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The increase in the number of video copies, both legal and illegal, has become a major problem in the multime-
dia and Internet era. In this paper, we propose a novel method for detecting various video copies in a video 
sequence. To achieve fast and robust detection, the method fully integrates several components, namely the 
min-hashing signature to compactly represent a video sequence, the spatio-temporal matching scheme to accu-
rately evaluate the video similarity compiled from the spatial and temporal aspects, and some speed-up tech-
niques to expedite both min-hashing indexing and spatio-temporal matching. The results of experiments demon-
strate that, compared to several baseline methods with different feature descriptors and matching schemes, the 
proposed method that combines both global and local feature descriptors yields the best performance when 
encountering a variety of video transformation. The method is very fast, requiring approximately 0.06 seconds 
to search for copies of a thirty-second video clip in a six-hour video sequence. 
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1. INTRODUCTION  

With the rapid development of multimedia technologies, digital videos are now ubiqui-

tous on the Internet. According to a report by AccuStream iMedia Research 

(http://www.accustreamresearch.com), in 2006, the quantity of video streams increased 

38.8% to 24.92 billion in media sites world-wide. One of the most popular video sharing 

sites, YouTube, hosted about 6.1 million videos, and 65,000 video clips were uploaded 

everyday. The enormous growth in the amount of video data has led to the requirement 

for efficient and effective techniques of video indexing and retrieval. In particular, since 

digital videos can be easily duplicated, edited, and disseminated, video copying has be-

come an increasingly serious problem. A video copy detection technique would thus be 

helpful for protecting and managing video content. For instance, with such a technique, 
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content providers could track particular videos with respect to royalty payments and pos-

sible copyright infringements. Platform providers could remove identical copies uploaded 

by users or aggregate near-duplicate videos into groups to facilitate browsing. Fig. 1 

shows the result of inputting the phrase "UFO Apollo 11" to YouTube. Several sets of 

identical or near-duplicate video clips are displayed on the search result page. If the near-

duplicates of the same set are compacted into a single item, the search result page can 

display more diverse video clips for users. 

 

 

 
Fig. 1. The first fourteen search results retrieved by inputting the phrase "UFO Apollo 11" to YouTube. Most of 

the video clips are identical or near-duplicates, which can be removed or aggregated to facilitate user browsing. 

 

There are two general techniques for detecting video copies: digital watermarking and 

content-based copy detection. Digital watermarking embeds hidden information in video, 

while the content-based technique employs perceptual features of the video content as a 

unique signature to distinguish one video from another. Because the latter does not de-

stroy or damage video content, it has generated a great deal of research interest recently. 

Most existing content-based methods treat a video as a set of individual image frames and 

focus on the investigation of compact image features or efficient index structures. How-

ever, this confines their use to particular applications. For example, some methods are 

limited to dealing with certain types of video transformation, while others are limited to 

other types depending on the properties of the features they use. Besides, since these 

methods seldom consider time-related features, they have difficulty handling video trans-

formation types that modify the temporal structure of video, such as slow motion and 

frame insertion/deletion. The pre-built index structures also cause an inherent search limi-

tation, as some methods need to partition a video sequence into basic index units (e.g., 

shots) in advance. These methods might be inappropriate for monitoring broadcast 

streams. 

In this paper, we address the limitations posed by existing methods. We classify vari-

ous video copies into four categories with respect to the spatial and temporal transforma-

tion. While current methods are limited to handling one or two categories, we propose a 
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novel video content analysis scheme, called spatio-temporal matching, to tackle all the 

categories in a unified manner. The proposed matching scheme, which analyzes the con-

tent similarity of two videos compiled from the spatial and temporal aspects, can effec-

tively handle a variety of video transformation. 

To avoid the limitation caused by the pre-built index structures, we employ a sliding 

window approach that would be more appropriate for monitoring broadcast streams. 

Without the index structures, however, the search time spent on a large-scale video se-

quence would be considerable. To make the search more efficient, the proposed method 

adopts a coarse-to-fine matching strategy. In the coarse stage, the sliding window scans 

the entire sequence to find potential candidate clips quickly. Each windowed sequence, as 

well as the given query clip, is represented by a novel feature called the min-hashing sig-

nature that is compact and robust. For example, in this study, a 30-dimensional signature 

is sufficient to represent a sixty-frame sequence. In the fine stage, the above-mentioned 

spatio-temporal matching is used to filter out false positives from the candidate set. In 

addition, some speed-up techniques are applied in both stages with great effect; hence, 

overall, the proposed method is very fast. 

To evaluate the proposed method, we implement several baseline methods that use 

different feature descriptors (e.g., the ordinal measure and the SIFT descriptor), as well as 

different matching schemes. The results of extensive experiments show that, with the 

composed feature descriptor, the proposed method achieves excellent results, which 

demonstrate the widest coverage for various transformation types among all compared 

methods. The proposed method is also very efficient, as it only needs about 0.06 seconds 

to search for copies of a thirty-second query clip in a six-hour video sequence. 

The remainder of this paper is organized as follows. In Section 2, we formulate the 

video copy detection problem. Section 3 reviews recent work related to video copy detec-

tion. In Section 4, we detail the proposed method, including min-hashing indexing and 

spatio-temporal matching. Section 5 describes the extensive evaluation experiments. 

Then, in Section 6, we summarize our conclusions. 

 

2. PROBLEM FORMULATION 

Let Q be a query clip with n frames, and T be a target sequence with m frames, where n 

<< m. Here we assume that Q is an original video source and T is a suspect video stream 

collected from a Web or TV broadcast. Suppose that in T, there exists a subsequence C 

that is a copy derived by applying some types of video transformation (e.g., noise addi-
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tion and compression) to Q. Our goal is to locate C in T for the given Q quickly and accu-

rately. 

If C is a copy of Q, a certain portion of their contents will be perceptually similar, 

where the "portion" is a subjective factor that varies case by case. Although we can 

evaluate the content similarity of C and Q directly, video copy detection is still challeng-

ing in terms of effectiveness and efficiency. 

Let us consider the effectiveness issue. Since several types of video transformation 

can be applied to Q, the design of the similarity measure becomes complicated when it 

has to handle various video copies. The video transformation types can be classified into 

four basic categories according to their spatial and temporal characteristics: 

(1) Whole region-preserved spatial transformation. This category includes brightness 

enhancement, histogram equalization, noise addition, compression, and frame reso-

lution change. These transformation types modify the frame content while preserving 

the whole frame region, as shown in Fig. 2(b). 

(2) Partial region-discarded spatial transformation. This category includes cropping 

and zooming in, which discard partial regions of a frame and modify the remaining 

content, as shown in Fig. 2(c). 

(3) Frame number-changed temporal transformation. This category includes frame 

rate change and video speed change (fast forward and slow motion), which increase 

or decrease the number of frames without changing their order, as shown in Fig. 2(d). 

(4) Frame order-changed temporal transformation. This category includes frame 

insertion/deletion/swap, which inserts, deletes, or swaps frames at any time point; 

thus, it changes the order of the source content, as shown in Fig. 2(e). 

 

(a)

(b)

(e)(d)

(c)

 
Fig. 2. A variety of video transformation types. Different colors are used to distinguish video subsequences: (a) 

the source video; (b) the transformed video derived by whole region-preserved spatial transformation (noise 

addition); (c) the transformed video derived by partial region-discarded spatial transformation (cropping); (d) 

the transformed video derived by frame number-changed temporal transformation (double-speed); and (e) the 

transformed video derived by frame order-changed temporal transformation (frame insertion/deletion/swap). 
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Since we do not know the types of video transformation that have been applied to the 

source video in advance, a robust matching scheme is required to handle diverse video 

copies. 

With regard to the issue of efficiency, if T is a large-scale video sequence, (say, sev-

eral hours or hundreds of hours), searching in T will be very time-consuming. Generally, 

two search approaches can be used to address the efficiency issue. One is the partitioning 

and indexing approach, where T is partitioned into basic index units, and then indexed 

into a tree or hash structure, as shown in Fig. 3(a). The index structure allows this ap-

proach to omit many unnecessary comparisons, thereby reducing the computation cost. 

However, its partitioning process not only requires extra computation, but also makes it 

difficult to monitor broadcast streams. Besides, this approach might lack the ability to 

locate the exact time position of the copied segment in T, if we do not maintain every 

frame's time code in an index unit. 

The second approach uses a sliding window to scan the video sequence T and com-

putes the similarity between the given query clip and the windowed sequence. The win-

dow moves forward along T for each similarity computation, as shown in Fig. 3(b). 

