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Abstract. This paper proposes a method to integrate multiple linear-
pushbroom panoramic images. The integration can be performed in real
time. The technique is feasible on planar scene such as large-scale pain-
tings or aerial/satellite images that are considered to be planar. The
image integration consists of two steps: stitching and Euclidean recon-
struction. For the image stitching, a minimum of five pairs of non-
collinear image corresponding points are required in general cases. In
some special configurations when there is column-to-column image cor-
respondence between two panoramas, the number of image corresponding
points required can be reduced to three. As for the Euclidean reconstruc-
tion, five pairs of non-collinear image corresponding points on the image
boundaries are sufficient.

1 Introduction

The image mosaicing techniques have been applied in photogrammetry back in
80’s for constructing large aerial and satellite photographs [16]. However, only
until 90’s, intensive researches on automatic construction of panoramic image
mosaics were carried out in the fields of computer vision and computer graphics
[20]. Two main features of the image mosaicing concept are the abilities to
increase the resolution and to enlarge the field of view of a camera.

In computer vision, panoramic image mosaics often serve as representations
of visual scene for a wide diversity of applications [14, 21, 6, 12, 8]. In the case
when multiple panoramic images are provided, the depth information or other
geometric properties of the 3D scene can be recovered [11, 18, 22]. In computer
graphics, panoramic image mosaics play an important role in the technique of
image-based rendering [2, 15, 4, 13, 10, 19]. The key idea of this technique is
to rapidly generate novel views from a set of existing images. Panoramic images
are also used widely in virtual reality systems to provide an immersive and
photorealistic environment [1].

The traditional way of constructing a panoramic image mosaic is to align a set
of matrix images of a common view by performing image transformations. When

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3022, pp. 190–201, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 594.962 841.96 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 24000 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 10.0     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



Stitching and Reconstruction of Linear-Pushbroom Panoramic Images 191

images are acquired by unknown camera poses, there is a need to solve camera
calibration problem before the image transformations may take place. Up until
more recently, the line-camera concept for creating panoramic image mosaics
were introduced [9, 5, 17], in which a sequence of slit (or line) images are used as
the base elements instead of the matrix images for composing a panoramic image.
Such a panorama is generated by joining together a sequence of line images side
by side, and is called line-based panoramic images. The main advantage of using
line images is to ease or even to avoid the camera extrinsic calibration problem
so that panoramic mosaics can be generated simultaneously during the image
acquisition process. One major trade-off of the line-based panoramic images is
that the vertical image field of view is constrained by the resolution of the line
image. There is lack of research on stitching two line-based panoramic images
vertically to increasing the panorama’s field of view.

Linear-pushbroom camera model was first introduced by R. I. Hartley in 1997
[5], which belongs in the line-based panorama category. The main characteristic
of linear-pushbroom panoramic images is that the line-camera moves along a
straight line during image acquisition. We investigated the possibility of inte-
grating two such panoramic images under some additional geometric constrains.
It is found that two linear-pushbroom panoramas are geometrically related by
an affine transformation if they capture a common planar scene. In this paper,
the integration of two linear-pushbroom panoramic images of planar scene is
established for the first time. We conclude that only few image corresponding
points are needed to perform the integration. This integration technique can be
used for digitizing the large-scale 2D artworks in the museums or documenting
the huge historical paintings on the wall. It can also be used on aerial or satellite
images that are considered to be planar.

The paper is organized as follows: linear-pushbroom camera model is sum-
marized in Section 2, in which the projection matrix and the LP-fundamental
matrix of this camera model are recapped. The image integration method is
reported in Section 3, in which the image transformation equations for image
stitching and Euclidean reconstruction are elaborated respectively. Section 4 il-
lustrates the integration result of a large-scale famous Chinese painting. Finally,
conclusions are drawn in Section 5.

2 Review of Linear-Pushbroom Camera Model

A linear-pushbroom camera can be considered as a perspective line-camera1

moving in a linear orbit with a constant velocity and a fixed orientation. As the
line-camera moves, the view plane2 sweeps out a region of space and 1-D images
are captured. Finally, the whole 1-D images constitute a 2-D image which lies
on a plane called the image plane in 3-D space.

