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Abstract—An effective video copy detection framework should 

be robust against spatial and temporal variations, e.g., changes in 
brightness and speed. To this end, a content-based approach for 
video copy detection is proposed. We define the problem as a 
partial matching problem in a probabilistic model, and transform 
it into a shortest-path problem in a matching graph. To reduce the 
computation costs of the proposed framework, we introduce some 
methods that rapidly select key frames and candidate segments 
from a large amount of video data. The experiment results show 
that the proposed approach not only handles spatial and temporal 
variations well, also reduces the computation costs substantially. 
 

Index Terms—Video copy detection, probability modeling and 
matching, spatiotemporal analysis. 
 

I. INTRODUCTION 
FFICIENT and effective copy detection techniques are 
essential for content management and rights protection 

because they allow platform providers to check the integrity of 
user uploads, and thereby prevent plagiarism or illegal copying 
from other web sites. They also help content providers collect 
royalty payments and protect copyright by tracking the usage 
and distribution of particular videos. Generally, there are two 
techniques used for video copy detection: digital watermarking 
and content-based approach. In this study, we present a novel 
content-based approach for video copy detection. 

A number of image copy detection approaches have been 
proposed [7][11][13]. In video copy detection, since much 
more data has to be processed than in image copy detection, the 
features employed are usually simple and easy to compute. The 
ordinal signature [3][5][8][14] has thus become a popular 
means of video copy detection. Hampapur et al. [3] examined 
several sequence-matching methods based on the motion, or-
dinal, and color features, and reported that the ordinal signature 
achieves the best video copy detection performance. Yuan et al. 
[14] employed a coarse-to-fine strategy in video sequential 
searching that uses the ordinal signature for coarse searching 
and the audio feature for fine matching. Hoad and Zobel [4] 
proposed two very compact features, namely, color-shift and 
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centroid-based motion magnitudes. Approximated string 
matching, which can deal with slight frame-rate changes, is 
then employed for near duplicate detection. However, most 
studies in video copy detection focus on spatial variations (e.g., 
histogram equalization and frame resizing), while only limited 
efforts have been made to address temporal variations (e.g., 
slow motion and fast motion). In practice, temporal variations 
occur frequently in various video scenarios. For example, the 
slow motion operation is often used to recapture key moments 
in sports videos, while the fast motion operation is usually 
applied to generate condensed video clips for video skimming. 

In addition, many methods use a fixed-length sliding win-
dow for matching. Searching by a fixed-length window is 
simple and can be accelerated by histogram pruning [6]. The 
coarse-to-fine approach proposed by Hua et al. [5] can handle 
some temporal variations in the fine matching stage. However, 
since the coarse matching stage employs a fixed-length sliding 
window, temporally varied video copies are apt to be filtered 
out in that stage. Kim and Vasudev [8] used adjacent-frame 
information to enhance the accuracy of video copy detection, 
but the method also lacks the ability to handle general temporal 
modifications. Hoad and Zobel [4] computed the color and 
motion magnitude differences between adjacent frames. 
However, for a video that is modified by serious temporal 
changes (e.g., altering the frame rate or video motion speed), 
the magnitudes are re-amortized in each frame, resulting in a 
possibly different signature pattern from that of the original 
video. 

The proposed video copy detection approach is based on a 
general probability framework that can handle spatiotemporal 
variations. We treat video copy detection as a partial matching 
problem, and transform it into a shortest-path problem in a 
matching graph. To improve the efficiency of our framework, 
we introduce the key frame and candidate segment selection 
methods that can cull appropriate frames for matching. To our 
knowledge, this is the first approach that takes slow and fast 
motions into considerations. Experimental results confirm the 
effectiveness of the proposed framework. 

