
Published in IEEE Transactions on Systems, Man and Cybernetics- Part B, Vol. 39, No. 2, pp. 375-388, April 2009 

Tracking by Parts: A Bayesian Approach with Component Collaboration 
Wen-Yan Chang, Chu-Song Chen, and Yi-Ping Hung 

 
Abstract—Instead of using global appearance information for 

visual tracking, as adopted by many methods, we propose a 
tracking-by-parts (TBP) approach that uses partial appearance 
information for the task. The proposed method considers the 
collaborations between parts, and derives a probability propagation 
framework by encoding the spatial coherence in a Bayesian 
formulation. To resolve this formulation, a TBP particle filtering 
method is introduced. Unlike existing methods that only use the 
spatial-coherence relationship for particle weight estimation, our 
method further applies this relationship for state prediction based on 
the system dynamics. Thus, the part-based information can be utilized 
efficiently and the tracking performance can be improved. 
Experimental results show that our approach outperforms the 
factored-likelihood and particle re-weight methods, which only use 
spatial coherence for weight estimation.   

Index Terms—Component collaboration, contrast histogram, 
particle filtering, tracking by parts, visual tracking. 

I. INTRODUCTION 
BJECT tracking, which is a fundamental problem in 
computer vision, serves as a basic module for many 

applications, such as video content understanding, robot 
navigation, and vision-based user interfaces. Methods of 
object tracking can be divided into two classes: the holistic 
approaches and the part-based approaches. The former 
represent a target object by global information. For example, 
Comaniciu et al. [1] used a color histogram to model a target, 
and adopted the Bhattacharyya distance for measurement. 
However, it is difficult to handle varying illumination 
conditions with color histograms. To resolve this difficulty, a 
number of adaptive approaches that employ classification 
methods to learn the target appearance model have been 
proposed [2], [3]. In addition, to deal with the nonlinear 
and/or non-Gaussian properties of real-world problems, 
particle filtering is a successful method that has been widely 
used [4], [5]. Based on particle filtering, Ross et al. [3] 
employed the probabilistic principal component analysis 
(PCA) to represent target likelihoods by eigenbases. Their 
method utilizes the Riemannian singular value decomposition 
(R-SVD) algorithm to incrementally update the bases for 
lighting changes. As well as probabilistic PCA, other 
learning/classification methods (e.g., support vector machine 
(SVM) in [2]) have been applied in tracking tasks to help 
define the target likelihood function. 

Even though a learning process can be used to 
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incrementally model an object’s appearance, handling partial 
occlusions is still a challenging problem. To address this 
issue, the focus of several studies has shifted to part-based 
representation. Recent advances in computer vision have 
shown that part-based approaches are effective for object 
detection and recognition [6], [7]. In such approaches, an 
object is represented as a collection of parts or components. 
By identifying the local parts and considering their 
inter-relationships, better detection or identification results 
can be achieved. The part-based strategy is also used for 
single-object tracking. Using factored likelihood estimation 
for likelihood measurement, Perez et al. [8] suggested a 
method that tracks a target using single-chain particle 
filtering. Under this model, an observation is divided into two 
independent parts that differ in appearance. Sigal et al. [9] 
developed a tracking method that locates a target’s 
components by using non-parametric belief propagation 
(NBP) for iterative measurement based on the spatial 
constraints of the target. Recently, Hua and Wu [10] 
addressed the issue of inconsistency in observation 
measurement for part-based tracking based on factored 
likelihood measurement. The approach evaluates 
inconsistency by using the similarity among neighboring 
components, and ignores inconsistent parts in the likelihood 
measurement. In [11], Yu and Wu used Gaussian mixtures to 
model the appearance of a target, and proposed an EM-based 
algorithm to estimate the transformation by maximizing the 
likelihood among appearances. 

The above methods focused on the observation 
measurement to improve the tracking performance. Although 
a target is divided into several components, they assumed that 
these components are with an identical motion, and only used 
the components for observation measurement. In addition to 
dealing with the identical-motion case, multiple motions 
among components have also been considered in recent 
studies of multi-object tracking [12]−[14] or articulation 
tracking [15], [16]. For lip tracking, Patras et al. [12] 
evaluated the measurement of lips based on the likelihoods of 
the individual components, and further considered spatial 
coherence by re-weighting the likelihood measurement based 
on the auxiliary particle filtering. A similar approach that 
uses joint likelihood filters was also proposed by Rasmussen 
and Hager [13]. In [14], Qu et al. exploited the interactive 
collaboration among objects to resolve the error merge and 
mis-labeling problems in multi-object tracking. The method 
employs a magnetic-inertial model to estimate the interactive 
likelihood. To track articulated hand movements, Sudderth et 
al. [15] used multiple independent trackers for each hand 
articulation, and applied NBP to adjust particle locations 
iteratively in order to obtain better estimations. Instead of 
NBP, Wu et al. [16] suggested using variational analysis to 
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cope with a loopy Markov network in order to maintain 
spatial coherence during tracking. Although the methods in 
[15] and [16] can handle spatial coherence well, they tend to 
be time-consuming because an iterative process is required in 
each time step. 

Part-based approaches have proved effective in enhancing 
the tracking performance, but many of them only utilized the 
spatial-coherence information for improving the 
observation-likelihood or particle-weight. When the location 
of a component is mis-tracked (as in the case of occlusion), it 
is difficult for this type of approach to recover the state. Even 
though the belief propagation-based scheme can be exploited 
to adjust particle locations, maintaining spatial coherence 
based on the wrong location (or the outliers of locations) in 
the same time step usually requires a considerable number of 
iterative refinements. 