1 An optical system projecting an image onto a 1-D array sensor, typically a CCD
array, is called a line-camera.

2 The plane defined by the optical center and the sensor array is called a view plane.
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An arbitrary point x = (x, y, z)T in space is imaged and represented by two
coordinates u and v. It has been shown in [5] that the linear-pushbroom camera
model can be conducted as follows:

(u, wv, w)T = M(x, y, z, 1)T (1)

where w is a scale factor and M is a 3×4 projection matrix. The linear-
pushbroom camera model, (u, wv, w)T = M(x, y, z, 1)T , should be compared
with the basic pin-hole camera model. An obvious difference is that the matrix
of the pin-hold camera model is homogeneous; however, the linear-pushbroom
camera matrix is not. That is, by multiplying linear-pushbroom camera ma-
trix M with an arbitrary factor k, the v coordinate is unchanged while the u
coordinate is scaled by k.

Consider a point x = (x, y, z)T in space viewed by two linear-pushbroom
cameras with projection matrices M and M′. Let u = (u, v)T and u′ = (u′, v′)T

be the mappings of point x on these two panoramas respectively. A cubic equa-
tion p(u, v, u′, v′) = 0 called fundamental polynomial corresponding to these two
cameras is introduced in [5], where the coefficients of p are determined by the
entries of M and M′. It concludes in the paper that there exists a 4×4 matrix
F such that the equation p(u, v, u′, v′) = 0 may be rewritten as follows:

(u′, u′v′, v′, 1)F4×4(u, uv, v, 1)T = 0.

The matrix F is called the LP -fundamental matrix corresponding to the linear-
pushbroom camera pair {M, M′}. The matrix expresses the relationships bet-
ween corresponding curves in these two linear-pushbroom panoramic images.

3 Integration of Linear-Pushbroom Panoramic Images

Consider two linear-pushbroom panoramic images (or LP-mosaic images) tar-
geting at a planar scene (such as a large painting on the wall). In this section,
we propose an image integration method to stitch these two panoramic images
by image correspondence information. A key point to achieve this purpose is
that, for an arbitrary point on the first image, can its corresponding point in the
second image be determined and vice versa? In general, only curve-to-curve re-
lationships can be established for two LP-mosaic images according to the theory
of LP-fundamental matrix. Hence, the correspondence is ambiguous (to a curve)
for a point specified in the first image and vice versa.

For perspective case, the point-to-point relationship can be established by
imposing some scene constraints, such as co-planarity. The so-called planar ho-
mography [3] can be determined by four given pairs of image correspondences,
and a complete point-to-point relationship can be exactly established from the
planar homography thus determined. Planar homography has been widely adop-
ted for applications such as image mosaicing [1, 21] and panorama construction
[20].

As to the linear-pushbroom case, what we are interested is whether the point-
to-point relationships can be determined as well when the scene is planar? If the
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answer is yes, how many image correspondence pairs are required? These issues
will be addressed in the following.

3.1 Image Stitching

Let xi = (xi, yi, zi)T denote points in space that lie on a plane with planar
equation E : axi + byi + czi + d = 0 and are viewed by two linear-pushbroom
cameras. Let ui = (ui, vi)T and u′

i = (u′
i, v

′
i)

T be the mapping of point xi on
the source and the destination LP-mosaic images respectively. We intend to find
transformation equations, which transform all the image points of the source
panorama to the destination panorama, based on a set of corresponding points
ui and u′

i.
According to linear-pushbroom camera model discussed in the last section

(equation 1), we have

(ui, wivi, wi)T = M(xi, yi, zi, 1)T

(u′
i, w

′
iv

′
i, w

′
i)

T = M′(xi, yi, zi, 1)T (2)

where M and M′ are 3 × 4 projection matrix associated to the source and the
destination panoramic images, respectively. Let mjk and m′

jk, where 1 ≤ j ≤ 3
and 1 ≤ k ≤ 4 denote the elements of M and M′ respectively. Equation 2 plus
the planar equation E : axi + byi + czi + d = 0 can be rearranged into the
following seven equations:






ui = m11xi + m12yi + m13zi + m14 . . . (i)
wivi = m21xi + m22yi + m23zi + m24 . . . (ii)
wi = m31xi + m32yi + m33zi + m34 . . . (iii)
u′

i = m′
11xi + m′

12yi + m′
13zi + m′

14 . . . (iv)
w′

iv
′
i = m′

21xi + m′
22yi + m′

23zi + m′
24 . . . (v)

w′
i = m′

31xi + m′
32yi + m′

33zi + m′
34 . . . (vi)

axi + byi + czi + d = 0 . . . (vii)