Compared with the partitioning and indexing approach, the merits of the window sliding 

approach include (1) its simple computation technique; (2) its ability to indicate the defi-

nite time position of a detected copy; and (3) its applicability to searching either a parti-

tioned video dataset or an un-partitioned video sequence. In addition, there is a speed-up 

algorithm, which accelerates the window scanning procedure without sacrificing the 

search accuracy, making this approach fast enough in a large-scale video sequence. 

 

 
(a) (b) 

Fig. 3. Examples of the search approaches: (a) partitioning and indexing; and (b) window sliding. 

 

3. RELATED WORK 
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Our study of the video copy detection problem begins with Content-Based Video Re-

trieval (CBVR). The general paradigm of the CBVR methods is based on the analysis of 

video shots [Chang et al. 1998; Deng and Manjunath 1998; Jain et al. 1999; Naphade and 

Huang 2001; Smoliar and Zhang 1994]. Shot boundaries are automatically detected by 

finding transitions (e.g., cut and fading) in video sequences. Each shot is then summa-

rized as several key frames or clusters. For example, Jain et al. [1999] simply selected the 

first, middle, and last frames as key frames; Liu et al. [2003] extracted key frames by 

finding the peaks of the motion energy in the video sequence; Cheung and Zakhor [2003] 

proposed using the Voronoi video similarity for key frame selection; and Shen et al. 

[2005] modeled a video shot as a cluster described by the position, radius, and density of 

a hypersphere. Given a query clip, these methods search in the dataset by matching the 

shot key frames or clusters. 

Existing CBVR methods do not consider video transformation because their ultimate 

goal is to find videos that are "semantically" similar, rather than "perceptually" similar, to 

the query clip. Moreover, they are regarded as typical of the partitioning and indexing 

approach, and suffer from the same problems mentioned in the previous section. 

Searching by a sliding window is a popular approach [Chiu et al. 2008, Hampapur 

and Bolle 2001; Hua et al. 2004; Hoad and Zobel 2006; Kashino et al. 2003; Kim and 

Vasudev 2005]. Although this approach is simple and effective, the computation can be 

slow when scanning a long video sequence. However, if the indexing feature is repre-

sented in a histogram-based form, many frames can be skipped by exploiting the histo-

gram pruning algorithm without influencing the matching result [Kashino et al. 2003]. In 

this paper, we develop a video copy detection method based on the window sliding ap-

proach. 

The ordinal measure has been widely used in video copy detection [Chiu et al. 2008; 

Hampapur and Bolle 2001; Hua et al. 2004; Kim and Vasudev 2005; Yuan et al. 2004]. 

To extract the ordinal measure, each video frame is partitioned into Nx×Ny non-

overlapping blocks and the average intensity of each block is computed. Then, the blocks 

are ranked according to their average intensities; the ranking order is known as the 

frame's ordinal measure. The merit of the ordinal measure is its compact representation, 

as only a 9-dimensional vector is needed for a 3×3-block frame. Moreover, the measure is 

less sensitive to several video transformation types than general low-level image features 

(e.g., color histograms and texture descriptors). In addition to the ordinal measure, Hoad 

and Zobel [2006] proposed a compact video representation composed of color-shift and 

centroid-based signatures. The former computes the change of color histogram distribu-
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tions, while the latter computes the spatial movement of the lightest and darkest pixels. 

Consequently, each frame is represented by a 2-dimensional vector, which is more com-

pact and robust than the ordinal measure. 

Both the ordinal measure and the color-shift/centroid-based signature are extracted 

based on the whole frame region. We refer to them as "global descriptors," which have 

shown their robustness to whole region-preserved spatial transformation in many studies. 

However, if the frame is modified by partial region-discarded spatial transformation, its 

global descriptors might be totally different from those of the source frame. 

Due to the limited capability of the global descriptors, various local descriptors have 

been investigated by many researchers as an alternative feature representation for im-

age/video copy detection, e.g., the Harris descriptor [Schmid 1997], Scale-Invariant Fea-

ture Transform (SIFT) [Lowe 2004], local fingerprinting [Massoudi et al. 2006], and spa-

tio-temporal features [DeMenthon and Doermann 2006; Willems et al. 2008]. In addition, 

the bag-of-words model is frequently applied to aggregate local descriptors of clusters for 

the sake of compact representation [Chiu et al. 2007; Poullot et al. 2008].  The compara-

tive study of Law-To et al. [2007] shows that local descriptors are more robust than 

global descriptors in handling several video transformation types. 

In this study, however, we find that global descriptors are better for whole region-

preserved spatial transformation, while local descriptors are better for partial region-

discarded spatial transformation. These two types of descriptors can complement each 

other; therefore, combining them as a single feature representation improves the accuracy 

of detecting various video copies. This idea is different from the method of Wu et al. 

[2007], which employs the color histogram as the global descriptor for fast rejection at 

the coarse stage and the PCA-SIFT descriptor as the local descriptor for detailed match-

ing at the fine stage. Since the global and local descriptors are applied separately at each 

stage, copies derived from partial region-discarded spatial transformation might be 

falsely rejected at the coarse stage. 

Consider two video sequences that have the same content but different speeds: one is 

normal speed, and the other is double speed, as shown in Figs. 2(a) and 2(d), respectively. 

Since their contents do not synchronize, a window sliding-based method might obtain a 

lower similarity score and lead to a false negative. To remedy this problem, some meth-

ods have been proposed to take both spatial and temporal information into consideration. 

Hua et al. [2004], Hoad and Zobel [2006], and Chiu et al. [2008] applied the dynamic 

programming algorithm to solve the content synchronization problem; Joly et al. [2007] 

used a RANdom SAmple Consensus (RANSAC) algorithm to iteratively estimate the 
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affine transformation parameters (say, resize, rotation, translation, and speed) between 

two video sequences; Law-To et al. [2006] proposed a voting algorithm for spatial and 

temporal registrations; and Kim et al. [2008] presented a non-crossing bipartite matching 

scheme to model the video linkage relation. A common point of these methods is that 

they assume the frame order of the video copy is not altered. They cannot handle frame 

order-changed temporal transformation, like the case shown in Fig. 2(e). To address this 

problem, we propose a novel spatio-temporal matching scheme by applying the Hough 

transform algorithm to search for the specific copy patterns. Our matching scheme can 

effectively deal with both spatial and temporal transformation categories mentioned in 

the previous section. 

In order to efficiently search for video copies in a high-dimensional space, we pro-

pose using a popular algorithm for nearest neighbor search, namely, Locality-Sensitive 

Hashing (LSH). LSH uses several hash functions to hash an input item. An effective LSH 

function ensures that the hash collision probability of two items is proportional to their 

similarity. Several LSH functions have been derived based on the following distance and 

similarity functions, including Hamming distance, Ls norms, L2 distance on a sphere, 

arccos, and Jaccard coefficient [Andoni and Indyk 2008]. The LSH family has been suc-

cessfully applied in several research fields, such as web mining [Das et al. 2007], bioin-

formatics [Buhler 2001], and image copy detection [Ke et al. 2004]. In this paper, we 

study the potential of the Jaccard coefficient-based LSH, i.e., min-hashing, in video copy 

detection. 

 

4. THE PROPOSED METHOD 

We propose a novel means of detecting various video copies in a continuous video se-

quence. To make video copy detection more efficient and effective, we use the compact 

min-hashing signature to reduce the similarity computation cost, and apply the robust 

spatio-temporal matching scheme to deal with a variety of video transformation. Fig. 4 

shows an overview of the proposed method. Given a query clip, we scan the target se-

quence with a sliding window whose length is equal to the number of query frames. In 

this stage, the similarity between the query clip and a windowed sequence is measured 

based on their min-hashing signatures derived from the histograms. The windowed se-

quence with the similarity score exceeding a predefined threshold is denoted as a candi-

date, which will be further analyzed by spatio-temporal matching to determine whether it 

is a copy. In addition, based on the similarity score, we can decide how many frames the 
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sliding window can skip when scanning the target sequence. The whole process is iter-

ated until the sliding window reaches the end of the target sequence. 

 

 
Fig. 4. An overview of the proposed method. 

 

4.1 Feature Representation and Similarity Measurement Prototype 

We use a histogram-based feature representation to model a video sequence. Histograms, 

which characterize the frequency distributions of feature vectors over a certain interval, 

have been widely employed in the multimedia field because of their effective discrimina-

tion and efficient computation properties [Swain and Ballard 1991; Ennesser and Medi-

oni 1995]. Moreover, histograms do not count the frame order relation, so they are less 

sensitive to the temporal variations caused by frame order changes. 