In this paper, we propose a Bayesian probability 
propagation framework to maintain the spatial coherence. 
Unlike previous approaches in which the spatial-coherence 
relationship does not affect the dynamic model, our approach 
allows the components’ locations to be predicted based on 
spatial-coherence information during tracking. State recovery 
is thus more efficient. In our approach, spatial coherence is 
not only considered in particle weight estimation, but also for 
temporal-based propagation. This is one of the major 
differences between our approach and those that only employ 
spatial coherence for likelihood refinement and particle 
adjustment in each individual time step [8]−[17]. By further 
encoding the spatial relationship in a dynamic model, we 
provide a novel framework that uses part-based spatial 
information for visual tracking. 

The remainder of this paper is organized as follows. Section 
II introduces TBP particle filtering, and Section III describes 
its dynamic distribution. The component representation 
method and likelihood models are presented in Section IV. 
The experimental results are detailed in Section V. Then, in 
Section VI, we summarize our conclusions and indicate the 
direction of our future work. 

II. TBP PARTICLE FILTERING 

Since stage-wise estimation is essential for tracking, a 
tracking task is usually modeled as a state estimation 
problem; particle filtering is a popular technique for solving 
this problem. Given a chain of observations, Zt = {z1,…, zt}, 
particle filtering estimates state xt of a single-chain 
Bayesian network (BN), as shown in Fig. 1. 

A straightforward way for multi-component tracking is to 
represent each component as a single-chain BN, and use 
particle filtering to track each component. This yields a BN 
consisting of c independent chains, as shown in Fig. 2, where 
c is the number of components. In this framework, the 
motions of components are assumed to be independent. This 
assumption has been adopted by many multi-object tracking 
methods [18]−[20]. 

In the framework shown in Fig. 2, however, the state at 
time t is only influenced by the state of the same component 
at time t−1. The previous state of a component thus plays a 
decisive role in estimating the current state of the same 
component. This means that tracking is difficult to recover 
when drift occurs, even when properly tracked components 
give useful hints to the other miss-tracked components. 

To overcome this limitation, we consider the new BN 
shown in Fig. 3. The main difference between Fig. 3 and Fig. 
2 is that state xt of a component is not only influenced by xt−1 
of the same component, but all components. More 
specifically, for each node xt

i that represents the state of the 
i-th component at time t, the c edges (xt

k
−1, xt

i), k = 1 … c, are 
all included in the graphical representation of the BN in our 
framework, as shown in Fig. 3, instead of including only the 
edge (xt

i
−1, xt

i) shown in Fig. 2. 

By introducing these extra edges, the BN can no longer be 
treated as a set of independent chain-based BNs. The 
advantage is that cross references are allowed and the spatial 
coherence among components can thus be considered and 
propagated. Note that when the extra edges are disabled by 
setting the state-transition probability to 

p(xt
i| xt

1
−1, xt

2
−1,…, xt

c
−1) = p(xt

i| xt
i
−1),   (1) 

the BN in Fig. 3 degenerates to that in Fig. 2. Therefore, our 
framework is an extension of the existing particle filtering 
method applied to state estimation of a dynamic system, 

 
Figure 1. Single-chain BN considered in particle filtering. 

 

 
Figure 2. A BN consisting of multiple independent single-chain BNs. 

 
Figure 3. A BN containing more edges than the BN in Fig. 2. For a 
node xt

i, all the links from xt
k
−1 to xt

i are included for k = 1…c, instead 
of including only the link from xt

i
−1 to xt

i , as in Fig. 2. 



where the components can be either dependent or 
independent. 

We call the BN in Fig. 3 a tracking-by-parts Bayesian 
network (TBP-BN). The state-estimation problem involved in 
TBP-BN is not suitable to be solved directly by the particle 
filtering developed for single-chain BN. We thus address the 
following questions: 

(1) How can probabilities be propagated so that the 
posterior distribution can be found for TBP-BN? 

(2) How can the inference of TBP-BN be performed 
efficiently? 

We consider these two problems in the following. 

A.  Bayesian Probability Propagation 

The posterior probability of TBP-BN can be resolved by 

p(xt| Zt) = p(xt
1,…, xt

c| Zt) 
∝ p(zt| xt

1,…, xt
c)⋅p(xt

1,…, xt
c| Zt−1),     (2) 

where xt = (xt
1,…, xt

c). In p(zt| xt
1,…, xt

c), state xt
i of the i-th 

component only links to its local observation zt
i, where zt = 

(zt
1,…, zt

c); and the local observation is conditionally 
independent of the other states when xt

i is given. The joint 
conditional likelihood is therefore  

p(zt| xt
1,…, xt

c) = ∏
=

c

i 1

p(zt
i| xt

i).  (3) 

By substituting (3) into (2), we can rewrite (2) as  

p(xt
1,…, xt

c| Zt) ∝ ∏
=

c

i 1

p(zt
i| xt

i)⋅ 

∫ p(xt
1,…, xt

c| xt
1
−1,…, xt

c
−1)⋅p(xt

1
−1,…, xt

c
−1| Zt−1) dxt−1. (4) 

From (4), the evaluation of the posterior probability at time t, 
p(xt

1,…, xt
c| Zt), is iteratively related to that at time t−1, 

p(xt
1
−1,…, xt

c
−1| Zt−1). Equation (4) thus shows how the 

posterior probability propagates from time t−1 to time t in 
TBP-BN. 

To avoid the integral in (4), which is computationally 
intractable, particle filtering can be introduced to estimate the 
posterior distribution. A set of weighted particles {( nt ;s , 

nt ;π ), n = 1,…, N} is used to represent the posterior p(xt| Zt), 

where nt;s , n = 1,…, N, are drawn from the dynamic model 

p(xt
1,…, xt

c| xt
1
−1,…, xt

c
−1); and nt ;π , n = 1,…, N, are the 

associated weights evaluated according to the likelihood in 
(3). 