(3)

Because wi and w′
i are not necessary to be the same for each corresponding

pair ui and u′
i, we may deal with these two variables separately. First, for a

given ui, we use equations (i), (ii), (iii), (iv), and (vii) in equation 3 to find its
corresponding u′

i to avoid the influence of w′
i, and the following equation holds:









m11 m12 m13 m14 − ui 0
m21 m22 m23 m24 vi

m31 m32 m33 m34 1
m′

11 m′
12 m′

13 m′
14 − u′

i 0
a b c d 0

















xi

yi

zi

1
−wi









= 0, (4)

where the left 5 × 5 matrix is denoted as W1. This is a set of five homogeneous
equations with five unknowns. Because one of the five unknowns is 1, this means
that this equation has a non-zero solution. Note that only det(W1) = 0 can allow
equation 4 to have a non-zero solution. Because the determinant of W1 consists
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of terms in ui, vi, u′
i, uivi, and u′

ivi, the following equation with six coefficients,
a0 ∼ a5, exists:

a0 + a1ui + a2vi + a3u
′
i + a4uivi + a5u

′
ivi = 0. (5)

Similarly, for a given u′
i, we use equations (i), (iv), (v), (vi), and (vii) in equa-

tion 3 to find its corresponding ui to avoid the influence of wi. We again obtain a
set of five homogeneous equations with five unknowns. By the same argument as
above, we may conclude that the following equation with six coefficients, b0 ∼ b5,
exists:

b0 + b1ui + b2u
′
i + b3v

′
i + b4uiv

′
i + b5u

′
iv

′
i = 0.

Suppose ai and bi are known, given a point ui = (ui, vi)T , its corresponding
point u′

i = (u′
i, v

′
i)

T can be calculated by the following equations:
{

u′
i = −(a0+a1ui+a2vi+a4uivi)

a3+a5vi

v′
i = −(b0+b1ui+b2u′

i)
b3+b4ui+b5u′

i
.

(6)

These equations can be applied to transform all the image points of one pan-
orama to the other panorama. After the transformation, we obtain an panoramic
image. Therefore, the problem left to be solved is determining the values of the
twelve coefficients, a0 ∼ a5 and b0 ∼ b5, by image corresponding points provided.

Given n pairs of corresponding points, namely {ui, vi, u
′
i.v

′
i}, i ∈ [1..n], where

not all image points (ui, vi)T lie on the same image row or image column. Equa-
tion 5 can be restated as follows:

a01 + a1U + a2V + a3U′ + a4W + a5W′ = 0, (7)

where 1, U, V, U′, W, W′ and 0 are all n-vectors. Note that vector 1 has all
its elements equal to one and vector 0 has all elements equal to zero. In order to
have a non-trivial solution of a0 ∼ a5, the rank of matrix [1, U, V, U′, W, W′]
must equal to five. Moreover, if {a0, a1, a2, a3, a4, a5} is a solution of equation 7,
then {ka0, ka1, ka2, ka3, ka4, ka5} will also be solutions for all k ∈ IR. However,
all solutions lead to the same value of u′

i as shown in equation 6. Hence, we aim
to find any set of a0 ∼ a5 that satisfies equation 7.

Since there are six unknowns and the six-dimensional solution vector is up
to a common scale factor, equation 7 can be solved with at least five pairs of
image correspondences. In our work, we assume a2

0 + a2
1 + . . . + a2

5 = 1. When
n ≥ 5, a least-squared-error solution can be obtained by solving the eigenvalue
problem in association with the scatter matrix of the linear equation system.
Similar arguments also apply to b0 ∼ b5.