The remainder of this paper is organized as follows. Section 
II formulates the video copy detection problem, and Section III 
provides the probability framework as our solution. In Section 
IV, we introduce some methods to speed up the detection 
process. The experimental results are presented in Section V. 
Then, in Section VI, we give some concluding remarks. 
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II. PROBLEM FORMULATION 
Given a query video Q and a target video T, our objective is 

to find a sequence of matching pairs of frames between them, 
i.e., each frame in the query video clip matches a frame in the 
target video clip. We say that the query video clip is a near 
duplicate of some video segments contained in the target video 
clip. Let Q1, ... Qn and T1, ... Tm be the n and m frames in Q and 
T, respectively. To find a video segment that is a sub-segment 
of T, we denote the hypothesis space as follows: 

H={Tθ(1) ... Tθ(n) | 0≤θ(i)≤m and θ(i)≤θ(j)},            (1) 

for i < j, i, j = 1 ... n. θ is a non-decreasing mapping from the 
integer set {1 ... n} to another integer set {1 ... m}, the hy-
pothesis space H contains all n-length sequences, and each 
frame in a sequence belongs to the target video T. Note that 
when θ(i) = k, we do not assume that the next frame θ(i+1) is 
equal to k+1 because we want to handle general situations that 
contain spatiotemporal variations, such as frame rate changes 
and slow/fast motion. 

Let h be a hypothesis with h ∈ H. Given a query video clip Q, 
let us consider the a posteriori probability P(h | Q). Our pur-
pose is to find the maximal a posteriori (MAP) hypothesis that 
relates to the most probable solution segment in T: 

h* = arg max h∈H P(h | Q).                          (2) 

Since both h and Q contain n frames, the equation can be re-
written as: 

h* = arg max h∈H P(h1, ... hn | Q1, ... Qn)                               
= arg max h∈H P(Q1, ... Qn | h1, ... hn) P(h1, ... hn),      (3) 

where hi = Tθ (i) is the i-th frame of the hypothesis in T. To 
simplify the computation of (3), we approximate it by assuming 
that: 

(i)  P(Qi | hi), i = 1 ... n are independent of each other, and 
(ii) P(h1, ... hn) can be modeled by a first-order Markov chain, 

i.e., P(hi | h i−1, h i−2, ... h1) = P(hi | h i−1) for all i = 2 ... n. 

Although a video sequence actually contains higher-order 
redundancies, the first-order Markov chain assumption helps us 
make efficient use of temporal information for matching so that 
(3) can be rewritten as: 

∏
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which is a form of Hidden Markov Models (HMM) [12]. To 
evaluate (4), we consider the two probabilities P(Qi | hi) and 
P(hi+1 | hi), where P(Qi | hi) is a likelihood specifying the 
probability that the query frame Qi is a copy of the hypothesis 
frame hi, and P(hi+1 | hi) is the transition probability between 
frames hi and hi+1. We refer to P(Qi | hi) as the Probability 
caused by Frame Similarity (PFS), and P(hi+1 | hi) as the Prob-
ability caused by Temporal Continuity (PTC). By specifying 
PFS and PTC, we can derive a probabilistic framework for 
video copy detection. 

III. PROBABILITY FRAMEWORK AND MATCHING  GRAPH 

A. Probability Setting for PFS 
To estimate the PFS, we use the ordinal signature and extract 

it as follows. A video frame is partitioned into Nx×Ny 
non-overlapping blocks and the average intensity of each block 
is computed. We then rank the blocks according to their aver-
age intensities. Consequently, the ordinal signature of the video 
frame is denoted as an Nx×Ny matrix of the ranking order. In this 
study, we set Nx = Ny = 3. 

Let dist(U, V) be the L1 distance between any two frames U 
and V: 

dist(U, V) = ∑∑
= =

3

1

3

1x y
| F[U](x, y) − F[V](x, y) |,           (5) 

where F[U] is the ordinal signature of U, and F[U](x, y) is the 
ordinal rank of the (x, y)-th block in U. The PFS of the query 
frame Qi and the hypothesis frame hi is then modeled as a 
Gaussian distribution: 
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where σf is the standard deviation, which remains the same for 
all i. Since σf will be eliminated in the matching cost derived in 
Section III-D, its estimation can be ignored in the implemen-
tation. 