The histogram-based feature representation is formulated as follows. Let Q = {qi | i = 

1, 2, ... , n} be a query clip, where qi is the i-th query frame. For each qi, we extract its 

feature descriptors (e.g., the ordinal measure and SIFT descriptors) and quantize them to 

the corresponding clusters. By counting the number of feature descriptors in each cluster, 

we generate the histogram of frame qi, denoted as },...,,...,,{ )()()(
2

)(
1

)( i
L

i
l

iii qhqhqhqhqH = , 

where L is the number of clusters (histogram bins), and )(i
lqh  is the number of feature 

descriptors classified into the l-th cluster. We then obtain the histogram of Q, denoted as 

QH = {qh1, qh2, ... , qhl, ... , qhL}, by aggregating all frames' histograms, where 

∑
=
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Given a target sequence T = {tj | j = 1, 2, ... , m}, where tj is the j-th target frame, we 

repeat the above process to generate frame tj 's histogram. A window of length n is em-
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ployed to slide over T. For a windowed sequence Cs starting from frame ts, i.e., Cs = {tj | j 

= s, s+1, ... , s+n-1}, its histogram is denoted as }, ... , , ... , ,{ )()()(
2

)(
1

)( s
L

s
l

sss chchchchCH = . 

The similarity between Q and Cs is then computed by the Jaccard coefficient: 
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where |A| denotes the cardinality of set A. If J(Q, Cs) ≥ θJS, where θJS is a predefined 

threshold, we regard Cs as a candidate that will be checked by spatio-temporal matching 

later. 

Since the window length is determined when a query is given, histogram construction 

is an online process. The computation time required to construct CH(s) by summing n his-

tograms of L dimensions is O(nL); and the computation time required to calculate the 

Jaccard coefficient is O(L). Therefore, the total computation time is O((n+1)L). In the 

following subsections, we present a compact feature representation, called the min-

hashing signature, to reduce the computation cost. 

 

4.2 Min-hashing Indexing 

Min-hashing, a locality sensitive hashing function derived based on the Jaccard coeffi-

cient, was proposed by Cohen et al. [2000] to solve the nearest neighbor search problem 

efficiently. The probability of two feature vectors having the same min-hashing signature 

is proportional to their similarity. In this study, we take the indices of the first k non-zero 

elements of an L-dimensional feature vector as the hash values, where 1≤k<L, and repre-

sent the feature vector by a k-dimensional min-hashing signature vector. As k is smaller 

than the original feature dimension, the computation time for similarity measurement can 

be reduced. 

To make the hashing process efficient, we employ the histogram-based feature repre-

sentation described in Section 4.1 and directly use the index of the histogram bin as the 

hash value. Let Ω be the set of indices of histogram bins with nonzero values, i.e., Ω = {l 

| hl > 0}. The elements in Ω are ranked in an ascending-order sequence l(1), l(2), ... l(p), ... 

l(|Ω|), and l(p) ∈ Ω is the p-th smallest index in Ω. A k-min-hashing signature SIG is de-

fined as a sequence whose length is not larger than k: 

)}|,min(|,...,2,1),({ kpplSIG Ω== .                (3) 

In an ideal case, every histogram would be generated with an equal probability, and the 

cardinality of Ω would be much smaller than L; so that the proposed hashing would act 

approximately randomly. 



 11

For query clip Q and windowed sequence Cs, we denote their min-hashing signatures 

as SIGQ and 
sCSIG respectively. Based on the min-hashing representation, the similarity 

between Q and Cs can be estimated by the following expression [Cohen et al. 2000]: 

|)|,min(
||

),(
s

s

CQ

CQ
s SIGSIGk

SIGSIG
CQM

∪

∩
= .                                                                             (4) 

Cohen et al. showed that the min-hashing similarity M is proportional to the Jaccard simi-

larity J with a certain probability, which would be close to 1 for a suitably large choice of 

k. Hence, the candidate selection criterion can be modified as follows: if M(Q, Cs) ≥ θMS 

= δ⋅θJS, where δ is a real number between 0 and 1, Cs is regarded as a candidate for later 

spatio-temporal matching. 

The computation time of the proposed min-hashing technique is still O(nL) due to the 

time spent on histogram construction for a query/windowed sequence. Therefore, we in-

troduce a fast approximation approach to extract the min-hashing signature without his-

togram construction. For each query/target frame, we maintain a frame signature sig with 

maximal g min-hashing values (g < k): 

)}|,min(|,...,2,1),({ gpplsig Ψ== ,                                                                         (5) 

where Ψ, like Ω, contains indices of histogram bins with nonzero values in ascending 

order. Given an n-frame sequence, we aggregate and sort its n frame signatures to obtain 

an approximation Ω* of Ω. Consequently, we obtain an approximate min-hashing signa-

ture SIG* as 

)}|,min(|,...,2,1),({ ** kpplSIG Ω== .                                                                     (6) 

The computation time required to generate SIG* for a query/windowed sequence is about 

)lg(O kng ⋅ . 

Therefore, the total time spent on computing the min-hashing similarity between two 

sequences would be )lg(O kkng +⋅ . This is comprised of )lg(O kng ⋅  for generating the 

sequence signature and O(k) for calculating the intersection and union between two se-

quence signatures1. Compared with the computation of the Jaccard similarity, whose time 

complexity is O(nL), the min-hashing similarity can be computed more efficiently when 

L is much larger than g. 

Furthermore, in our implementation, the similarity in Equation (4) is simplified by re-

placing " |)|,min(
sCQ SIGSIGk ∪ " in the denominator with a constant as follows: 

                                                           
1  Since the elements in the signature are maintained in ascending order, the time required to compute the signa-

ture intersection and union is O(k). 
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k
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* ∩

= .                                                                                        (7) 

The computation cost of Equation (7) is expected to be approximately half that of Equa-

tion (4). Empirical studies show that the approximation works almost as well as the origi-

nal form. 

To summarize, we propose representing a video sequence by the min-hashing signa-

ture of the histogram feature. Some approximation forms are derived to speed up the sig-

nature generation and similarity measurement. The compact representation of the min-

hashing signature ensures that the video sequences can be matched efficiently. 

 

4.2.1 Histogram Pruning for Speed-up. Even though the calculation of the min-

hashing signature is efficient, frame-by-frame scanning by the sliding window is imprac-

tical in terms of computation time. Thus, we adopt the histogram pruning algorithm pro-

posed by Kashino et al. [2003] to accelerate the window sliding approach. The basic idea 

is to jump across frames during sliding, but still obtain the full-sliding result. The number 

of skipped frames is determined by the maximum increment of the sliding window, as 

well as the difference between the current window similarity and the predefined threshold 

θMS. 

To incorporate this idea in our method, it is necessary to derive the maximum incre-

ment of the sliding window for the proposed min-hashing indexing. This is done as fol-

lows. Suppose we shift the window forward one frame in T. Frame ts slides out of the 

window and frame ts+n slides into the window, where n is the sliding window length. In 

other words, sigs+n is used instead of sigs to construct *
)1( +sSIG . It is clear that, according to 

Equation (7), the maximum increment from ),(*
sCQM  to ),( 1

*
+sCQM  is dependent on 

the maximum cardinality of the new incoming frame signature sigs+n , i.e., k
sig ns || + ; thus, 

the maximum increment is k
g . Based on this observation, the number of skipped frames, 

w, can be calculated by: 

⎪
⎩
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otherwise,                                              ,1
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MSMS θθ ss CQMCQM
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k

w                                                   (8) 

where ⎣x⎦ rounds x to the nearest integer less than or equal to x. It is guaranteed that no 

subsequence whose min-hashing similarity *M  is greater than θMS will be missed in the 

sliding process, even if we skip w frames. 
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Note that θMS plays an important role in determining the detection accuracy and the 

computation speed. A higher threshold will cause histogram pruning to skip a larger 

number of frames, and thus induce a higher precision rate and a lower recall rate in video 

copy detection. 

 

4.3 Spatio-temporal Matching 

Although the histogram-based feature representation is not affected by changing the 

frame order in a video sequence, it could be a drawback that the time relation between 

frames is not reflected. Some candidates found by the procedure described in Section 4.2 

may be false positives; i.e., they may not be real copies of the query clip. On the other 

hand, continuously high similarity scores between frame pairs of two sequences s-

trengthen their copy relation. Therefore, the similarity measurement should also consider 

the information about the temporal aspect in video copy detection. 

We now present spatio-temporal matching. It serves as a verification process that fur-

ther dissects the relation between the query and each candidate. The scheme compiles the 

spatial and temporal information of all the frame pairs of two video sequences, and it can 

be visualized through a 2D intensity map. A computer vision-based algorithm is then 

applied to search the map for the specific copy patterns. 