Singular case occurs when the rank of matrix [U, V, U′, W, W′] is less
than five. A common situation which causes the singular case is when vectors
U and U′ are linearly dependent, that is when we have U = AU′ + B for some
A, B ∈ IR. This situation happens when the two line sensors used for grabbing
the two LP-mosaic images are parallel to each other. (Note: we explain this
situation in Appendix.) We despite the case when there are only few image



Stitching and Reconstruction of Linear-Pushbroom Panoramic Images 195

corresponding points provided, so two or more vectors of U, V, U′, W, and W′

happen to be linear dependent because of poor sampling.
When vectors U and U′ are linearly dependent, instead of using equation 6,

we derive another set of transformation equations to transform the image. First,
since we know U = AU′ +B, the values of A and B can be obtained straightfor-
wardly by solving a system of linear equations with at least two pairs of image
correspondences. Secondly, by substituting equations (i) and (iv) in equation 3
into ui = Au′

i + B, we get





(m11 − Am′
11)xi + (m12 − Am′

12)yi + (m13 − Am′
13)zi + (m14 − Am′

14 − B) = 0
m21xi + m22yi + m23zi − viwi + m24 = 0
m31xi + m32yi + m33zi − wi + m34 = 0
m′

21xi + m′
22yi + m′

23zi − v′
iw

′
i + m′

24 = 0
m′

31xi + m′
32yi + m′

33zi − w′
i + m′

34 = 0
axi + byi + czi + d = 0.

It implies









m11 − Am′
11 m12 − Am′

12 m13 − Am′
13 m14 − Am′

14 − B 0 0
m21 m22 m23 m24 −vi 0
m31 m32 m33 m34 −1 0
m′

21 m′
22 m′

23 m′
24 0 −v′

i

m′
31 m′

32 m′
33 m′

34 0 −1
a b c d 0 0



















xi

yi

zi

1
wi

w′
i










= 0,

where the left 6×6 matrix is denoted as W2. It has non-trivial solution if det(W2)
= 0, which means there exist coefficients c0 ∼ c3 such that the following equation
holds:

c0vi + c1v
′
i + c2viv

′
i + c3 = 0.

Given at least three pairs of image corresponding points, we are able to determine
solutions of c0 ∼ c3. The resulting transformation equations in this case are as
follows: {

u′
i = ui−B

A
v′

i = −c0vi−c3
c1+c2vi

.

3.2 Euclidean Reconstruction

Through the stitching method introduced above, two LP-mosaic images can be
integrated into a single one. In our work, one of the LP-mosaic images is selected
as the reference image, and the other image is transformed (or wrapped) so that
the two images can be registered. By doing so, the integrated panoramic image
can be treated as being obtained by enlarging the viewing range of the line sensor
used for grabbing the reference image and then employing this range-enlarged
sensor to scan the same planar scene. However, such a scanning process cannot
preserve some desired properties such as right angle and parallelism.

From the reconstruction point of view, only an affine reconstruction can be
obtained by using only image correspondence information as introduced in [5].
Without imposing other constraints on the scene or the camera, Euclidean recon-
struction is impossible. Availability of constraints is application dependent. In
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the following, we focus on the application of reconstructing a large-scale pain-
ting. The priori knowledge that the painting is of rectangular shape provides
scene constraints for Euclidean reconstruction.

To upgrade the original reconstruction to a Euclidean one, let us image a
virtual line sensor that scans the painting in the way that this sensor is alig-
ned with the painting plane and is moved on this plane (that is, the painting
is scanned by a ‘virtual’ Xerox machine). Furthermore, we assume that the line
sensor is placed parallel to one of the four borderlines of the paintings, and the
moving path is perpendicular to the line sensor. Then, the painting scanned
with this virtual camera shall be of rectangular shape as well, and we call this
rectangular frame the destination image. We aim to reconstruct the rectangu-
lar frame by performing some transformation from the integrated panoramic
image to the destination image. However, there is no image pixel information for
the virtual rectangular frame. Thus, the only correspondence knowledge can be
applied are the boundaries of the frame and the image. By assuming that the
ratio of the width to the height of the rectangular frame is known, we will show
that a Euclidean reconstruction can be achieved by employing the four pairs of
borderline-to-borderline correspondences of the painting.