However, since particles are sampled from the joint 
conditional probability p(xt

1,…, xt
c| xt

1
−1,…, xt

c
−1), directly 

generating particles based on this probability involves 
sampling in a D-dimensional space, where D = c⋅d, when the 
state xt

i is represented by a d-dimension vector. In the 
following, we show that the structure of TBP-BN allows this 

joint conditional probability to be simplified, and a more 
efficient sampling procedure can be inferred in 
lower-dimensional spaces. 

B.  Inference of TBP-BN 

From the diverging connection property of a BN, as 
illustrated in Fig. 4, nodes B and C are conditionally 
independent if A is observed. Relating this property to Fig. 3, 
let us treat A as a super-node consisting of (xt

1
−1,…, xt

c
−1), and B 

and C as xt
i and xt

j, respectively, where i, j ∈ {1,…, c} and i ≠ 
j. Applying this property to TBP-BN, the states at time t are 
conditionally independent given all the states at time t−1. 
Hence, the dynamic model p(xt

1,…, xt
c| xt

1
−1,…, xt

c
−1) can be 

decomposed into  

p(xt
1,…, xt

c| xt
1
−1,…, xt

c
−1) ≈ ∏

=
−−

c

j

c
tt

j
tp

1
1

1
1 ),...,|( xxx , (5) 

where ∏
=

−−

c

j

c
tt

j
tp

1
1

1
1 ),...,|( xxx  is the proposal function for 

importance sampling based on the generic particle-filtering 
scheme [4]. 

Substituting (5) into (4), we have 

p(xt
1,…, xt

c| Zt) ∝ ∏
=

c

i 1

p(zt
i| xt

i)  

∫ ∏
=

  
1

c

j

p(xt
j| xt

1
−1,…, xt

c
−1)⋅p(xt

1
−1,…, xt

c
−1| Zt−1) dxt−1. (6) 

Equations (5) and (6) demonstrate that we do not need to 
perform importance sampling in a D-dimensional space. 
Instead, due to the independence relationship shown in (5), 
we can perform the sampling of the dynamic model in a 
d-dimensional space c times. To draw particles in the 
D-dimensional space from the joint probability p(xt

1,…, xt
c| 

xt
1
−1,…, xt

c
−1), we first draw d-dimensional particles from p(xt

j| 
xt

1
−1,…, xt

c
−1) for each j∈{1,…,c}. Composing the c 

lower-dimensional particles into a single vector thus forms a 
particle of the dynamic model in the D-dimensional 
joint-probability space. An illustration of this concept with c 
= 2 is given in Fig. 5. 

The advantages of generating particles in this way are 
two-fold. First, drawing particles from a lower-dimensional 
space is more efficient. We thus avoid the difficulty of 
generating particles in a high-dimensional space. Second, 
since the number of particles grows exponentially with the 
number of components c, if we draw M particles in each 

Figure 4. Diverging connection of a BN. 
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lower-dimensional space, we can get M c particles of the joint 
conditional probability in the original D-dimensional space. 
Note that this could be a huge number that would be 
impossible to sample directly in the original space when c is 
large. However, by using the independent-sampling strategy, 
we only need to perform c⋅M sampling operations in 
lower-dimensional spaces, instead of generating M c  particles 
in a higher-dimensional space. 

Since the likelihood is also formed by the products of the 
individual likelihoods (as shown in (3)), we can separate 
them in a similar manner to that in the dynamic model. We 
thus introduce the following particle-filtering framework for 
TBP-BN, which is a preliminary version of our algorithm: 

For each component i ∈ {1,…,c}, we form a set of 
weighted particles  

pi = {( i
nt ;s , i

nt ;π ), n = 1,…, Ni}, 

where i
nt;s  is a particle and i

nt ;π  is its associated weight for 

component i. The relationship among the weighted particles 
of the joint posterior probability and the individual 
components is formulated as follows. The weighted particles 
of the joint posterior probability, {( nt;s , nt ;π ), n = 1,…, N}, 

are represented by the combination of particles derived from 
each component: 

nt ;s  = {( 1
;its , 2

; jts ,…, c
kt ;s )}   (7) 

∈ p1×p2×…×pc, 

where “×” denotes the Cartesian product, i∈1,…, N1, j∈1,…, 
N2, k∈1,…, Nc, 

N = Πi=1,…,c Ni; 

and  
c

ktjtitnt ;
2
;

1
;; ... ππππ ⋅⋅⋅∝ ,    (8) 

where i∈1,…, N1, j∈1,…, N2, k∈1,…, Nc. We call the above 
method of inferring TBP-BN by weighted particles TBP 
particle filtering. Table I lists the process of TBP particle 
filtering for each component i, where the re-sampling 

procedure [4] is adopted in our work to avoid the 
degeneracy problem as suggested in many particle-filtering- 
based methods. As the illustration in Fig. 5, though only 
Σi=1,…,c Ni times of sampling operations are performed in this 
scheme, N = Πi=1,…,c Ni particles are equivalently generated 
to represent the joint posterior probability. 

C.  Refinement of the Particle Weights by Spatial Relationships 

In the above, we showed how to encode spatial-coherence 
information into the dynamic model of TBP-BN for 
part-based tracking. In addition to its use in the dynamic 
model, the spatial relationship can also be applied to refine 
the particle weights. The preliminary version of our algorithm 
introduced above only uses the likelihood for particle weight 
estimation, which can be further refined by inter-component 
relationships. Typically, standard belief propagation 
algorithms [21], or other variations [22]−[24], can be applied 
to refine the particles iteratively. They can be performed by 
forming a tree-like or a loopy graph among the components 
in advance, where each node of the graph represents a 
component and the edges model the compatibility constraints 
established by the spatial relationship between two nodes. 
Many previous works have applied this scenario to 
component-based tracking [9], [15]−[17], [25]. However, the 
computational load is very heavy for these iteration-based 
approaches. 