To simplify the notation, a candidate sequence is denoted as C = {cp | p = 1, 2, ... , n}, 

where cp is the p-th frame of C. The histogram of frame cp is re-written as 

},...,,...,,{ )()()(
2

)(
1

)( p
L

p
l

ppp chchchchcH = . We define the pairwise matrix for Q and C, which 

is an n×n matrix representing all-pair frame similarities, as follows: 

} ),min(|...1,...1, {),(
1

)()(∑
=

====
L

l

p
l

i
lipip chqhmnpnimCQPM .                                    (9) 

The (i, p)-th element mip ∈ [0, 1] stores the frame similarity between the i-th query frame 

and the p-th candidate frame, which is the intersection of the two frames' histograms. 

The pairwise matrix PM can be visualized by plotting its frame similarities as gray-

level intensities. To illustrate this point, Fig. 5 shows four cases: (a) PM(Q, C1); (b) 

PM(Q, C2); (c) PM(Q, C3); and (d) PM(Q, C4). The X-axis and the Y-axis indicate the 

candidate frame index and the query frame index, respectively. Except for C1, the other 

three candidates are copies of Q: C2 enhances the brightness of Q, C3 is a slow motion 

copy, and C4 swaps Q's first-half subsequence and second-half subsequence. We observe 

that the intensity distribution in Fig. 5(a) is very scattered, whereas slant line patterns 

appear clearly in Figs. 5(b)-(d). The slant line patterns with different orientations and 
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positions also reflect the types of temporal transformation that were applied to the source 

video. 

 

 
(a)                                       (b)                                      (c)                                     (d) 

Fig. 5. The pairwise matrixes: (a) PM(Q, C1); (b) PM(Q, C2); (c) PM(Q, C3); and (d) PM(Q, C4). Except for C1, 

the other candidates are copies of Q, and their corresponding matrixes exhibit slant line patterns clearly. 

 

The slant line pattern, which manifests a set of consecutive frame pairs with high 

similarity scores, indicates a possible copy relation at that interval. Based on this observa-

tion, the task of spatio-temporal matching involves detecting slant line patterns on the 

pairwise matrix. Since there may be multiple slant lines with various positions and orien-

tations, the detection process should be able to find any kind of patterns. To this end, we 

use the Hough transform [Sonka et al. 1999], a well-known algorithm for detecting ob-

jects in an image. 

The detection process is implemented as follows. First, we use the Sobel edge detec-

tion method on the pairwise matrix PM to determine the magnitude and direction of each 

pixel. The pixels are considered as potential line points if they satisfy the following two 

conditions: (1) the pixel magnitudes exceed a given threshold θEM, and (2) the pixel di-

rections are within a certain range ΘED. These potential line points are then projected to 

the Hough space. Finally, local maxima in the Hough space that are greater than a thresh-

old θLM are regarded as slant lines on PM. 

While θEM is usually decided empirically, ΘED can be determined by the video speed 

range ΘED = [arctan(ρL), arctan(ρH)], where ρL and ρH are, respectively, the lowest and 

highest video speeds to be considered. This is because the speed range also constrains the 

range of the slant line orientation on PM. For example, to detect video copies with the 

speed range between 0.5× and 2×, we can set ΘED = [26.57° - ε , 63.43° + ε], where ε is a 

small tolerance value. θLM can be decided by a proportion of n. 

Fig. 6 shows two examples of detecting slant line patterns. Figs. 6(a)-(d) illustrate the 

results for the case in Fig. 5(c): (a) is the pairwise matrix; (b) shows the edge points on 

PM that satisfy the threshold conditions of θEM and ΘED; (c) is the Hough space, where 
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the rectangle labels the location of the local maximum; and (d) shows the detection result 

with a dashed line. Figs. 6(e)-(h) illustrate the results for the case in Fig. 5(d). The two 

examples demonstrate that the proposed matching scheme can detect multiple slant lines 

in various positions and orientations. They also demonstrate the proposed scheme yields 

excellent performance in handling temporal transformation. 

 

  
(a) (b) (c) (d) 

 
 

 
(e) (f) (g) (h) 

Fig. 6. (a)-(d) illustrate the slant line pattern detection process for PM(Q, C3): (a) the pairwise matrix; (b) the 

edge points on PM; (c) the Hough space, where the rectangle labels the location of the local maximum; and (d) 

the detection result with a dashed line; (e)-(h) illustrate the detection results for PM(Q, C4). 

 

4.3.1 Inverted Indexing for Speed-up. A naive way to construct the pairwise matrix 

PM is to compute all-pair frame similarities according to Equation (9). The time com-

plexity is O(L⋅n2). However, PM is a sparse matrix that can be constructed by counting 

only a few frame pairs. Here we employ an inverted indexing technique to reduce the 

computation cost of constructing PM. 

Let IT be the inverted table that contains L cells to store video frames. For every 

query frame qi, if its l-th histogram bin 0)( >i
lqh , qi is inserted into the l-th cell of IT. We 

apply the same step to insert every candidate frame cp into the corresponding cells of IT. 

Then, we construct PM by scanning IT as follows: for each frame pair (qi, cp) found in 

the l-th cell of IT, we update the (i, p)-th element mip of PM by adding ),min( )()( p
l

i
l chqh . 

When only a few frame pairs intersect in some histogram bins, using the inverted ta-

ble can reduce the computation cost substantially. The computation time mainly com-

prises of inserting frames into IT and accumulating the number of frame pairs in IT. Fur-

ther discussions are given in experiments. 
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5. EXPERIMENTS 

To evaluate the proposed method, we compiled a video dataset for use in several experi-

ments. The code was implemented in C++, and the evaluation was carried out on a PC 

with a 1.8 GHz CPU and 2GB RAM. 

 

5.1. Video Dataset 

A 6.1-hour video sequence was compiled from the MPEG-7 video CD collection and the 

Open Video Project (http://www.open-video.org/). Its contents included sports programs, 

news broadcasts, and documentaries. We transformed these video data into the following 

uniform format: MPEG-1, 320×240 pixels, and 30 frames per second (fps). This dataset 

served as the target sequence. 

From the target sequence, we randomly extracted 31 subsequences, each of 30 sec-

onds duration. Each subsequence derived twelve video copies by applying the common 

video transformation types listed in Table 1. Fig. 7 gives two examples of frame order-

changed temporal transformation used in the experiments. There were totally 372 (31×12) 

video copies, which served as the query clips. Each copy was used to detect the corre-

sponding subsequence in the target sequence. Note that the definition of the target se-

quence and query clips here is different from that given in Section 2. We made this modi-

fication to fit the experiment's purpose; that is, to only generate a small size of the query 

dataset. 

Since a continuous video sequence contains many identical or near-duplicate frames, 

it is not necessary to use every frame in the sequence for matching. Therefore, we se-

lected a key frame every 15 frames of the target sequence. In other words, the frame rate 

of the target sequence became 2 fps. In addition, before starting the detection process, we 

had to determine the frame rate of the query clip, which is commonly available from the 

file header. The query clip was re-sampled so that its frame rate is synchronized with that 

of the target sequence. For example, a 30-second query clip with 30fps became a 60-

frame sequence after re-sampling. 

 

Table 1. Different types of video transformation. 
Category Type Description 

Brightness Enhance the brightness by 20%. 

Compression  Set the compression quality 50% (by IndeoR 5.10). 

Whole region-preserved 

spatial transformation 

Noise Add 10% random noise. 
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Equalization  Equalize the color histogram. 

Resolution change Change the frame resolution to 120×90 pixels. 

Cropping Crop the top and bottom frame regions by 10% each. Partial region-discarded 

spatial transformation Zooming in Zoom in to the frame by 10%. 

Slow motion Halve the video speed. 

Fast forward Double the video speed. 

Frame number-changed 

temporal transformation 

Frame rate change Change the frame rate to 15 fps. 

Swap Swap the first-half subsequence and the second-half one. Frame order-changed 

temporal transformation Insertion/deletion Delete middle 50% of frames and insert unrelated frames. 

 

 
(a)                                                                                       (b) 

Fig. 7. Examples of frame order-changed temporal transformation used in the experiments: (a) Swap the first-

half subsequence and the second-half one. (b) Delete middle 50% of frames and insert unrelated frames. 

 

5.2 Feature Extraction 

From each frame, we extracted the ordinal measure and the SIFT descriptor to serve as 

the global descriptor and local descriptor, respectively. To extract the ordinal measure, 

we partitioned each video frame into Nx×Ny non-overlapping blocks and computed their 

intensity ranks. The rank order is known as the ordinal measure of the frame. Since there 

were (Nx×Ny)! possible permutations of the ordinal measure, we used a histogram with 

(Nx×Ny)! bins to represent a video sequence, where each frame was assigned to a histo-

gram bin according to its ordinal measure. Here Nx = 3 and Ny = 2. 