Let (ui, vi) be the image coordinates of the source panoramic image (the inte-
grated mosaic), and (u′

i, v
′
i) be the image coordinates of the destination rectangu-

lar frame. Based on the linear-pushbroom camera model as discussed in Section
2, we have (u′

i, w
′
iv

′
i, w

′
i)

T = M′(xi, yi, zi, 1)T . Since the destination image is ob-
tained by a ‘virtual’ Xerox machine, w′

i becomes constant for all i and the value
w′

i can be absorbed by the second and the third row of matrix M′. Hence, we
have

(ui, wivi, wi)T = M(xi, yi, zi, 1)T

(u′
i, v

′
i, 1)T = M′(xi, yi, zi, 1)T

and these two equations can be expanded as follows:





ui = m11xi + m12yi + m13zi + m14 . . . (i)
wivi = m21xi + m22yi + m23zi + m24 . . . (ii)
wi = m31xi + m32yi + m33zi + m34 . . . (iii)
u′

i = m′
11xi + m′

12yi + m′
13zi + m′

14 . . . (iv)
v′

i = m′
21xi + m′

22yi + m′
23zi + m′

24 . . . (v)
1 = m′

31xi + m′
32yi + m′

33zi + m′
34 . . . (vi)

(8)

From (i), (iv), (v) and (vi) in equation 8, we obtain the following:






m11 m12 m13 m14 − ui

m′
11 m′

12 m′
13 m′

14 − u′
i

m′
21 m′

22 m′
23 m′

24 − v′
i

m′
31 m′

32 m′
33 m′

34 − 1













xi

yi

zi

1





 = 0,

The determinate of the left 4 × 4 matrix must equal to zero, hence there exist
coefficients d0 ∼ d3, such that the following equation holds:

d0ui + d1u
′
i + d2v

′
i + d3 = 0. (9)
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Moreover, from (ii), (iii), (iv), (v) and (vi) in equation 8, we have








m21 m22 m23 m24 −vi

m31 m32 m33 m34 −1
m′

11 m′
12 m′

13 m′
14 − u′

i 0
m′

21 m′
22 m′

23 m′
24 − v′

i 0
m′

31 m′
32 m′

33 m′
34 − 1 0

















xi

yi

zi

1
wi









= 0,

and by the same reason as above, we obtain the following equation:

e0vi + e1u
′
i + e2v

′
i + e3viu

′
i + e4viv

′
i + e5 = 0. (10)

Let the four corner points of the virtual rectangular frame be (0, 0), (W, 0),
(0, H), and (W, H), respectively, where W and H are the width and height
of the frame. Use these corner points as four inputs (u′

i, v
′
i) together with the

corresponding corners of the integrated panoramic image (ui, vi), we are able to
determine the values of d0 ∼ d3 in equation 9.

Consider a boundary point (ui, vi)T lying on one of the border lines of the
painting in the integrated panoramic image. One of its corresponding values
u′

i and v′
i is known, (which is equal to either W or H), because the painting’s

borderline-to-borderline correspondences are available. The unknown one can be
obtained by equation 9 based on the determined values of d0 ∼ d3. Thus, by given
at least five image correspondences on the boundaries, we are able to determine
the values of e0 ∼ e5 in equation 10. Once all the values of the coefficients are
known, the transformation equations can be derived. This transformation enables
us to refine the integrated panoramic image to a Euclidean reconstruction.

4 Experimental Results

We conducted a synthetic experiment to demonstrate how the image correspon-
dence error (i.e. the input noise) affects the image stitching result. The experi-
ment was designed as follows. There are 250 coplanar points randomly distribu-
ted in a bounded space. For each trial, two linear-pushbroom panoramic images
with image resolutions of 170 × 550 are captured by two virtual line-cameras,
whose intrinsic parameters are identical and set to be constant during the image
acquisition. The starting positions and the moving velocities of these two ca-
meras vary in each trial. The values of the position and the velocity vectors
are randomly chosen within practical ranges. The image correspondence error
is introduced by corrupting the ideal image projections by some random noise
up to two image pixels. The image stitching error is measured as the average
square-norm distance of all pairs of image corresponding points after merging.
The average stitching error of 1000 trials is calculated for each noise scale.

Figure 1 is an illustration of our synthetic experiment. The image correspon-
ding points with labels are shown in two linear-pushbroom panoramic images
as well as in resulting image after stitching process. Table 1 summarizes our
experiment results, which suggests that the stitching error increases linearly as
the input noise increases linearly from zero to two pixels.
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Fig. 1. Image A and B represent two linear-pushbroom panoramic images. Only 27
image corresponding points (instead of 250) are shown here for clarity. The bottom
figures illustrate the stitching results of two cases: input noise free (left) and noise up
to two pixels (right).