Inspired by the work of [12], we derive a more efficient 
particle re-weighting strategy by assuming that there are 
some further links representing the inter-dependences among 
components at the same time step (the dash-dotted arcs in Fig. 
6). In [12], a particle re-weighting method was derived by 
further considering these links based on the auxiliary 
particle-filtering scheme. In our approach, we derive the 
re-weighting strategy based on the generic particle-filtering 
scheme [4]. 

When the dependency among components of the same 

 
Figure 5. An illustration of TBP particle filtering. Particles in the x1-x2 space 
can be generated by combining the particles generated from the x1 and x2 
spaces, respectively, when x1 and x2 are statistically independent. 

Table I. Concept of TBP particle filtering for each component 
 
Given a set of weighted particles {( i

nt ;1−s , i
nt ;1−π ), n = 1,…, Ni} for each 

component i ∈ {1,…, c} at time step t−1, the following steps are 
performed to construct a new set of particles at time step t. 

1. Re-sample a particle set {( i
nt ;1' −s , 1−

iN ), n = 1,…, Ni} from 

{( i
nt ;1−s , i

nt ;1−π ), n = 1,…, Ni}. 

2. Generate a set of particles { i
nt ;s , n = 1,…, Ni} from the dynamic model 

p(xt
i| xt

1
−1= 1

;1' nt−s ,…, xt
c
−1 = c

nt ;1' −s ) for each component i, as being 

detailed in Section III. 

3. Measure the weight i
nt;π  of particle i

nt ;s  by combining both 

likelihood and inter-component information, for n = 1,…, Ni, as being 
detailed in Section IV. 



time has been incorporated as shown in Fig.6, the particle 
weight can be re-formulated as 
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where Xt = {x1,…, xt}. Since the proposal function q(⋅) is 
∏ −−i

c
tt

i
tp ),...,|( 1

1
1 xxx  defined in (5), we have 
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Hence, the particle weight is proportional to the product of 
the likelihoods and the ratio factor defined below: 

);( 1−ttr xx  = 
∏ −−
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i
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tt
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The denominator of the ratio factor is the product of marginal 
probabilities, which reflects the probability when we consider 
different i

tx  independently. On the other hand, its numerator 
is the joint probability, which considers the inter- 
dependencies between different i

tx . Hence, the re-weighting 
process prefers particles for which the joint probability is 
higher than the product of the marginal probabilities. The 
stronger is the inter-dependencies between components, the 
larger is the numerator, and thus the higher is the particle 
weight. 

Since the re-sampling procedure [4] is used as shown in 
Table I, the particle weight in (10) can be re-written as  

.);()|( 1∏ −⋅∝
i

tt
i
t

i
tt rp xxxzπ    (12) 

It is worth noting that, though both [12] and our approach 
re-weight the particles based on inter-component 
relationships, a significant difference is that the approach in 
[12] does not consider the inter-component relationships in 
the transition model. Although a general graphic model was 
established, this method simply used the intra-component 
propagation, )|( 1

i
t

i
tp −xx , in its transition model (as described 

in the first paragraph of Section 3.3 in [12]). However, our 
approach considers both intra- and inter-component 
propagations in the transition model. The collaborative 
transition model formulated can help predict the component 
states in the next time step. This makes our method capable 
of recovering the component state when the tracker drifts. We 
have also experimentally verified that our method performs 
better than that of [12] in Section V. Since collaboration 
among components can influence both the dynamic 
propagation and particle-weight estimation, our framework 
can be viewed as a general model for part-based tracking. 

III. DYNAMIC DISTRIBUTION 

In order to consider the collaboration among components 
in (5), we formulate the dynamic model in this section. 
Inspired by some previous works [17], [18] and without 
loss of generality, we define the dynamic model as a 
mixture distribution. 

p(xt
i| xt

1
−1,…, xt

c
−1) 

= α0⋅p(xt
i| xt

i
−1) + (1−α0)⋅p(xt

i| xt
1
−1,…, 1

1
−
−

i
tx , 1

1
+
−

i
tx ,…, xt

c
−1), (13) 

where α0 is a positive weight, p(xt
i| xt

i
−1) is the probability 

caused by the state transition of the same component 
(PSTSC), and p(xt

i| xt
1
−1,…, 1

1
−
−

i
tx , 1

1
+
−

i
tx ,…, xt

c
−1) is the 

probability caused by the state transitions of the other 
components (PSTOC). 

Based on p(xt
i| xt

1
−1,…, xt

c
−1), we generate a particle set {st

i
; n, n 

= 1,…, Ni}, in which there are α0⋅Ni particles {ŝt
i
; k, k = 1,…, 

α0⋅Ni} generated by PSTSC, and the other (1−α0)⋅Ni particles 
{ i

kt
~

;s , k = 1,…, (1−α0)⋅Ni} are generated by PSTOC. In this 
formulation, we want to generate not only intra-component 
particles, but inter-components particles, so that the 
coherence relationships can be employed to boost the 
tracking performance. 

