selecting a set of particular attractors in
advance through prelearning, where the targeted sequences
can serve as the training sequences. The attractors can then be
set as the motion states easily drift in the prelearning stage. In
the future, we will investigate how to select the attractors by a
prelearning process in order to boost the tracking accuracy and
efficiency of applications in which particular motion sequences
are targeted.
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