Table 1. The image correspondence errors (in different noise scale) vs. the image
stitching errors (the average square norm).

Noise (pixel) 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 

Error (pixel) 0.05 0.69 0.82 1.37 1.77 2.34 2.49 2.66 3.48 

 

Moreover, a real image example is given in figure 2. The painting is named
“Lang Shih-Ling One Hundred Stallions”. Sony DCR-VX2000 camera was used
and only the central image column of each shot was employed for generating pan-
oramic image. Two linear-pushbroom panoramic images of a small portion of the
painting were acquired with certain overlapping, which are shown in figure 2 (A)
and (B). The resolutions of these two panoramas are both 450 × 2000 pixels.
Figure 2 (C) shows the image stitching result based on 53 identified image cor-
responding points. The resulting image after Euclidean reconstruction is shown
in figure 2 (D), which has resolutions 600 × 1700 pixels. This width/height ratio
has been adjusted to meet the true ratio of the selected portion.

5 Conclusion

Planar homography, which can help determine complete point-to-point image
relationships for a pair of images taken with perspective cameras, serves as a
critical property for realizing many image mosaicing applications. Nevertheless,
whether similar useful properties exist for other imaging model, such as the
linear-pushbroom model, has not been well studied yet. In this paper, we demon-
strate that with additional planarity constraint to the scene geometry, complete
point-to-point image relationships can also be established between two linear-
pushbroom panoramic images by employing at least five pairs of corresponding
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Fig. 2. Portion of painting “Lang Shih-Ling One Hundred Stallions”.

points. By the existence of such property, an image stitching method is develo-
ped for integrating two LP-panoramas to enlarge the panorama’s field of view.
Moreover, a Euclidean reconstruction method is presented to restore the pro-
perties of 2D Euclidean geometry for reconstructing a rectangular frame. Both
methods required only few pairs of image corresponding points as the input. The
image integration algorithm as a whole can be performed in real-time.
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Appendix

Let E and E′ be two LP-mosaic images of a common planar scene. We explain and
illustrate when the two line sensors used to grab the two LP-mosaic images are parallel
to each other, the following statement holds: for any pair of image corresponding points
(ui, vi)T and (u′

i, v
′
i)

T , the values ui and u′
i are related by the equation: ui = Au′

i + B,
where A and B are constants.

First, consider a plane in 3D and a line camera which moves along a straight line (set
it to be the x-axis of the camera coordinate system) with constant velocity and taking
line images at each position C0, C1, C2, and so on, as shown in the top-left of figure 3.
The y-axis is defined to be parallel to the line-sensors and is perpendicular to the
x-axis. The z-axis is defined following the right-hand-rule. The geometric relationship
between the plane and the camera coordinate system is unknown.

The bottom-left of figure 3 shows the resulting LP-panoramic image E. The parallel
lines L0 ∼ L4 on the plane are projected to image columns u = 0 ∼ 4 respectively.
Since the distance between any pair of points Ci and Ci+1 is constant (as defined in
Section 2), lines Li and Li+1 is a set of parallel lines with equal distance.

Then, consider another LP-panoramic image E′, whose associated camera’s moving
path is rotated with respect to the y-axis, as shown in the right-hand-side of figure 3.
The equal-distance parallel lines L′

0 ∼ L′
4 on the plane are projected to image columns

u′ = 0 ∼ 4 respectively.
In fact, lines L0 ∼ L4 are parallel to lines L′

0 ∼ L′
4 as they both are parallel to the y-

axis of the camera coordinate system. So, it is possible that lines L0 ∼ L4 also appear in
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Fig. 3. Geometric configuration that illustrates the existence of image column-to-
column correspondence.

the image E′ and vice versa. Hence, we have column-to-column correspondence between
two LP-panoramic images. According to the basic geometrical property, when there is
a column-to-column correspondence between two images as described, the relationship
between those corresponding columns can be expressed by equation ui = Au′

i + B,
where A and B are constants.

Finally, we may conclude that as long as the y-axes of two camera coordinate
systems, which are associated to the different LP-panoramic images, are parallel, we
have relation ui = Au′

i + B for all corresponding ui and u′
i.
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