Hence, in TBP particle filtering, the particle set for the 
i-th component at time t is the union of two sets, { i

kt;ŝ } and 

{ i
kt

~
;s }. In the illustration in Fig. 7, we show the concept of 

particle distributions of these two sets. The middle region 
represents the particles { i

kt ;ŝ } and the other regions 

represent the particles U
ciij

ji
kt

i
kt

,...,1,1,...,1

;
';; }~{}~{

+−=

≡ ss . Compared to 

single-chain particle filtering for which the particle set is 

 
Figure 6. The complete BN used in our framework, where the 
inter-dependencies in the same time step are further considered (i.e., the 
dash-dotted arcs). 



only composed of { i
kt ;ŝ }, TBP particle filtering allows the 

use of one more set, { i
kt

~
;s }, derived from spatial-coherence 

relationships. In our experiment, the PSTSC, p(xt
i| xt

i
−1), is 

modeled as a Gaussian distribution,  

p(xt
i| xt

i
−1) ~ N (xt

i
−1, Σ), 

where Σ is a diagonal covariance matrix. 

A.  General Spatial Constraints 

To model the PSTOC, p(xt
i| xt

1
−1,…, 1

1
−
−

i
tx , 1

1
+
−

i
tx ,…, xt

c
−1), 

different types of constraints can be represented 
consistently. Consider the pair-wise constraint that is often 
used to model the distance between two components. It is 
suitable for applications such as body gesture tracking or 
articulated hand tracking [15], [16]. In this case, possible 
locations of each component at time t are predicted 
according to the Euclidean distances from each of the other 
components at time t−1, and particles are sampled around 
those locations. In general, the pair-wise constraint can be 
modeled by the following mixture distribution, where each 
term in the mixture involves two state variables, namely, xt

i 
and xt

j
−1 (j = 1,…, c): 
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and ω j  is a positive weight. One way to model the distance 
constraint with the probability p(xt

i| xt
j
−1) is to use a ring-like 

distribution, as shown by the blue region in Fig. 8(a). 

For triplet or higher-order constraints, more than two 
components are considered simultaneously. In this case, 
strong geometric relationships, such as the angle constraint 
or similarity-transform constraint, can be considered. For 
example, a triple-node relationship can model the spatial 
constraint, where the angle formed by the i-, j-, and k-th 
components, ∠xi xj xk, is approximately fixed, as illustrated 
in Fig. 8(b). It can also model the similarity-transform 
constraint when we set xj as the origin of a coordinate 
system, kj xx  as its X-axis (with kj xx  being the unit 

length), and determine its Y-axis as being perpendicular to 
the X-axis by the right-hand rule. Then, the coordinate of xi 
is fixed to the coordinate system thus defined. An 
illustration is shown in Fig. 8(c). 

To model the triplet constraint, we set the PSTOC by  
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which is similar to the pair-wise case (14), except each term in 
the mixture involves three components, xt

i, xt
j
−1, xt

k
−1 (j, k = 

1…c), instead of two. 

Similarly, the constraints involving more nodes can be 
induced easily by generalizing (14) and (15). An illustration 
of the triplet constraint and higher-order constraints are 
shown in Figs. 9(a) and 9(b), respectively. In practice, what 
kind of constraints is suitable is problem dependent. In 
general, it is also allowed to combine pair-wise, triplet, and 
higher-order constraints in a single mixture to represent the 
PSTOC. One can see that, the relationship among 
components is not restricted to a particular form, but is 
generally unlimited in our approach. Note that standard 
belief-propagation-based methods of adjusting particle 
locations at the same time step were designed for pair-wise 
Markov random fields. To employ high-order constraints, the 
original graph topology has to be changed by adding function 
nodes via the factor-graph principle [26], and the complexity 
will be further increased. Unlike the standard 
belief-propagation algorithm used for message passing that 
can employ only pair-wise relationships between components, 
various spatial constraints can be directly encoded into the 
PSTOC, which is a general advantage of the TBP-BN 
formulation. 

B.  Variations of the Dynamic Model 

We have introduced the filtering distributions of the 
TBP-BN dynamic model. Some possible variations of the 
dynamic model are addressed below. 

1)  Partial Connections 

The TBP-BN shown in Fig. 3 is fully connected between 
adjacent layers, i.e., all the components at time t−1 and 
time t are connected to each other. This forms a complete 
graph among components if we do not consider the time 

 
Figure 7. The distributions for particle generation in TBP particle filtering. 

   
(a)     (b) 

 
(c) 
 

Figure 8. Constraints for modeling the dynamic distribution. (a) Pair-wise 
constraints. (b) Angle constraints. The blue arc represents some possible 
locations of xi, for which ∠xi xj xk is fixed. (c) Similarity-transform 
constraints. 



difference. 

In many applications, it is not necessary to represent the 
spatial relationship among components by a complete 
graph. Thus, we only need to build a partially connected 
bipartite graph between adjacent layers in Fig. 3. Our 
approach allows a partially connected graph to be built for 
TBP-BN. The only restriction is that all the links associated 
with the same component, i.e., the links between xt

i
−1 and xt

i, 
i = 1 … c, must be present. In an extreme case, when only 
these edges are included, the TBP-BN degenerates to c 
independent chains, as formulated in (1). 

Note that the filtering distributions of the dynamic model, 
no matter whether they are pair-wise, triplet, or higher 
order, can still be well represented for the partially 
connected case if the cardinality support is sufficient. The 
cardinality support of a component at time t is defined as 
the number of its incoming links from time t−1. More 
formally, when the cardinality support of a component is m, 
we can set an m1-th order constraint among the associated 
nodes when m1 ≤ m (e.g., when m = 3, pair-wise and triplet 
constraints can be set). With this extension, our approach 
can be easily generalized to process all partially-connected 
cases, under the same concept of the TBP particle filtering 
algorithm presented in Section II.B. 