B. Probability Setting for PTC 
To determine the probability caused by temporal continuity, 

PTC, we consider possible ways that the target video clip T 
could be altered in the temporal domain to produce 
near-duplicates. Without loss of generality, we consider the 
cases of slow and fast motions as temporal variations. Note that 
the slowest and fastest possible motions can be specified by the 
smallest and largest slopes of the mapping θ (defined in (1)), 
respectively. We introduce two non-negative parameters, σs 
and σl, to represent, respectively, the smallest and largest slopes 
allowed. Considering temporal modifications (e.g., slow mo-
tion and fast motion), the transition model should satisfy the 
following constraint: 

⎣σs⎦ ≤ θ(i+1) − θ(i) ≤ ⎡σl⎤ ,                           (7) 

where ⎣⋅⎦ and ⎡⋅⎤ denote the floor and ceiling operations, re-
spectively. Figure 1(a) shows a transition model comprised of 
three possible transitions from hi (i.e., Tθ (i)) to hi+1 (i.e., Tθ (i+1)) 
when σs = 0.5 and σl = 2. We call hi+1 a legal successor of hi if 
θ(i+1) and θ(i) satisfy (7). 

Assume that there is no additional prior knowledge about the 
video speed; in other words, all video speeds within the slope 
bounds specified by σs and σl could occur with an equal prob-
ability. The PTC P(hi+1 | hi) can then be defined as a uniform 
distribution as follows: 
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where K = ⎡σl⎤ − ⎣σs⎦ + 1is the number of legal successors of hi. 
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(a)                                                (b) 
Figure 1. (a) A example of the transition model comprised of 
three transitions from hi to hi+1; (b) an example of a matching 
graph G. 

C.        Objective Function 
To evaluate (4), we assume equal prior probabilities for all 

the hypotheses in H; i.e., P(h1) = 1/Ntotal for all h1 ∈ H, where 
Ntotal is the number of hypotheses contained in H. Taking a 
natural log of (4) yields the following formulation: 

∏
−=

+++
∈

×=
1...1

111111 )|()|()|()(maxarg*
ni

iiii
h

hQPhhPhQPhPh
H

 

= arg min h∈H J(H, Q),                                                   (9) 

where J(H, Q; σs, σl) = 
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In (9), finding h* that maximizes the a posteriori probability 
is equivalent to finding h* that minimizes the objective func-
tion J defined in (10). Using a brute-force method to compute 
h* is computationally intractable. In our work, we encode the 
PFS and PTC in a matching graph, and use a shortest-path 
algorithm to solve the minimization problem. 

D. Matching Graph Construction 
We extend the transition model in Figure 1(a) to construct a 

matching graph G, as shown in Figure 1(b). G contains n layers, 
each of which contains m vertices (recall that n and m present 
the numbers of frames in the query and target videos, respec-
tively). For the k-th layer, the m vertices are denoted as vj;k, 
j∈{1 ... m}, where each vertex represents a frame in the target 
video. We also construct a source vertex, v0, and a sink vertex, 
vn+1. Then, some edges are constructed by connecting nodes in 
G as follows. The source vertex v0 and sink vertex vn+1 are fully 
connected to vertices in layer 1 and layer n, respectively. For 
each adjacent pair of layers k and k+1, where k = 1 ... n−1, if j ≤ 
j' and ⎣σs⎦ ≤ j'−j ≤ ⎡σl⎤, there is an edge e(vj;k, vj';k+1) linking the 
vertex representing the j-th frame vj;k in the k-th layer to that 
representing the j'-th frame vj';k+1 in the (k+1)-th layer. For each 
vertex vj;k (except the source and sink vertices), a vertex score is 

assigned based on (10) as sj;k = dist2(Qk, Tj), and the edge scores 
are all set to 2σf

2ln(K). Note that the terms )2ln( 2
fn πσ  and 

ln(Ntotal) in (10) are omitted from the above score setting be-
cause they are constants. In addition, the scores of the source 
and sink vertices, as well as the edges linking to those vertices, 
are all set to zero. 

Each path starting from the source vertex and ending at the 
sink vertex represents a matching sequence between the query 
and target videos. The cost of the path is the sum of the vertex 
scores along the path. Our goal is to find the minimal-cost (or 
shortest) path from v0 to vn+1 in the matching graph. The frames 
associated with the matching path then constitute the 
sub-segment in T that is the most similar to the query video Q, 
based on the objective function J(H, Q) defined in (10). Since 
there are K edges connected to the vertex vj;k, and all of them 
have equivalent edge scores 2σf

2ln(K), the shortest path to vj;k is 
determined by aggregating the vertex scores only: 

j* = arg min j' {cost(vj';k−1) | j' = j, j–1 … j–K+2, j–K+1}, (11) 
cost(vj;k) = cost(vj*;k−1)+sj;k ,                           (12) 

where cost(vj;k) is the cost of the shortest path from v0 to vj;k. 
Both the dynamic programming approach (or equivalently, the 
Viterbi algorithm [12]) and the single-source shortest-path 
algorithm in a directed acyclic graph [1] can be used to find the 
shortest path from v0 to vn+1. To solve the problem, we employ 
the dynamic programming approach based on (11) and (12). If 
the total cost of the shortest path is less than τn, we determine 
that H is a copy of Q, where τ is the parameter that can be used 
to control the recall-precision rates. 

The detection algorithm has two parts: one part calculates the 
vertex scores, and the other finds the shortest path. In the first 
part, there are mn vertices in the matching graph; Thus, its time 
complexity is O(mn). In the second part, the dynamic pro-
gramming takes O(mnK), where K is the branching factor (i.e., 
the number of legal successors) of each vertex. 

Since the edge scores are all equal and not involved in the 
path-cost computation in (11) and (12), the time required to 
find the shortest path can be further reduced as follows. Ac-
cording to (11), when cost(vj;k) is evaluated, we need to find the 
minimal cost in the set {cost(vj';k−1) | j' = j, j–1 … j–K+2, j–K+1}. 
Then, to compute the cost of the next vertex, cost(vj+1;k), we 
need to find the minimal cost in another set {cost(vj';k−1) | j' = 
j+1, j, j–1 … j–K+2}. These two sets have K–1 overlapping 
elements {j, j–1 … j–K+2}. Hence, if j*∈{j, j–1 ... j–K+2}, we 
only need to compare cost(vj+1;k−1) and cost(vj*;k−1) to get the 
required minimal element for finding the cost of the next vertex, 
cost(vj+1;k). In most cases, this requires only one comparison of 
each vertex (unless the special case j* = j–K+1). Thus, the time 
complexity can be further reduced to O(mn) if the special case 
does not happen frequently. Although it still takes O(mnK) for 
the worst situation (where the case j* = j–K+1 always occurs 
for every vertex), the average complexity for the common cases 
can be reduced to O(mn). 
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IV. KEY FRAME AND CANDIDATE SEGMENT SELECTION 
We have described a probabilistic framework for video copy 

detection with an average complexity of O(mn). Although this 
is the same as the complexity of the fixed-length window ap-
proach, our detection speed is slower since more computational 
overheads are included. In this section, we introduce two 
pre-processing steps, key frame selection and candidate seg-
ment selection, to further improve the matching efficiency. 

A. Key Frame Selection 
Inspired by the Scaled Invariant Feature Transform (SIFT) 

[10], we use the scale-space to identify stable key frames under 
different temporal scales. For a target video T, let T(x, y, t) be 
the ordinal signature of the (x, y)-th block of the t-th frame in T, 
and ),,( tyxG

eσ
 be a 3×3×3 Gaussian kernel with standard 

deviation σe : 
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A 3×3×3 Difference-of-Gaussian (DoG) kernel is derived by 
computing the difference between two Gaussian kernels: 
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where k > 1 is a multiplicative factor, and s = 1, 2 ... is the scale 
of the DoG kernel. