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Shot Change Detection via Local Keypoint Matching
Chun-Rong Huang, Member, IEEE, Huai-Ping Lee, and Chu-Song Chen, Member, IEEE

Abstract—Shot change detection is an essential step in video
content analysis. However, automatic shot change detection often
suffers from high false detection rates due to camera or object
movements. To solve this problem, we propose an approach based
on local keypoint matching of video frames. This approach aims to
detect both abrupt and gradual transitions between shots without
modeling different kinds of transitions. Our experiment results
show that the proposed algorithm is effective for most kinds of
shot changes.

Index Terms—Invariant local feature, matching, recognition,
shot change detection.

I. INTRODUCTION

T HE rapid development of storage and multimedia tech-
nologies has made the retrieval and processing of videos

relatively easy. Temporal segmentation is a fundamental step in
video processing, and shot change detection is the most basic
way to achieve it. However, while hard cuts (abrupt transitions)
can be easily detected by finding changes in a color histogram,
gradual transitions such as dissolves, fades, and wipes are hard
to locate.
Many shot change detection studies focus on finding low-

level visual features, e.g., color histograms and edges, and then
locate the spots of changes in those features. For example, Zabih
et al. [1] used the disappearance and appearance of outgoing and
incoming edges to detect scene breaks. Motion estimation tech-
niques, such as optical flow, are also used to find transitions [2],
since shot changes imply motion changes. Bouthemy et al. [3]
measured the number of pixels that belong to the part under-
going dominant motion to predict shot changes. Gargi et al. [4]
investigated the efficacy of several color histogram-based mea-
sures for cut detection, and concluded that the histogram-inter-
section measure [5] is the most effective method. Shen and Delp
[6] used the histogram differences of DCT coefficients to detect
hard cuts. Surveys of early approaches can be found in [4] and
[7].
The above approaches are useful for hard cuts, but they are

prone to error when detecting gradual changes because they are
very sensitive to object or cameramovements. Ngo et al. [8] pro-
posed a novel video segmentation method that used spatio–tem-
poral slices to recognize camera motion, zooming, hard cuts,
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and so on. Bescós [9] combined deterministic (e.g., the sum of
absolute differences), statistical parametric (e.g., likelihood ra-
tios) and statistical nonparametric (e.g., Pearson’s homogeneity
test) metrics and applied them to DC images to detect abrupt
and gradual transitions. Boccignone et al. [10] proposed an in-
teresting method based on the observation of the human eyes
when making comparisons between two pictures. Human eyes
focus on a certain object in a particular order when comparing
pictures. This is called Focus of Attention (FOA). In [10], the
authors tried to find FOA sequences by calculating saliency
maps for each frame, and then detected changes in the FOA
sequences. Yeo and Liu [11] extracted the DC sequences from
MPEG compressed videos and used three detection schemes to
distinguish hard cuts, dissolves, and flashlights. Cernekova et
al. [12] used mutual information (MI) to measure information
transported from one frame to another. Abrupt transitions and
fades between two shots lead to a low level of MI. To distin-
guish fades from abrupt transitions, the authors further exploited
joint entropy as interframe information. This approach achieves
an impressive performance on shot change detection, but it can
only be used for cases of abrupt transitions and fades. Park et
al. [13] presented a method for shot change detection by using
the scale invariant feature transform (SIFT) [14]. This method
can detect transitions by matching neighbor video frames but
still suffers from fast object motions or sudden lighting changes
as mentioned in [13]. In addition, the computation load of SIFT
causes difficulty of building an efficient detector.
While many shot detection methods consider both abrupt and

gradual transitions, some researchers have focused on detecting
gradual transitions only. For example, Wu et al. [15] detected
horizontal and vertical wipes by computing pixel-wise DC co-
efficient differences between continuous I and P frames; and
Pei and Chou [16], [17] employed the macroblocks of P and
B frames to detect dissolves and wipes in MPEG videos. Fer-
nando et al. [18] analyzed the linear and quadratic behavior of
dissolves and fades. Based on the results, they computed the
ratio between the second derivative of the variance curve and the
first derivative of the mean curve to identify dissolves and fades.
They also analyzed line diagrams of common wipe transitions
[19], [20]. Nam and Tewfik [21] used B-spline to fit each pixel
of a sequence, and considered time instants with a high inter-
frame standard deviation and a low fitting error as candidates for
locating transition intervals. Lienhart [22] proposed a multires-
olution method for time series analysis, and then applied pattern
classification techniques to train a model for dissolve detection.
Recently, Su et al. [23] utilized the monotonicity of intensity
changes during transitions to detect dissolves. They used a bi-
nomial distribution model to distinguish dissolves frommotions
so that their algorithm can tolerate fast motions.
In our approach, we consider the original definition of a shot.

A shot usually contains a series of interrelated frames taken con-
secutively by a single camera and therefore represents a contin-
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uous action in time and space. Instead of comparing the low-
level feature differences, the most intuitive approach to shot
change detection is to recognize objects and scenes. If the same
objects or scenes appear in consecutive frames, we may con-
sider that there is no shot change. We propose a new unified
approach that detects shot changes based on this concept, in-
stead of changes in some low-level features. If we can match
the same objects in two adjacent frames, there should not be any
transitions between them. With object tracking techniques, we
can minimize the influence of object and camera motion; there-
fore, we can detect both abrupt transitions and gradual transi-
tions. In the following sections, we present the proposed fea-
ture matching method, as well as our algorithm for finding shot
changes.

II. FEATURE MATCHING FOR FINDING THE

CORRESPONDENCE BETWEEN IMAGES

The goal of feature matching is to match points on the same
object in multiple images. Image correspondence obtained
in this manner is useful in several fields of computer vision
and image processing, such as object recognition, 3-D struc-
ture reconstruction from images, image retrieval, building of
panoramas, and augmented reality. To reduce the ambiguities
inherent in matching, points to be matched must have some
distinctive features that distinguish them from other points;
moreover, a feature must be invariant to transformations, such
as translation, rotation, and scaling, so that the object can still
be detected after it moves.
Many works have addressed the problem of finding robust

feature points and reliable image correspondence. Zhang et
al. [24] showed how to match Harris corners [25] over a large
image range. They used a correlation window around each
corner to select likely matches, and then removed outliers
by using geometric constraints derived from epipolar geom-
etry. Although highly accurate image correspondence can
be achieved by this approach, the assumption that objects in
images follow a single rigid motion restricts the technique’s
application to general matching.
Instead of finding image correspondence based on the

rigid-motion assumption, some recent approaches have tried to
find accurate matches by identifying distinctive features and
descriptors. Schmid and Mohr [26] used rotationally invariant
descriptors of the local image regions to match Harris corners.
This method allows features to be matched under arbitrary ori-
entation changes, but it is still sensitive to image scale changes.
Lowe [14] proposed the SIFT descriptor that is invariant to
both scale and rotation. Under this approach, keypoints (salient
corners) are computed through the detection of scale-space
extremes in a series of difference-of-Gaussian (DoG) images.
Local descriptors are then built for each keypoint based on
a weighted histogram of edge orientations from a patch of
pixels in the keypoint’s local neighborhood. In [27], it has been
shown that SIFT is one of the most effective approaches when
scale and viewpoint changes occur. Various extensions of SIFT
have been proposed. For example, Ke and Sukthankar intro-
duced PCA-SIFT [28], which applies principal components
analysis (PCA) to a normalized gradient patch. The gradient
location-orientation histogram (GLOH) [27] computes the
SIFT descriptor for a log-polar location grid and then reduces
the size of the descriptor with PCA. The primary focus of

these extensions is to provide more distinctive and compact
descriptors in order to improve the matching accuracy and
processing speed. Instead of using edge orientations, Huang
et al. [29], [30] proposed using the contrast context histogram
(CCH), which is more efficient to compute, to find image
correspondence. We use CCH to detect shot changes because
its matching accuracy is comparable to that of SIFT, but it
requires much less computation time, as shown in [29], [30].
We discuss CCH in detail in the Section II.A.
To our best knowledge, the work in [13] is the only one in the

past that employed local keypoint matching for shot change de-
tection. This method used SIFT to find image correspondence,
and applied a fixed threshold to the number of matched points
of neighboring video frames to find the transitions. Our method
differs from this method in several aspects. First, our method
does not rely on a fixed threshold of the number of matched
points; the threshold applied in our method is varied with the
local maxima and minima of the number of matches, which can
handle the variations of transitions better. Second, we do not
match neighboring frames or frames apart from a fixed period
only, but alsomatch nonadjacent frames inferred by shot-change
interval estimation, which can further increase the detection ac-
curacy. Third, our method can find both the shot boundaries
and the transition intervals of shots. Details of our method can
be found in Sections II-B, II.- and III. We have compared our
method with that in [13] in the experimental results of Sec-
tion IV-D, and show that our method performs considerably
better.

A. Contrast Context Histogram

The main issue in developing invariant local descriptors is
how to represent a region effectively and discriminatively. The
color histogram [31] is one option for textural description, but
it is sensitive to illumination changes. Instead, we consider a
technique that computes the contrast values of points within a
region with respect to a salient corner. We assume that many
salient keypoints (salient corners) have already been extracted
from an image . For each keypoint at the image coordinate

, we locate an local region surrounding . Let
denote a pixel at the image coordinate in . We compute
the contrast value of in as

(1)

where and are the intensity values of and , respec-
tively. We then construct a descriptor of based on these con-
trast values, and separate into several nonoverlapping regions,

. Without lost of generality, we use a log-polar
coordinate system to perform the division, as shown in
Fig. 1. The system, which has been used in a number of previous
works [27], [32], is more sensitive to the positions of points
close to the center than to those of points farther away. To ensure
that the descriptor is invariant to image rotations, the direction
of in the log-polar coordinate system is set to coincide
with the edge orientation of .
Given the importance of representing a subregion effi-

ciently and discriminatively, we consider a histogram-based
representation because a histogram is relatively insensitive
to nonuniform deformations of a region. An intuitive way to
employ the histogram feature is to gather the contrast values in
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Fig. 1. Log-polar diagram of the CCH descriptors. The center of the coordinate
is the salient point ��� .

a subregion into a histogram bin. However, summations of posi-
tive and negative contrast values may reduce the discriminating
response of the bin. Thus, to improve the discriminative ability
of the descriptor, we use both positive and negative histogram
bins of contrast values for each subregion, as described in the
following.
For the subregion , we define the positive contrast his-

togram bin respective to as

#
(2)

where # is the number of positive contrast values in . In
a similar manner, the negative contrast histogram bin is defined
as

#
(3)

where # is the number of negative contrast values in .
By combining the contrast histograms of all the subregions

into a single vector, the CCH descriptor of in association with
its local region can be defined as follows:

(4)

In [29], [30], the CCH descriptor was evaluated by using a large
set of images undergoing various geometric and photometric
transformations. The evaluation results show that the CCH de-
scriptor is computationally efficient and highly accurate in de-
termining feature correspondence.

B. Locating Transitions by Matching Adjacent Frames

The first part of our algorithm locates the time instants at
which shot changes take place.We observe that objects or scenes
are replaced during transitions, even though theymay bemoving
or rotating within the shot. Most methods of shot change detec-
tion produce many false alarms when objects or cameras move,
as they can only detect changes in some overall features be-
tween the same image locations of adjacent frames in a video.
Although such features will change dramatically during transi-
tions, they will also change when something moves in a single
shot. The advantage of feature matching is that it is invariant to
affine transformations; thus, we can even match objects after

Fig. 2. Some feature matching results between adjacent frames.

they have moved. An additional advantage is that we do not
have to design a detector for each kind of transition. Since a
shot change, i.e., a transition, indicates a change of objects in
the scene, multiple kinds of shot changes can be detected in a
unified manner.
In our algorithm, each frame is preprocessed by keypoint de-

tectors. The keypoints are extracted by detecting Harris corners
[25] at each level of a multiscale Laplacian pyramid [33]. At
each level of the pyramid, the Harris corner detector is used
to localize points on the 2-D image plane. Then, a salient key-
point is selected by detecting the local maxima in a 7 7 region.
Fig. 1 illustrates the contrast context histogram of a salient key-
point under the log-polar coordinate system. A local region
is divided into several subregions by quantizing and of the
log-polar coordinate system. For each subregion, a 2-bin con-
trast histogram, introduced above, is constructed. A CCH de-
scriptor of is then computed as follows:

(5)

where , and
. In our implementation, we used

and , resulting in a 64-dimension descriptor, as illustrated
in Fig. 1.
We produce lists of keypoints and their local descriptor vec-

tors for each frame. Then, we perform keypoint matching for
each pair of adjacent frames, which yields a 1-D signal of num-
bers of the matched points. Formally, for the -th frame , there
is a list of keypoints, , comprised of the locations and the
64-dimensional descriptor vectors of the keypoints found in .
The matching between and is based on the nearest
neighbor method, and the distance between two keypoints is de-
fined as the included angle of the corresponding 64-dimension
descriptors. Each keypoint in is matched to the key-
point in that has the shortest distance to .
However, if the shortest distance is longer than a predefined
threshold, the keypoint is not matched to any keypoint.
In addition, we assume that the camera or object motion is con-
tinuous between adjacent frames in a single shot, and hence we
discard the match if the image locations of and
are far apart (larger than 20 pixels). Fig. 2 shows some examples
of feature matching results for adjacent frames.
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Fig. 3. Our algorithm for determining intervals.

Each frame is related to a value , i.e., the number of
matched points between and . If a shot change occurs
in , the keypoints in should only have a few matched key-
points in , since most of the objects that appear before the
shot change should be replaced after the transition. Therefore,
we assume that a shot change takes place when there is a salient
local minimum in the values of , so the problem is reduced
to finding the minima of .
The following is the formal formulation of our initial algo-

rithm for finding the minima.
1. For each local minimum that satisfies

and :
1.1 Find the local maxima and
on the left and right of .
Let be the maximum in .
1.2 If , where is a parameter
selected within the range ,
then is a candidate.

2. For each candidate found in Step 1:
2.1 If , the candidate is discarded.
2.2 If , the candidate is discarded.

In the first step, the maxima is the maxima found just to the
left of , where is the maxima found just to the right of

.We only keep theminima that are less than a fraction
of the maximum in . In the second

step, we eliminate candidates with values larger than a threshold
because there are still many matching keypoints;

thus, the two adjacent frames are still considered similar. When
is too small (measured by ), it is not representative

enough for comparison, so the corresponding minimum is also
discarded.

C. Intervals of Transitions

The candidates found with local minima are only time
instants, not intervals. However, since many shot changes are
gradual transitions, it is necessary to find the intervals of such
transitions. Our method for finding the intervals is also based
on feature matching. Shot changes are likely to occur when the
number of matched objects decreases; thus, there should not
be any transitions when several objects in adjacent frames are
matched. In our method, the local maxima to the left and right
of the candidate transition are possible start and end frames of
that transition. We add another condition: the video sequence
before and after the shot change should also be “stable,” re-
sulting in stable numbers of matched keypoints. Hence, the

search for start and end points begins with the two maxima and
continues until the number of matched keypoints is stable.
For a given candidate , we first locate the nearest maxima
and on its left and right respectively. To find the first

frame of the transition, we perform keypoint matching between
adjacent frames, starting with and , in the reverse order
of the video, until the number of matched keypoints becomes
stable. In other words, we perform matching between and

and and , and so on to generate the
numbers of matched keypoints, , etc.
When the difference between and is small enough,
the process stops, and is considered as the first frame of the
transition. The last frame of the transition is found in a sim-
ilar manner by starting with the matching step between and

. Fig. 3 illustrates our algorithm for finding intervals.

III. REDUCING FALSE ALARMS BY MATCHING

NONADJACENT FRAMES

The above approach, which is based on local-minimum anal-
ysis, provides an efficient initial step for detecting transition
candidates. However, since only correspondence between adja-
cent frames are employed, false detection may occur when the
video is affected by certain changes, such as sudden lighting
changes, occlusions, and fast object motions. In this section, we
perform fine selection of shot changes by examining the inter-
vals of transitions to remove cases of false detection.
Matching nonadjacent frames provides richer image cor-

respondence information, but exhaustively matching a large
number of pairs of frames within an interval is very time
consuming. Since variations in a shot usually continue for a
limited period of time, we match the frames before and after the
intervals of candidate shot changes. If the number of matched
CCH features between the first and last frames of an interval is
relatively high, it indicates that the same objects remain visible;
thus, the candidate transition detected initially is a false alarm
and should be deleted.
Next, we describe the steps of our algorithm for fine selec-

tion of shot changes. After finding the intervals of transitions
in the initial step, discussed in Section II, the first and the last
frames of each interval are matched again. If there are still many
matching keypoints, the two frames are considered similar be-
cause the detected transition is probably a false alarm. Specifi-
cally, let be a time interval of a transition.

and are the start and end frames of this transition,
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Fig. 4. Complete algorithm of our approach.

Fig. 5. Sample frames of some easily mis-detected shots. (a) Fast multiple ob-
ject motions, (b) sudden lighting changes, and (c) spot lights.

respectively. We compute the number of matched keypoints
between and , and let be the average number of
matched keypoints between adjacent frames,

(6)

If , where is a fractional threshold (0.11 in
our experiments), the transition is removed. In the last step, if
two adjacent transitions are too close to each other (only one or
two frames apart), they are merged because it would be unrea-
sonable to change to a new scene for only one or two frames.
The steps of our algorithm are presented in Fig. 4.
With the initial adjacent-frame matching and subsequent ex-

amination of transition intervals, our algorithm can deal with
difficult cases that involve high content motions or variations.
For example, Fig. 5(a) shows a shot in which some women are
tracked as they fall on the floor. The motions of the camera and
the women result in multiple blurred moving objects, but our
algorithm still successfully identifies the associated frames as
being within a single shot. Figs. 5(b) and (c) show two cases
that are affected by lighting and color changes; sudden light in

Fig. 6. Sample frames in our test set. (a) Dissolve, (b) News 1
(19980328 ABC), (c) News 2 (19980326 CNN), (d) Documentary 1
(ANNI005), (e) Documentary 2 (Return of the Caribou), (f) TV Serial (Lost),
and (g) Movie (House of Flying Daggers).

a dark environment will change the visibility of objects. In ad-
dition, spot lights in a bright scene will cause over-saturation
and some objects will be occluded by brilliant rays. These cases
are apt to be wrongly characterized as transitions by existing
methods, but our algorithm can discard them successfully.

IV. EXPERIMENT RESULTS

A. Test Set and Results

To evaluate the proposed method, we use seven video se-
quences in our experiments (Fig. 6). The numbers of frames and
transitions in the videos are summarized in Table I. The video
“Dissolve,” from [22], consists of clips from a concert and sev-
eral TV commercials; thus, it includes a lot of dissolve transi-
tions. The two news clips are from the ABC and CNN, respec-
tively. We tested them because wipe transitions are often seen in
news previews, but they are seldom seen in other video genres.
The movie “House of Flying Daggers” includes many complex
dance and fight scenes, so it is good material for testing object
recognition and the effect of motion blur. The TV serial “Lost”
also has many scenes with fast motion and blur. The other two
test videos are documentaries from the Open Video Project and
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TABLE I
TEST SEQUENCES

Discovery Channel, respectively. They have more static scenes,
but there is still a lot of motion when animals are being tracked.
To evaluate the performance of the proposed algorithm, we

use the recall and precision metrics, which are defined as fol-
lows:

(7)

(8)

where , and are the numbers of hits, miss detects, and
false alarms, respectively. For example, the recall and precision
of the Documentary 2 (Return of the Caribou) video listed in
Table I are and , respectively, where is the
number of shot changes successfully detected among the 207
transitions, and is the total number of shot changes
detected.
Another measure, the value [34], is used to evaluate the

combination of recall and precision:

(9)

If , the recall and precision values are both 1. Since
our algorithm can also predict intervals of transitions, we need
another measure to evaluate the correctness of each predicted
interval of a gradual transition. In our experiment, we use
the weighted overlap coefficient (WOC) proposed by Nam
and Tewfik [21]. Suppose is the
actual time interval of a transition, and is the midpoint,
i.e., . Let be
the predicted corresponding time interval. The WOC, which
depends on the length of the overlapping region, gives a weight
value to each frame in the actual interval. The frames near
the midpoint of the interval are usually more important than
those near the beginning and ending points. Therefore, is
symmetric; it peaks at and decreases linearly as moves
away from . The sum of in the interval is 1. Also, note
that the slope of equals 1 in the first half of the transition
and in the second half. The weighted overlap coefficient is
then calculated as follows (see Fig. 7):

(10)

The coefficient considers the length of the overlapping intervals
relative to the actual length of the transition. However, in a long
transition, a long overlapping period does not necessarily yield

Fig. 7. Weighting function ����.

Fig. 8. Some wipe examples. (a) Cubic wipe and (b) wipe with motions.

TABLE II
EXPERIMENT RESULTS

a high WOC value. Overlapping in the middle of the transition
is also important.
The average recall and precision in our experiments are

95.53% and 93.47%, respectively, and the average value is
89.29%. The results for all video clips are reported in Table II.
From the table, we observe that our method is effective for
many kinds of shot changes. Even for wipe, which is a very
difficult case, our method still achieves over eighty-percent ac-
curacy (Tables VI and VII). Fig. 8 shows some wipe examples
that our method detected successfully; Fig. 8(a) shows a cubic
wipe and Fig. 8(b) is a wipe containing multi split screens and
fast object motions.
With regard to the sensitivity of the parameters, there are two

main thresholds, and ; the former relates to the search of
local minima and the later determines the transition intervals.
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Fig. 9. Recall, Precision and Q values obtained by varying the thresholds � and � . (a) Recall values, (b) precision values, and (c) Q values.

TABLE III
AVERAGE COMPUTATION TIME FOR EACH STEP OF OUR ALGORITHM

We investigated the effects of the parameters by varying their
values. The recall, precision, and Q values obtained by varying

and are shown in Fig. 9. From these figures, we observe
that the results are not sensitive to the values of the parameters,
unless the values are very small.
In terms of computational speed, our method takes 0.027 s

to process a frame on an Intel Pentium 4 computer with a 3.4G
CPU and 768M memory. Table III shows the averaged compu-
tation time in milliseconds for each step of our algorithm, and

TABLE IV
AVERAGE CONSTRUCTION AND MATCHING TIME IN MS FOR

KEYPOINTS IN EACH TEST VIDEO

Table IV shows the averaged construction and matching time
for the keypoints of a frame. It can be seen from Table IV that
the time varies with the content of the videos. Because the two
news clips and the movie sequences contain relatively complex
scenes, more keypoints are detected. As a result, they require
longer construction and matching time.
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TABLE V
AVERAGE RECALL AND PRECISION RATES BEFORE AND

AFTER FINE SELECTION OF SHOT CHANGES

The average WOC value of 98.69% demonstrates that our al-
gorithm for finding intervals is also reliable. We further investi-
gate the results of the initial stage and the fine selection stage of
the algorithm. Table V shows the recall and precision values of
the shot changes before and after fine selection. The precision
increases by about 14 percent, which demonstrates that the fine
selection stage improves the overall performance.

B. Performance on Each Type of Transition

Having discussed the performance of our method for general
shot change detection, we now evaluate its performance on each
type of transition. Strictly speaking, since our method does not
distinguish between the types of transitions, the recall of each
type can be well formed; however, the precision can not be de-
fined precisely.We thus formulate ameasure that approximately
estimates the specific type of precision of our approach. The
evaluations of both metrics are presented below.
To evaluate the recall of a particular type of transition, we use

the following equation:

(11)

where is
the number of hits and is the number of miss detects
for the particular type of transition. For example, in Table I,
the recall of the hard-cut transitions of Documentary 2 (Return
of the Caribou) is , where is the
number of hard cuts successfully detected among 83 hard-cut
transitions.
To evaluate the precision, we have to compute , which

is the number of false alarms for a particular type of transition,
as follows:

(12)

where .
In methods devoted to detecting a particular kind of transi-

tion, such as those compared in Section IV.C, the above preci-
sion evaluation is defined straightforwardly. However, since our
approach is a general technique that can detect multiple kinds
of transitions simultaneously, the hits of some transitions will
be false alarms of other types of transitions. For example, if a
transition detected by our method belongs to the hard-cut type,
it will be treated as a false alarm of the dissolve type in the com-
putation of .
A better way to evaluate the precision of each type is to use
, instead of , in (12), so that the hits of the other types

of transitions are not counted in the estimation of false alarms,
where is the number of false alarms used in (8), generated by
our approach for general transition detection. Nevertheless, this
evaluation is still not quite even, because all the false alarms
are due to the misdetection of a particular type of transition;

TABLE VI
RECALL FOR EACH KIND OF SHOT TRANSITION

TABLE VII
PRECISION FOR EACH KIND OF SHOT TRANSITION

hence the precision is generally underestimated. For a general
approach like ours, which does not distinguish between transi-
tion types, we define the precision of each type as follows:

# #
(13)

where #type is the number of transitions of the specified type
and #total is the total number of transitions in a video. For ex-
ample, #disolve and #total are 31 and 166, respectively, for the
video News 1 (19980328 ABC) in Table I. Equation (13) is then
used as an approximate measure of the type-specific precision
of our approach. The recall and precision values for different
kinds of transitions using our approach are detailed in Tables VI
and VII, respectively. The average recall values for the hard cut,
dissolve and fade transitions are all higher than 94%, while the
average precision values are all above 92%. The results demon-
strate that our algorithm’s performance is effective and inde-
pendent of these types of transitions. Only the recall value for
detecting wipe transitions is less than 90%. This is because a
wipe transition sometimes combines two images separated by
moving boundaries, where one of the images is from the pre-
vious shot, and the other is new. Such images will keep warping
during a wipe transition, but they may not be altered very much
between adjacent frames. The change in the number of matched
keypoints is thus less obvious than that in the other three types
of transitions. A possible way to further improve the wipe de-
tection rate is to combine and utilize both keypoint and salient
boundary information, because wipes usually contain moving
boundaries. This will be a future work of our study.

C. Comparisons With Specifical Transition Detection Methods

In addition to the results described above, we compared our
method with other noteworthy approaches. We selected three
state-of-the-art algorithms, each of which was designed for a
particular kind of transition, and compared them with the pro-
posed general approach. The first algorithm was designed for
hard-cut detection [4]. In their research, the authors compared
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TABLE VIII
COMPARISON OF HARD CUT DETECTION ALGORITHMS

TABLE IX
COMPARISON OF DISSOLVE DETECTION ALGORITHMS

many color histogram-based methods, and concluded that the
one using the technique based on histogram intersection [5]
achieved the best results. Hence, we compared the histogram in-
tersection method in [4] with our approach. Given a pair of his-
tograms of the current frame and the incoming frame,
and , each containing bins, the histogram intersec-
tion of them is the summation of the minimum values of each
pair of the corresponding bins. Then, a hard-cut is detected if
the intersection value is small.
The second and the third algorithms were designed for dis-

solve [23] andwipe [19], [20] detection, respectively. In [23], Su
et al. proposed a motion tolerant dissolve detection algorithm,
which detected dissolves by considering the monotonicity of
changes in the intensity of pixels within an observation window.
They classified the pixels in thewindow into three different cate-
gories: proponents, fence sitters and opponents. The probability
of a pixel belonging to each category was computed and a bi-
nomial distribution model was used to distinguish between dis-
solves and motions. The method proposed by Fernando et al.
[19], [20] detected a wipe transition by employing its geometric
property. They first analyzed and modeled common wipe pat-
terns, and found that wipes can be detected by salient moving
boundaries. Hence, in their approach, salient lines between ad-
jacent frames were detected by Hough transformation. If the
slopes of the intersection lines remain equal for a time period, a
wipe transition is identified. Line and complex pattern analysis
of wipe transitions were also introduced in [20].
For all three methods, we experimentally choose the parame-

ters that yield the best Q values for comparison. As each method
can only detect one kind of transition, we compute the recall for
the particular transition by using (11). The precision for the type
of transition is computed by using (12), but the hits of the other
types of transitions are not counted in the evaluation of .
Since the type-specific precision defined in (13) is only an ap-

proximation for overall reference, we suggest that readers focus
on the recall values for comparison.
The performance comparison of our approach and the his-

togram intersection approach [4] for hard-cut detection is pre-
sented in Table VIII. Generally, our approach performs better
because the histogram-based approach finds it relatively diffi-
cult to distinguish between moving objects and hard cuts. In
contrast, our approach based on matching salient keypoint de-
scriptors is more suitable to distinguish between them.
The performance comparisons of the dissolve and wipe cases

are shown in Tables IX and X, respectively. Our method also
outperforms Su et al.’s method [23] in most situations for the
dissolve cases. Since their method is pixel-based, it is sensitive
to image noise or the ghost effects in a video. However, we em-
ploy descriptors computed in salient local regions, which are
more robust against noise.
Among the videos evaluated, the performance of the methods

in [4] and [23] is not satisfactory for the video Movie (House
of Flying Daggers), as shown in Tables VIII and IX, respec-
tively. This is because that the video contains complex dance
and fight scenes that involve very rapid movements. In contrast,
our method can still provide satisfactory results in this situation.
Surprisingly, we found that the performance of Fernando et

al.’s method [19], [20] is not as good as expected for wipe de-
tection in our test videos, as shown in Table X. This is because
many frames in the sequences contain multiple split-screens or
twin pictures. The edges of the split-screens generate lines with
similar slopes in adjacent frames, and thus result in serious
false alarms when the method is used. Since our approach
considerably avoids such false alarms by reliably matching
and counting corresponding points, it is thus more accurate
for wipe detection. The above comparisons demonstrate that
our approach based on local keypoint matching is generally
effective for shot change detection.
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TABLE X
COMPARISON OF WIPE DETECTION ALGORITHMS

TABLE XI
COMPARISON WITH THE LOCAL KEYPOINT BASED METHOD IN HARD-CUTS

TABLE XII
COMPARISON WITH THE LOCAL KEYPOINT BASED METHOD IN GRADUAL TRANSITIONS

D. Comparison With the Local Keypoint Based Method

We also compared our method with the local keypoint based
method proposed by Park et al. [13]. In their method, a “frame
distance” is selected in advance. Each frame ismatchedwith
the frame , and if the number of matched points is larger
than a fixed threshold , a shot boundary is declared. They
first applied to detect abrupt changes, and then applied a
larger to detect gradual transitions. The SIFT [14] was used to
find image correspondence between frames. In the comparison,
we exhaustively investigated the combination of and that
yields the best Q values in the experiments, and the values of
turned out to be and for the hard-cut and the

gradual transition, respectively.
The performance comparison of our approach and Park et

al.’s approach [13] for hard-cut and gradual transition detection
are presented in Tables XI and XII, respectively. The number
of gradual transitions is the summation of the numbers of dis-
solves, fades and wipes. Our approach consistently performed
better as shown in the tables, and the method in [13] broke down
for several videos. We owe the reasons to the following. Ap-
plying a fixed interval between frames (eg., setting and

) cannot handle temporal variability of the video lengths
of transitions in many situations. In our approach, the transi-
tion interval is first estimated by an outer extension of the in-
terval delimited by the neighboring local maxima, and then we

Fig. 10. Example ofmisdetection caused by scene changes twice in a very short
period (ten frames).

match the nonadjacent frames of the interval boundaries to re-
fine the results. In addition, unlike the method in [13] that fixed
the threshold of number of matched points for boundary detec-
tion, we proposed a method that uses local minima and maxima
of the match numbers for threshold determination in our initial
transition-candidate detection step. Our method can thus handle
transition situations varying with the video contents better. In
terms of the computation speed, our method is about ten times
faster than Park et al.’s [13] approach. It is because that the CCH
descriptor is employed in our approach, which is computation-
ally more efficient than SIFT.

E. Discussion

Although our method is effective for most cases, there are
still some instances of mis-detection and false alarms. We now
discuss some interesting cases encountered in our experiments.
Fig. 10 is a case of misdetection (a shot change that was not

identified). The scene in themiddle (the drums) only lasts for ten
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Fig. 11. False alarm caused by the map appearing while the background re-
mains the same.

frames, but it involves a lot of motion. Consequently, the interval
found by our algorithm spans the scenes (with the dancer) before
and after the drums. Due to the high matching performance of
the CCH descriptor, the two frames belonging to the same scene,
but separated by another scene, are almost perfectly matched;
therefore, the transition interval is discarded.
Fig. 11 shows an interesting example of a false alarm. The

foreground is a map that fades in gradually, but the background
does not change. We recognize the map as a new object that
dominates the scene, so these frames indicate a false alarm.
However, to some humans, this situation appears to be a shot
change in the video.

V. CONCLUSION AND FUTURE WORK

We have proposed a new method for shot change detection
that is less sensitive to object or camera motion due to the ro-
bustness of the feature tracking algorithm. A method for finding
intervals of transitions is also proposed. The contribution of
our work is twofold. First, we solve the detection problem by
using object recognition techniques, rather than some overall
features, so that shot changes can be distinguished from ob-
ject or background motions in a scene. Second, we propose
a unified approach for detecting most kinds of shot changes;
hence, there is no need to use different algorithms for different
kinds of transitions. Our method is easy to implement and can
achieve real-time processing. Since it can detect most transi-
tions, the proposed approach can serve as a reliable initial de-
tection technique for shot changes. It can also be combined with
other methods to further distinguish between different types of
shot changes.
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