2)  Fixed versus Time-Varying Spatial Coherence 

In above discussion on spatial constraints, we inherently 
assume that the spatial coherence relationship is fixed 
during tracking. This is a limitation of our current approach; 
the relationship is not always fixed, but may vary over time 
in some applications. For the tracking problems containing 
significant scale changes or 3D rotations, it will be better to 
adapt the observation model and/or the spatial relationship 
over time, so as to enhance the tracking performance. In 
our framework, there can be no restrictions on the time 
invariance/variance of the spatial coherence constraints in 
TBP particle filtering. By adapting a spatial constraint set 
initially, the spatial relationship can be adjusted or learned 
incrementally over time, similar to the techniques used in 
adaptive appearance models based on a single-chain BN [3]. 
We will investigate the extension in the future. 

IV. LIKELIHOOD AND PARTICLE WEIGHT ESTIMATION 

An important issue when dealing with a small region is 
how to represent its texture effectively and discriminatively. 
The color histogram approach [1], [12] is an option for 

textural description, but it is sensitive to illumination 
changes. To construct a representation to deal with varying 
illumination and avoid a complex learning process, we use 
local information to describe a component represented by 
an image patch. In recent years, many local representation 
methods have been proposed. Scale-invariant feature 
transform (SIFT) [27] is a popular local-descriptor 
technique. However, the need for a relatively long 
execution time is a limitation of SIFT. In contrast, Huang et 
al. [28] proposed a contrast histogram approach in which 
the histogram is constructed based on intensity differences. 
The contrast-histogram description achieves a comparable 
image matching performance to SIFT, but it is 
computationally faster. We adopt the contrast histogram 
[28] for component representation in our work. 

A.  Component Representation and Likelihood Measurement 

In this section, we give a brief review of the contrast 
histogram in [28] and introduce the likelihood 
measurement used in our method based on the contrast 
histogram. Given an image patch T, let IC be the intensity 
of the center pixel of T. Assume that y is an arbitrary point 
in T with intensity Iy. The contrast value CT(y) of pixel y is 
computed by  

CT(y) = Iy − IC.    (16) 

To achieve rotation invariance, the gradient orientation 
of the center of T is computed in advance, and the image 
patch T is rotated according to this orientation. T is then 
divided into several non-overlapping sub-regions based on 
the log-polar coordinate system suggested in [29]. For the 
i-th sub-region Ti, a 2-bin histogram called the contrast 
histogram is constructed. The values accumulated in the 
positive bin are defined as 
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where Ri
+ is the number of pixels with positive contrast 

values in the i-th sub-region. 

Similarly, the values in the negative bin are defined as  
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where Ri
− is the number of pixels with negative contrast 

values. By composing the contrast histograms of all the 
sub-regions into a single vector, a contrast-histogram 
representation of T is defined as 

H = {B1
+, B1

−, …, Br
+, Br

−},   (19) 

where r is the number of sub-regions. This vector is then 
normalized to a unit vector to overcome linear lighting 
changes. In the log-polar coordinate system applied in our 
work, there are 8×3 sub-regions for a circular image patch 
with a diameter of 21 pixels; thus, a 48(8×3×2)-dimensional 
vector is formed. Then, given a state xt

i and its local 

   
(a)       (b) 

 
Figure 9. Other constraints. (a) Triplet constraints. (b) Higher-order 
constraints. 



observation zt
i, we set  

p(zt
i| xt

i) ∝ exp(−||H0−Ht||2/2σ1
2),  (20) 

where σ1 is a variance constant, H0 and Ht are the 
contrast-histogram representations at time 0 and time t 
respectively. 

A limitation of the contrast-histogram representation is that 
it does not perform very robustly on flat areas. Automatic 
feature selection techniques, e.g., Harris corner, can be used 
to avoid selecting such areas. 

B.  Particle Re-weighting 

In the above likelihood measurement, appearance 
information is used. However, in some tracking problems, the 
appearance of certain components may be very similar. 
Dividing a target into several local regions causes a problem 
in that the tracked states of similar components sometimes get 
trapped in the same location. To avoid this problem, the 
particle re-weighting scheme in (10) is used, where the ratio 
factor );( 1−ttr xx  is defined by employing spatial constraints 
as shown below. 

Our entire algorithm is given in Table II. In each iteration 
of this algorithm, the particle sets of each component at the 
previous time step, {( i

nt ;1−s , i
nt ;1−π ), n = 1,…, Ni} are given. The 

final output of this algorithm are state-space vectors of the 
components, denoted as }...1,{ cii

t =Ω . In the re-weighting 
scheme, distance constraints between pairs of components are 
learned from the previous tracking results. Let μt;ij denotes 
the distance constraint at time t, which is pre-given in the 
beginning of the tracking, and is updated as the tracking 
algorithm keeps running as follows: 

),()1( 111;11;
j
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i
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where α1∈[0,1], d(⋅,⋅) denotes the Euclidean distance, and 
Ωt−1 is the tracking output of our algorithm at time t−1. For 
the re-sampled particle set of the j-th component, { j

nt ;1' −s , n = 

1,…, Nj}, its expected value is computed by  
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j
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j
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Then, the ratio factor is estimated by the recent distance 
relationships between components in our implementation, 
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By substituting (24) to (12), the particle weight for each 
component at time t is re-weighted by 
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where i
nt ;s  is the n-th particle of the i-th component at time t, 

n = 1…Ni. Hence, for those particles whose distances to the 
other components are consistent to the distance constraints 
learned recently, the particle weights will be enhanced. By 
using this strategy, the re-weighting is a soft spatial 
adjustment. We can image that there is a spring between 
components, resulting in a particle weight re-adjustment step 
that is effective when ambiguity occurs. 

V. EXPERIMENTAL RESULTS 

A.  Implementations 

In this section, we present some experimental results to 
demonstrate the performance of TBP particle filtering. The 
motion types considered in the experiments are a 
combination of rough translations and in-plane rotations 
with slight scaling. Although the motion types are simple, 
they form strong spatial-coherence relationships suitable 
for demonstrating the effectiveness of our method. We 
employ the triplet constraint in the experiments to exploit 
the strong spatial coherence among the tracked components. 
The same experiments that employ only pair-wise 
constraints have also been done for performance 
comparison. In our current work, we manually specified the 
image positions of the components in the first frame, and 
the spatial constraints are modeled based on these positions. 
We particularly focus on our approach’s ability to deal with 
varying illumination conditions and partial occlusions. 
During tracking, TBP-BN is fully connected between layers. 
As discussed in Section III.B, these conditions can be 
varied in practice according to the application. 

A similarity transform with four degrees of freedom 
(in-plane rotation, scaling, and 2D translation) is used to form 

 
Given a set of weighted particles {( i

nt ;1−s , i
nt ;1−π ), n = 1,…, Ni} for each 

component i ∈ {1,…, c}at time step t−1, the following steps are performed 
to construct a new set of particles at time step t. 
1. Re-sample a particle set {( i

nt ;1' −s , 1−
iN ), n = 1,…, Ni} from 

{( i
nt ;1−s , i

nt ;1−π ), n = 1,…, Ni} for component i. 

2. Generate a particle set { i
nt;s , n = 1,…, Ni} = { i

kt;ŝ }∪{ i
kt

~
;s } for the i-th 

component as follows: 
2.1. Randomly select (α0⋅Ni) particles { i

kt ;1' −s , k = 1,…, α0⋅Ni} 

from { i
nt ;1' −s }, and generate { i

kt ;ŝ , k = 1,…, α0⋅Ni} based on 

the PSTSC model p(xt
i| xt

i
−1 = i

kt ;1' −s ). 

2.2. Sample the particle set { i
kt

~
;s , k = 1,…, (1−α0)⋅Ni} based on the 

PSTOC model described in Section III.A. 
3. Compute the weight πt

i
; n of sample i

nt;s  based on the likelihood and 

re-weighting procedure in (25). 
4. Estimate the state vector { i

tΩ } by using the maximum mode 

mentioned in [30] for the display. 

Table II. The complete TBP-PF algorithm 



a triplet constraint 
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where Li denotes a possible location of the i-th component 
estimated by the similarity transform computed by 
components j and k. The possible location of the i-th 
component can then be predicted according to the 
transformation. 

We perform a series of experiments, and compare our 
approach with methods that use global information and 
independent-motion assumptions in the situation where 
significant occlusions and lighting variations occur. In our 
implementation, two hundred particles are used for each 
component, and the diameter of the image patch of each 
component is 21 pixels. The state vector dimension of each 
component is set as two to identify the 2D location of the 
component in an image, and α0 in the proposal function (13) 
is set at 0.5. The distance parameter μij is initialized based 
on the average distance of the three initial frames, and the 
spatial difference is computed according to the function D(⋅) 
in (23). For the convenience of comparing different 
methods, we choose the initial parts in our experiments 
manually. Of course, the proposed method can also be 
performed by selecting features automatically. 

B.  Results 

In the first experiment, we apply the proposed method to 
track an object under substantial occlusions. In this 
sequence, there are 460 frames and the resolution of a 
frame is 320×240. The target object is difficult to track 
since it moves behind another foreground object, resulting 
in very serious occlusions. The object is represented by 

thirteen parts in the proposed method. For comparison, the 
global-appearance approach and the factored-likelihood 
approach [8], [10] are implemented in a particle filtering 
framework. The HSV color histograms suggested in [8] are 
used to represent the global appearance of the object. In the 
factored likelihood approach, a global region is divided into 
fixed sub-regions. The partition of the sub-regions remains 
unchanged, and thus strong spatial constraints among the 
sub-regions are imposed. The observation is estimated by 
multiplying the likelihoods of these sub-regions. In our 
experiment, the appearance is divided into twenty-five 
sub-regions uniformly. The results of global appearance- 
based, factored likelihood and our TBP-PF methods are 
shown in Fig. 10(a), 10(b) and 10(c), respectively. One can 
see that both the global appearance-based method and the 
factored-likelihood method drift easily during tracking, 
particularly when occlusion occurs; however, the proposed 
TBP particle filtering successfully tracks the components, 
as shown in Fig. 10(c). In this figure, the small rectangles 
represent the locations of the components. 

To quantify the performance, numerical evaluations are 
performed. We measure the errors in the state space, and 
the ground truths are labeled manually in advance. The 
error is calculated from the average Euclidean distance 
between the target state and the ground truth in the 4D state 
space including a 2D location and a 2D size. When our 
approach is compared with a global approach, a bounding 
box of all the components is calculated. The location and 
size of the bounding box are then treated as the predicted 
state in our method for evaluation. The evaluation results 
are list in Table III. From these results, one can see that 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Comparison of our algorithm with global-appearance methods, where the appearance is represented by a color histogram, under occlusions. (a) 
Results obtained by using the global appearance method, where the tracking drifts easily. (b) Results of the global appearance method with factored 
likelihood estimation. (c) Results of the proposed method, where the target is stably tracked under different lighting conditions. (This figure is better viewed 
in color.) 

Table III. The average errors in the state space for the fist experiment (Fig. 10) 

 Global Appearance Method Factored Likelihood Estimation TBP Particle Filtering 
Errors 78.15 73.63 21.56 

 



TBP particle filtering outperforms the other methods. 