To extract SIFT descriptors of each frame, we located the local extrema in the DOG 

(Differential-of-Gaussian) scale space and computed their orientation histograms in the 

image space. We used a training dataset collected from another video collection, and ap-

plied the LBG (Linde-Buzo-Gray) algorithm [Sayood 1996] to generate a codebook of L 

codewords. Then, each SIFT descriptor was quantized to the nearest codeword and as-

signed to the corresponding histogram bin. Subsequently, a video sequence was repre-

sented by a histogram with L bins. Here L = 1024. For every frame, we extracted one 

ordinal measure and averagely 22.84 SIFT descriptors in this dataset. 

As mentioned earlier, the ordinal measure and the SIFT descriptor can be combined to 

improve the accuracy. To this end, we simply executed the search twice using the ordinal 

measure and the SIFT descriptor individually to collect their corresponding candidate sets, 

which were then merged into a single one.  For a candidate sequence in the merged set, 
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let PMordinal and PMSIFT be the pairwise matrixes generated based on ordinal measure and 

SIFT descriptor, respectively; and let PMcombination be the combined form written as: 

PMcombination = α ⋅ PMordinal + (1-α) ⋅ PMSIFT ,                                                             (10) 

where α ∈ [0, 1] is a weighting factor that controls the relative importance of PMordinal 

and PMSIFT. We set α = 0.5 throughout the experiments. 

 

5.3 Evaluation Metric 

We used the following detection criteria for the accuracy evaluation. A detection result 

was considered correct if it had any overlap with the region from which the query was 

extracted. The recall and precision rates were used to evaluate the accuracy of the detec-

tion result: 

recall = TP / (TP + FN),                                                                                             (11) 

precision = TP / (TP + FP),                                                                                        (12) 

where True Positives (TP) refer to positive examples correctly labeled as positives; False 

Negatives (FN) refer to positive examples incorrectly labeled as negatives; and False 

Positives (FP) refer to negative examples incorrectly labeled as positives. We also used 

the F-measure, calculated as: 

F-measure = (2×recall×precision) / (recall + precision).            (13) 

 

5.4 Overview of Methods Evaluated 

We implemented the following seven methods for performance evaluation: 

(1) The ordinal measure with spatio-temporal matching (abbreviated as "OM+STM"). 

(2) The SIFT descriptor with spatio-temporal matching ("SD+STM"). 

(3) The combination of Methods (1) and (2) using Equation (10) ("OM+SD+STM"). 

(4) The ordinal measure without spatio-temporal matching ("OM"). 

(5) The SIFT descriptor without spatio-temporal matching ("SD"). 

(6) Method (2) without min-hashing ("SD+STM-MH"). 

(7) Hoad and Zobel's method [2006] ("HZ"). 

 

Methods (1) and (2) used different min-hashing features with spatio-temporal match-

ing, and their combination yielded Method (3). We implemented Methods (4) and (5) to 

see the effect without the proposed spatio-temporal matching scheme. Method (6) was 

implemented to assess the proposed min-hashing indexing. The threshold parameters 

used in Methods (1)-(5) were configured as follows. For min-hashing similarity computa-

tion, we set θMS = 0.5; for spatio-temporal matching, we set θEM = G/4, where G is the 
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maximum among all edge magnitudes in the pairwise matrix, ΘED = [20°, 70°], and θLM 

= n/5. In Method (6), the Jaccard similarity threshold θJS was adjusted to control the 

trade-off between the recall and precision rates. We finally set θJS = 0.35 since its accu-

racy was closest to that of Method (2) in several transformation types. We can thus com-

pare the computation cost of Method (2) and Method (6) (with min-hashing indexing vs. 

without min-hashing indexing). In Method (7), the recall and precision rates were meas-

ured after x results were detected, where x is the number of positives (video copies) in the 

target sequence. 

Recall that k and g are the min-hashing signature lengths of a sequence and a frame, 

respectively. The configurations of the (k, g) pairs were set according to the feature used. 

For the methods using the SIFT descriptor, i.e., Methods (2) and (5), we used the follow-

ing ten empirical (k, g) pairs in the experiments: (10, 2), (20, 3), (30, 3), (40, 3), (50, 4), 

(60, 4), (70, 5), (80, 5), (90, 6), and (100, 6). For the methods using the ordinal measure, 

i.e., Methods (1) and (4), each frame had only one ordinal measure; hence, g was always 

set to 1. In Method (3), which combines the ordinal measure and SIFT descriptor, we 

used the above ten (k, g) pairs for the SIFT descriptor part and the pair (k, g) = (30, 1) for 

the ordinal measure part. Methods (6) and (7) did not involve k and g.  

Hoad and Zobel's method, i.e., Method (7), is one of the state of the art methods that 

use the window sliding approach. We implemented their method as follows. In each 

frame, the color-shift signature was extracted by using 16 bins for each of the three color 

channels in YCbCr. The Manhattan distance was used to calculate the histogram distance 

of two adjacent frames. To extract the centroid-based signature, we identified the lightest 

and darkest 5% of pixels in each frame, and computed their average coordinates as the 

centroid location. We calculated the Euclidean distance of the centroids between two 

adjacent frames. The two distance signatures were combined into a single vector to repre-

sent a frame, and approximate string matching was applied for similarity measurement. 

This method can provide a perspective on the typical window sliding approach using a 

global descriptor. 

 

5.5 Detection Accuracy 

In the following subsections, we show and discuss the accuracy of the compared methods 

in terms of spatial and temporal transformation. 

 

5.5.1 Whole region-preserved spatial transformation. This category includes bright-

ness enhancement, compression, noise addition, histogram equalization, and frame reso-
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lution change, which have been widely tested by existing methods. The results are listed 

in Tables 2-6. The bold font indicates the highest F-measure scores in the table. 

The length of the min-hashing signature has quite a large impact on the retrieval accu-

racy of the ordinal-based methods (i.e., Methods (1) and (4)). The recall rate degrades 

and the precision rate improves as k grows to 60. Since the query clip contains 60 frames 

after re-sampling, the maximum length of the ordinal-based min-hashing signature is 60. 

This explains why the performance will not change when k > 60. In contrast, the length 

of the min-hashing signature has a limited impact in the SIFT-based methods (i.e., Meth-

ods (2) and (5)), with slight variations in the recall and precision rates under various k. 

The performance of the SIFT-based methods is superior to that of the ordinal-based 

methods for the brightness, compression, and noise transformation types. However, for 

the equalization and resolution change types, the recall rates of the SIFT-based methods 

decline sharply. This is because applying the two transformation types might alter the 

original SIFT descriptor's property substantially. Compared with the SIFT-based methods, 

the ordinal-based methods yield nearly similar results for all types of whole region-

preserved spatial transformation. With a suitable choice of k, the ordinal-based methods 

would gain a more robust performance than the SIFT-based methods in this transforma-

tion category. 

The proposed spatio-temporal matching scheme is effective in improving the preci-

sion rates of both ordinal-based and SIFT-based methods. In particular for the SIFT-

based methods, Method (2) obtains a substantial improvement from Method (5). From 

another perspective, Method (5) retrieves a large number of false positives, while Method 

(2) utilizes the proposed matching scheme to remove these false positives effectively. 

Method (6) obtains extremely good results for the brightness, compression, and noise 

transformation types. Its accuracy served as an upper bound for Method (2) in these 

transformation types. From Tables 2-6, we observe that the gap is not very significant. 

Hoad and Zobel's method, i.e., Method (7), performs well for the compression, noise, 

and resolution change types, but not as well for the brightness and equalization types. 

This is because its color-shift signature counts the histograms of the color channels that 

might vary widely after applying brightness enhancement or histogram equalization. 

Among all the methods, Method (3), i.e., the combination of Methods (1) and (2), 

yields the most robust results in all types of whole region-preserved spatial transforma-

tion. Method (3) exhibits a similar accuracy distribution to that of Method (2); however, 

because of the combination of the ordinal measure and SIFT descriptor, the accuracy dis-

tribution of Method (3) is more compact and expresses better precision and recall rates. 
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Table 2. The precision and recall rates for brightness transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 1.0000 0.9355 0.9355 0.7419 0.5806 0.2258 0.2258 0.2258 0.2258 0.2258 (1) 
OM+STM P 0.3523 0.6591 0.8529 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.9032 0.9677 0.9677 1.0000 0.9677 0.9677 0.9677 0.9355 0.9355 0.9355 (2) 
SD+STM P 0.9333 0.9375 0.9091 0.9394 0.9375 0.9677 0.9677 0.9677 0.9677 0.9677 

R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 (3) 
OM+SD+STM P 0.9394 0.9394 0.9118 0.9394 0.9394 0.9688 0.9688 0.9688 0.9688 0.9688 

R 1.0000 0.9355 0.9355 0.7419 0.5806 0.2258 0.2258 0.2258 0.2258 0.2258 (4) 
OM P 0.1348 0.5686 0.8056 0.9583 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 1.0000 0.9677 0.9677 1.0000 0.9677 0.9677 0.9677 0.9355 0.9355 0.9355 (5) 
SD P 0.0110 0.0258 0.0296 0.0546 0.0571 0.0993 0.0962 0.1312 0.1394 0.1648 

R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 (7) 
HZ P 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 

 

Table 3. The precision and recall rates for compression transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 1.0000 0.9355 0.9355 0.7742 0.6129 0.2581 0.2581 0.2581 0.2581 0.2581 (1) 
OM+STM P 0.3483 0.6304 0.8529 0.9231 0.9500 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8387 0.8710 0.9677 0.9677 0.9355 0.9355 0.9355 0.9355 0.8710 0.8710 (2) 
SD+STM P 0.9286 0.9310 0.9677 0.9677 0.9355 0.9667 0.9667 0.9667 0.9643 0.9643 

R 1.0000 0.9355 0.9677 0.9677 0.9677 0.9677 0.9677 1.0000 0.9677 0.9677 (3) 
OM+SD+STM P 0.9118 0.9355 0.9677 0.9677 0.9677 0.9375 0.9677 0.9688 0.9677 0.9677 

R 1.0000 0.9355 0.9355 0.7742 0.6129 0.2581 0.2581 0.2581 0.2581 0.2581 (4) 
OM P 0.1360 0.5577 0.8056 0.9231 0.9500 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.9032 0.9032 1.0000 1.0000 0.9667 0.9667 0.9667 0.9355 0.9032 0.9032 (5) 
SD P 0.0103 0.0223 0.0262 0.0458 0.0439 0.0699 0.0699 0.0945 0.0930 0.1197 

R 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 (7) 
HZ P 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 

 

Table 4. The precision and recall rates for noise transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 1.0000 0.9355 0.9355 0.7419 0.5806 0.2258 0.2258 0.2258 0.2258 0.2258 (1) 
OM+STM P 0.3605 0.6905 0.9063 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8065 0.8065 0.9355 0.9677 0.8710 0.9032 0.9032 0.8710 0.8387 0.8710 (2) 
SD+STM P 0.8929 0.8065 0.8286 0.8824 0.9310 0.9032 0.9032 0.9310 0.9286 0.9310 

R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 (3) 
OM+SD+STM P 0.9118 0.8378 0.8378 0.8857 0.9394 0.9118 0.9118 0.9394 0.9394 0.9394 

R 1.0000 0.9355 0.9355 0.7419 0.5806 0.2258 0.2258 0.2258 0.2258 0.2258 (4) 
OM P 0.1396 0.6304 0.8529 0.9583 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8387 0.8387 0.9355 0.9677 0.9355 0.9355 0.9355 0.9355 0.9032 0.9032 (5) 
SD P 0.0089 0.0185 0.0221 0.0384 0.0389 0.0556 0.0577 0.0788 0.0824 0.1089 

R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 (7) 
HZ P 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 0.9032 

 

Table 5. The precision and recall rates for equalization transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 0.8387 0.9032 0.8387 0.4194 0.2581 0.0323 0.0323 0.0323 0.0323 0.0323 (1) 
OM+STM P 0.2766 0.6829 0.8667 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.2903 0.3548 0.3548 0.3226 0.2581 0.3226 0.2903 0.1935 0.1613 0.1613 (2) 
SD+STM P 0.6429 0.7333 0.7857 0.8333 1.0000 0.9091 0.9000 0.8571 0.8333 0.8333 

R 0.8065 0.8065 0.8065 0.7742 0.7419 0.7419 0.7419 0.7419 0.7419 0.7419 (3) 
OM+SD+STM P 0.8333 0.8621 0.8929 0.9231 1.0000 0.9583 0.9583 0.9583 0.9583 0.9583 

R 0.9355 0.9032 0.8387 0.4194 0.2581 0.0323 0.0323 0.0323 0.0323 0.0323 (4) 
OM P 0.1184 0.6222 0.8125 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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R 0.5161 0.4839 0.5484 0.5161 0.3871 0.3871 0.3871 0.2903 0.2258 0.2258 (5) 
SD P 0.0071 0.0164 0.0217 0.0430 0.0399 0.0833 0.0764 0.1098 0.1167 0.2121 

R 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 (7) 
HZ P 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 

 

Table 6. The precision and recall rates for resolution change transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 1.0000 0.9355 0.9355 0.7419 0.5806 0.2581 0.2581 0.2581 0.2581 0.2581 (1) 
OM+STM P 0.3229 0.6042 0.7436 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.5484 0.4839 0.5484 0.6129 0.6452 0.6129 0.5806 0.5806 0.6129 0.6129 (2) 
SD+STM P 0.8947 0.9375 0.9444 0.9048 0.9091 0.8636 0.9474 0.9000 0.9048 0.9048 

R 0.9032 0.9032 0.9032 0.9677 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 (3) 
OM+SD+STM P 0.9032 0.9655 0.9655 0.9375 0.9063 0.9063 0.9355 0.9063 0.9355 0.9355 

R 1.0000 0.9355 0.9355 0.7419 0.5806 0.2581 0.2581 0.2581 0.2581 0.2581 (4) 
OM P 0.1225 0.5472 0.6905 0.9583 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.6774 0.7097 0.7419 0.7742 0.7419 0.6452 0.6452 0.6452 0.6452 0.6774 (5) 
SD P 0.0085 0.0199 0.0237 0.0519 0.0535 0.0794 0.0680 0.1005 0.0990 0.1214 

R 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 (7) 
HZ P 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 

 

5.5.2 Partial region-discarded spatial transformation. This category includes crop-

ping and zooming in. The results are shown in Tables 7 and 8. 

For the ordinal-based methods, the recall rates degrade slightly in both the cropping 

and zooming in types. Moreover, their performances in partial region-discarded spatial 

transformation are not as good as those in whole region-preserved spatial transformation. 

This is because a frame's ordinal measure, which models the property of the whole frame 

region, might be totally different if the frame is modified by partial region-discarded spa-

tial transformation. The same problem arises in Hoad and Zobel's method because its 

signature also models the whole frame region property. Interestingly, Hoad and Zoble's 

method performs poorly in the cropping type, but quite well in the zooming in type. 

On the other hand, the SIFT descriptor is less affected in this transformation category. 

Actually, Method (2) achieves good results. Although the ordinal measure and the SIFT 

descriptor have both advantages and limitations, their different characteristics comple-

ment each other very well. Combining the two features not only enhances the detection 

accuracy, but also widens the coverage to more transformation types. Method (3) pro-

vides good evidence to support the above viewpoint. 

 

Table 7. The precision and recall rates for cropping transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 0.6774 0.7742 0.6774 0.2258 0.0968 0.0323 0.0323 0.0323 0.0323 0.0323 (1) 
OM+STM P 0.2838 0.5455 0.8400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8387 0.8387 0.8065 0.8387 0.8710 0.8710 0.8710 0.8387 0.8387 0.8387 (2) 
SD+STM P 0.9630 0.8966 0.8929 0.8966 0.9000 0.9310 0.9310 0.9630 0.9630 0.9630 

R 0.9355 0.9355 0.9355 0.9032 0.9355 0.9032 0.9032 0.9032 0.9032 0.9032 (3) 
OM+SD+STM P 0.9667 0.9063 0.9063 0.9032 0.9063 0.9333 0.9333 0.9655 0.9655 0.9655 
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R 0.7097 0.7742 0.7097 0.2258 0.0968 0.0323 0.0323 0.0323 0.0323 0.0323 (4) 
OM P 0.1053 0.4211 0.8148 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.9032 0.8710 0.8710 0.8710 0.9032 0.9032 0.9032 0.8710 0.8710 0.8710 (5) 
SD P 0.0088 0.0190 0.0207 0.0356 0.0393 0.0625 0.0606 0.0836 0.0925 0.1084 

R 0.8065 0.8065 0.8065 0.8065 0.8065 0.8065 0.8065 0.8065 0.8065 0.8065 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 (7) 
HZ P 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 

 

Table 8. The precision and recall rates for zooming in transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 0.6129 0.7742 0.6452 0.3226 0.1290 0.0323 0.0323 0.0323 0.0323 0.0323 (1) 
OM+STM P 0.2375 0.5714 0.8333 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.6129 0.8065 0.8710 0.8065 0.8387 0.8387 0.8710 0.8387 0.8065 0.8065 (2) 
SD+STM P 0.8636 0.9259 0.9000 0.9259 0.9286 0.9630 0.9310 0.9630 0.9615 0.9615 

R 0.8065 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9032 0.9032 0.8710 (3) 
OM+SD+STM P 0.8929 0.9355 0.9063 0.9355 0.9355 0.9667 0.9355 0.9655 0.9655 0.9643 

R 0.7097 0.8065 0.6774 0.3226 0.1290 0.0323 0.0323 0.0323 0.0323 0.0323 (4) 
OM P 0.0873 0.4630 0.7500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8065 0.8387 0.9355 0.8387 0.9032 0.8710 0.9032 0.8387 0.8065 0.8065 (5) 
SD P 0.0104 0.0250 0.0287 0.0466 0.0535 0.0918 0.0915 0.1171 0.1283 0.1397 

R 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 0.6452 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 (7) 
HZ P 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 

 

5.5.3 Frame number-changed temporal transformation. This category includes slow 

motion, fast forward, and frame rate change. The results are shown in Tables 9-11. 

The slow motion and fast forward types halve and double the query video speed, re-

spectively; thus, a 30-second source sequence becomes 60-second query clip and 15-

second query clip, respectively. The change in the query video's speed induces that the 

query content does not synchronize with the target content in the window. For the frame 

rate change type, Methods (1)-(6) re-sample each query video to synchronize with the 

target sequence's frame rate, whereas Method (7) matches the two sequence frames di-

rectly without re-sampling. 

In the slow motion and frame rate change types, the performances of the ordinal and 

SIFT-based methods are generally similar to their performances in the brightness, com-

pression, and noise types. However, we notice that the SIFT-based methods perform dif-

ferently in the fast forward type and the previous transformation types; their accuracy 

distributions are more scattered in the fast forward type. In addition, Method (5)'s preci-

sion rates improve noticeably as k increases in the fast forward type. We consider that 

with fewer feature descriptors in a sequence, k has a greater effect on the accuracy. This 

viewpoint is also held in the ordinal-based methods, and they are even more sensitive to k 

than the SIFT-based methods. 

Hoad and Zobel's method performs poorly in this transformation category. Although 

the approximate string matching scheme can compensate for the minor discrepancy in the 
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number of frames, the dynamic programming constraints make it ineffective when the 

number of frames varies greatly. Another reason is due to their proposed signature, in 

which the color-shift and centroid-based magnitudes are conceptually amortized in 

neighboring frames. If the number of frames increases or decreases substantially, the 

method might produce a very different signature pattern from the original. 

 

Table 9. The precision and recall rates for slow motion transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 0.8710 0.8710 0.8710 0.8065 0.7742 0.5806 0.2903 0.2258 0.0968 0.0000 (1) 
OM+STM P 0.5870 0.7500 0.7105 0.9615 0.8889 1.0000 1.0000 1.0000 1.0000 0.0000 

R 0.6774 0.8387 0.8387 0.8065 0.7742 0.8065 0.8387 0.8065 0.8065 0.8065 (2) 
SD+STM P 0.9130 1.0000 0.9630 0.9259 0.9231 0.9615 0.9630 0.9259 0.9259 0.9259 

R 0.8387 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 (3) 
OM+SD+STM P 0.9286 1.0000 0.9667 0.9355 0.9355 0.9667 0.9667 0.9355 0.9355 0.9355 

R 0.8710 0.8710 0.8710 0.8065 0.7742 0.5806 0.2903 0.2258 0.0968 0.0000 (4) 
OM P 0.1038 0.3649 0.5400 0.8621 0.8889 1.0000 1.0000 1.0000 1.0000 0.0000 

R 0.8710 0.9677 0.9355 0.9355 0.9032 0.9355 0.9677 0.9355 0.9355 0.9355 (5) 
SD P 0.0110 0.0180 0.0169 0.0215 0.0194 0.0235 0.0226 0.0241 0.0237 0.0256 

R 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 (7) 
HZ P 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 

 

Table 10. The precision and recall rates for fast forward transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 0.8710 0.9032 0.5161 0.5161 0.5161 0.5161 0.5161 0.5161 0.5161 0.5161 (1) 
OM+STM P 0.3506 0.8750 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.7097 0.7419 0.9032 0.9032 0.9032 0.8387 0.8065 0.7742 0.6129 0.4194 (2) 
SD+STM P 0.7586 0.7667 0.8750 0.9333 0.9032 0.9286 0.8259 0.9231 0.9048 0.7647 

R 0.9355 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9355 0.8710 (3) 
OM+SD+STM P 0.8056 0.8108 0.8857 0.9394 0.9118 0.9394 0.9394 0.9394 0.9355 0.8710 

R 1.0000 0.9355 0.5484 0.5484 0.5484 0.5484 0.5484 0.5484 0.5484 0.5484 (4) 
OM P 0.1640 0.8286 0.9444 0.9444 0.9444 0.9444 0.9444 0.9444 0.9444 0.9444 

R 0.9032 0.8710 0.9677 0.9355 0.9032 0.8387 0.8065 0.8065 0.6452 0.4516 (5) 
SD P 0.0170 0.0651 0.1031 0.2661 0.3218 0.5098 0.5814 0.6410 0.6667 0.6364 

R 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 (7) 
HZ P 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 0.2258 

 

Table 11. The precision and recall rates for frame rate change transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 0.9677 0.9355 0.9355 0.7419 0.6129 0.2903 0.2903 0.2903 0.2903 0.2903 (1) 
OM+STM P 0.3261 0.6591 0.8529 0.9583 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9355 0.9032 0.9032 (2) 
SD+STM P 0.8108 0.8824 0.8824 0.9677 0.9375 0.9677 0.9375 0.9667 0.9655 0.9655 

R 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 (3) 
OM+SD+STM P 0.8108 0.8857 0.8857 0.9688 0.9394 0.9688 0.9394 0.9688 0.9688 0.9688 

R 1.0000 0.9355 0.9355 0.7419 0.6129 0.2903 0.2903 0.2903 0.2903 0.2903 (4) 
OM P 0.1270 0.5800 0.7838 0.9200 0.9500 1.0000 1.0000 1.0000 1.0000 1.0000 

R 1.0000 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9355 0.9355 0.9355 (5) 
SD P 0.0121 0.0271 0.0299 0.0541 0.0566 0.0938 0.0917 0.1283 0.1480 0.1871 

R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 (7) 
HZ P 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 0.2903 

 



 25

5.5.4 Frame order-changed temporal transformation. This category includes frame 

swap and frame insertion/deletion. The results are shown in Tables 12 and 13. 

The results of the frame swap type show that the ordinal-based and SIFT-based meth-

ods are basically unaffected by changing the frame order in a video sequence because of 

using the histogram-based feature representation. In the frame insertion/deletion type, the 

recall rates of the ordinal-based methods degrade significantly compared with those in the 

frame swap type; even no result is retrieved when k ≥ 60. The influence of the SIFT-

based methods is relatively limited. We consider that a larger number of feature descrip-

tors in the histogram could provide stronger resistance when partial content is removed. 

This explains why the SIFT-based methods yield more robust recall rates than the ordi-

nal-based methods in this transformation type and partial region-discarded spatial trans-

formation. 

Hoad and Zobel's method remains unsatisfactory in this transformation category be-

cause of the frame pair mapping criterion posed by approximate string matching. 

 

Table 12. The precision and recall rates for frame swap transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 1.0000 0.9355 0.9355 0.7419 0.6129 0.2581 0.2581 0.2581 0.2581 0.2581 (1) 
OM+STM P 0.3131 0.6444 0.8529 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.8387 0.9677 0.9677 0.9677 0.9355 0.9355 0.9355 0.9032 0.9032 0.9032 (2) 
SD+STM P 0.9286 0.9375 0.8824 0.9091 0.9355 0.9667 0.9667 0.9655 0.9655 0.9655 

R 0.9355 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 (3) 
OM+SD+STM P 0.9355 0.9375 0.8824 0.9091 0.9375 0.9677 0.9677 0.9677 0.9677 0.9677 

R 1.0000 0.9355 0.9355 0.7419 0.6129 0.2581 0.2581 0.2581 0.2581 0.2581 (4) 
OM P 0.1308 0.5686 0.7838 0.9583 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.9677 1.0000 1.0000 1.0000 0.9677 0.9677 0.9677 0.9355 0.9355 0.9355 (5) 
SD P 0.0110 0.0275 0.0300 0.0513 0.0566 0.0885 0.0845 0.1198 0.1343 0.1526 

R 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 0.9677 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 (7) 
HZ P 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 0.4516 

 

Table 13. The precision and recall rates for frame insertion/deletion transformation. 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

R 0.7419 0.7742 0.6452 0.2258 0.0968 0.0000 0.0000 0.0000 0.0000 0.0000 (1) 
OM+STM P 0.6053 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

R 0.6452 0.6452 0.6774 0.6774 0.7097 0.5806 0.6129 0.8506 0.6129 0.6452 (2) 
SD+STM P 0.8696 0.9524 0.9545 0.9545 0.9565 0.9474 0.9500 0.9474 0.9500 0.9524 

R 0.9677 0.9355 0.9677 0.9677 0.9355 0.9032 0.9355 0.9032 0.9032 0.9032 (3) 
OM+SD+STM P 0.9091 0.9667 0.9667 0.9667 0.9667 0.9655 0.9667 0.9655 0.9655 0.9655 

R 0.8710 0.8387 0.6452 0.2258 0.0968 0.0000 0.0000 0.0000 0.0000 0.0000 (4) 
OM P 0.2250 0.9286 0.9524 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

R 0.9355 0.8387 0.9355 0.9355 0.9032 0.8387 0.8710 0.7742 0.7097 0.7097 (5) 
SD P 0.0172 0.0563 0.1032 0.3222 0.3544 0.5778 0.6136 0.7059 0.8462 0.9167 

R 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 0.6774 (6) 
SD+STM-MH P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

R 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 (7) 
HZ P 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 0.2581 
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5.5.5 Summary. The above experiment results indicate that, for every type of spatial 

and temporal transformation, Method (3) consistently outperforms all methods compared 

in the experiments. It yields excellent accuracy with very high recall and precision rates. 

The insensitivity to k is another good characteristic of the combined method, which mani-

fests that a stable and effective performance can be achieved without paying much atten-

tion to tuning up the signature length of a video sequence. To summarize, we demonstrate 

a promising result by integrating the min-hashing signature of complementary features, 

i.e., the ordinal measure and SIFT descriptor, into the spatio-temporal matching scheme. 

 

5.6 Computation Time 

The following computation cost evaluation was run in an environment where all the fea-

ture data of the query and target videos was extracted and loaded into the memory. We 

take the brightness transformation type as an example for illustration. 

First, we assess the effectiveness of using histogram pruning. We define the histo-

gram pruning ratio metric as: 

.
 sequencetarget the in frames ofnumber  the

 sequencetarget the in  scannedframes ofnumber  the  ratio pruning histogram =    (14) 

In this metric, a lower ratio means more frames are skipped without examination in the 

scanning process. The metric is independent on whether spatio-temporal matching is ap-

plied or not. The histogram pruning ratios versus different k for Methods (1)-(6) are listed 

in Table 14. The ordinal-based methods have the lowest ratio, while the combination 

method has the highest ratio. Generally speaking, the ratios decrease gradually as k grows. 

This is because 1) the maximum increment for the sliding window, i.e., g/k, decreases as 

k increases; and 2) using a higher k in the min-hashing similarity measurement usually 

results in a lower similarity score averagely. It is clear from Equation (8) that the above 

two reasons drive the sliding window to skip more frames. Method (6) has a relatively 

lower ratio than Method (2) since the Jaccard similarity of two sequences is usually lower 

than the associated min-hashing similarity. Hence, more frames would be skipped ac-

cording to Equation (8). 

We define another metric, called the candidate ratio, as: 

.
 sequencetarget the in frames ofnumber  the

 candidates all of frames ofnumber  the  ratio candidate =            (15) 

This metric calculates how many candidates are selected from the target sequence. A 

lower ratio means that fewer candidates are selected. The candidate ratios versus k for 

Methods (1)-(6) are listed in Table 15. Since Methods (4) and (5) do not apply spatio-
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temporal matching, they do not verify any candidate; thus their candidate ratios are zero. 

For Methods (1)-(3), the increase in k usually reduces the number of candidates that ful-

fill the threshold criterion. The candidate ratio of Method (6) is much lower than that of 

Method (2). In other words, applying min-hashing indexing yields more candidates for 

later spatio-temporal matching. 

Recall the inverted indexing technique in Section 4.3.1. We evaluate the time cost re-

quired to insert frames and accumulate the number of frame pairs in the inverted table. In 

our case, the insertion frequency of a candidate sequence is 344.01 averagely, and the 

number of frame pairs found in the inverted table is 7766.02 averagely. The use of in-

verted indexing can thus save 96.46% of the computation overhead compared with the 

all-pair frame similarity computation. 

The time costs versus k for Methods (1)-(6) are listed in Table 16. The increment of k 

increases the computation cost for similarity measurement, but decreases the histogram 

pruning and candidate ratios simultaneously. For Method (3), the fastest speed occurs 

when k = 40 and 50; it requires 62 milliseconds to search in a 6.1 hour video sequence. It 

is interesting that a higher k does not ensure better degree of accuracy and might rebound 

on the computation cost. A suitable choice of k for this video dataset would be from 30 to 

90, which yields the best balance of robustness and efficiency. Consider Methods (2) and 

(6) that are with/without min-hashing indexing, respectively. The computation time of 

Method (2) is much shorter than that of Method (6). Therefore, the compact min-hashing 

signature significantly reduces the computation cost without significantly degrading the 

accuracy. In the experiments, spatio-temporal matching took averagely 0.5 and 0.8 milli-

seconds to verify a candidate in Methods (1) and (2), respectively. Obviously, spatio-

temporal matching is worth the little extra time because it can improve the precision rate 

considerably. 

 

Table 14. The histogram pruning ratio versus k for Methods (1)-(6). 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

(1) OM+STM 0.2946 0.1588 0.1064 0.0779 0.0610 0.0489 0.0489 0.0489 0.0489 0.0489 
(2) SD+STM 0.4435 0.3686 0.2577 0.2060 0.1641 0.1777 0.1837 0.1642 0.1682 0.1559 
(3) OM+SD+STM 0.7381 0.5274 0.3641 0.2839 0.2251 0.2266 0.2326 0.2131 0.2171 0.2048 
(4) OM 0.2946 0.1588 0.1064 0.0779 0.0610 0.0489 0.0489 0.0489 0.0489 0.0489 
(5) SD 0.4435 0.3686 0.2577 0.2060 0.1641 0.1777 0.1837 0.1642 0.1682 0.1559 
(6) SD+STM-MH 0.0911 0.0911 0.0911 0.0911 0.0911 0.0911 0.0911 0.0911 0.0911 0.0911 
 

Table 15. The candidate ratio versus k for Methods (1)-(6). 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

(1) OM+STM 0.0101 0.0022 0.0016 0.0011 0.0008 0.0003 0.0003 0.0003 0.0003 0.0003 
(2) SD+STM 0.1245 0.0512 0.0447 0.0250 0.0231 0.0133 0.0137 0.0097 0.0092 0.0078 
(3) OM+SD+STM 0.1346 0.0535 0.0463 0.0261 0.0239 0.0136 0.0140 0.0100 0.0095 0.0081 
(4) OM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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(5) SD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(6) SD+STM-MH 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 
 

Table 16. The time cost (in second) versus k for Methods (1)-(6). 
 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 

(1) OM+STM 0.035 0.017 0.014 0.011 0.010 0.009 0.009 0.009 0.009 0.009 
(2) SD+STM 0.121 0.089 0.072 0.053 0.042 0.050 0.068 0.057 0.076 0.064 
(3) OM+SD+STM 0.145 0.089 0.087 0.062 0.062 0.070 0.095 0.096 0.109 0.109 
(4) OM 0.031 0.016 0.013 0.010 0.010 0.009 0.009 0.008 0.008 0.008 
(5) SD 0.050 0.062 0.047 0.035 0.029 0.042 0.057 0.048 0.068 0.057 
(6) SD+STM-MH 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.423 
 

6. CONCLUSION 

To achieve fast and robust video copy detection, we propose a novel method that is ap-

propriate for dealing with a variety of video transformation in a continuous video se-

quence. The method utilizes the min-hashing signature to represent a video sequence, and 

spatio-temporal matching to evaluate the content similarity between two video sequences. 

In addition, we employ histogram pruning and inverted indexing techniques to speed up 

the search process. The results of extensive experiments demonstrate the abilities of the 

ordinal measure and the SIFT descriptor, the impact of the min-hashing signature, the 

effectiveness of the spatio-temporal matching scheme, and the efficiency of the speed-up 

techniques. The results are very promising for a number of reasons. Specifically, the two 

feature descriptors complement each other quite well; the compact min-hashing signature 

efficiently reduces the computation cost; the spatio-temporal matching scheme effec-

tively improves the accuracy; and the speed-up techniques accelerate the search process 

with great expedition. The successful integration of these factors ensures that the pro-

posed video copy detection method is both fast and robust. 
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