In another experiment, we compare our method with 
some multi-component tracking methods. A gray-scale 
sequence consisting of 30 frames is employed. Seven 
components are selected to represent the vehicle. In the first 
method, we assume that the spatial coherence among 
components is neglected by setting the component motions 
to be independent. A component is regarded as occluded 
when its likelihood is less than a given threshold, and its 
state will not be displayed. The results of independent- 
motion tracking are shown in Fig. 11(a). Since spatial 
coherence is not considered, the components are easily 
trapped in a local minimum. Components of similar 
appearance also mislead the tracker when the vehicle 
passes by the lamp-post. Second, the particle re-weighting 
method is used by applying the distance constraint in 
particle weight estimation (as introduced in Section IV.B), 
so that the particle weights can be refined by the spatial 
constraints. In this method, the spatial coherence is used 

only for particle weight refinement, but not for state 
prediction through system dynamics. Fig. 11(b) shows the 
results. Though the problem of components with similar 
appearance can be reduced by this method, it still cannot 
provide good results. In particular, a component’s location 
is difficult to recover once it drifts. Finally, we adopt the 
proposed method, which encodes the triplet spatial 
coherence in the dynamics of the same sequence. Our 
method can resolve the difficulties caused by occlusions 
effectively, and convincing results are obtained, as shown 
in Fig. 11(c). The method of applying pair-wise constraints 
to system dynamics is also implemented for comparison. 
We show the numerical results of this experiment in the 
third column of Table IV, where the error is measured from 
the average distance between the components’ state and the 
ground truth. We also implemented the method proposed in 
[12] which is based on auxiliary particle-filtering. This 
method also re-weights the particles according to spatial 
relationships but has not employed the spatial relationships 
in the dynamic model. In our implementation, a similarity 
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Figure 11. Comparison of part-based tracking methods with different strategies. (a) Results obtained from the method with independence motion 
assumption among components, where component trackers drift easily and mislead when the car passes the lamp-post. (b) Results obtained by using the 
particle re-weighting strategy only, where drifted components still can not be recovered. (c) Results of the proposed method, where the target is 
successfully tracked, even when occlusions occur. (This figure is better viewed in color.) 
 



transformation was used to model the function q(⋅) defined 
in [12]. Because the collaborative dynamic model is used, 
our method still outperforms that in [12] as shown in the 
results. 

In the third experiment, we consider a more difficult case 
where both lighting variations and partial occlusions occur 
at the same time. This sequence contains approximately 
430 frames of human face that is also divided into five 
parts. A skin-colored paper is used to occlude the face. 
Some comparisons are shown in Fig. 12. Fig. 12(a) shows 
the tracking results by using global-appearance information, 
where the tracker is unstable and is easily misled by the 
skin-colored paper. We also show the tracking results based 
on the independence motion assumption in Fig. 12(b), 
while those that employ spatial coherence for particle 
re-weighting are shown in Fig. 12(c). However, the 
performance of the above methods is still not satisfactory. 
In contrast, by encoding the spatial coherence in the 
dynamics, our method can track the target in this sequence 
very well, as shown in Fig. 12(d). The numerical 

evaluations are given in the forth column of Table IV. 

Finally, we apply our method to the image sequence with 
deformations including scaling and expression changes. 
Convincing tracking results can still be obtained under the 
scale and expression variations, as shown in Fig. 13, and 
the numerical evaluations are given in the fifth column of 
Table IV. More tracking results on the Dudek sequence [31] 
are given in Fig. 14. 

With regard to efficiency, our method runs at about 7~8 
fps on a 2.8 GHz PC with non-optimized C codes when 
five components are considered. This is much faster than 
methods that use belief-propagation-based or variation- 
based iterative particle refinement in similar settings. 

VI. CONCLUSION AND FUTURE WORK 

We have presented a general part-based approach that 
employs component collaboration for visual tracking, and 
formulated the problem as a Bayesian network called 
TBP-BN in which inter-component relationships are 
modeled stage-wisely. A probability propagation 
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Figure 12. Comparison of tracking under both varying illumination conditions and partial occlusions. (a) Results obtained using the global appearance 
method. (b) Results obtained by the method based on the independence motion assumption among components, where the trackers of components drift easily 
and trap in the same location. (c) Results obtained by using particle re-weighting strategy only, where drifted components are hard to recover. (d) Results of 
the proposed method, where the target tracking is stable. (This figure is better viewed in color.) 

 



framework was derived to find the posterior distribution of 
TBP-BN, and TBP particle-filtering was developed to 
realize the stage-wise probability propagation process. We 
have also provided a theoretical foundation to show that the 
dynamic model of TBP-BN can be separated in a 
component-based manner. 

Our method not only uses spatial coherence for particle 
weight measurement, but also for temporal-based 
propagation. Because of this characteristic, spatial- 
structural information can be propagated to predict 
components’ locations, and part-based information can be 
employed more efficiently. 

We adopt a particle re-weighting procedure for 
part-based tracking. However, our framework also allows 
the use of belief-propagation-based iterations for 
refinement (when the computation speed is not an 
important issue), so as to make more complete use of 
spatial structural information. Therefore, TBP-BN provides 
a new and general way to encode spatial coherence into 
tracking algorithms. The experimental results show that our 
approach performs well in several situations. 

In the future, we will extend our approach to an adaptive 

one that can learn the spatial coherence relationships and 
the observation model over time. We will also consider the 
concept of interactive collaboration [14] to further enhance 
the particle weight estimation when tracking similar 
components that are spatially close. By modifying the 
appearance measures employed and building suitable 
partially-connected bipartite graphs between adjacent 
layers, we will study the above problems in the future. 
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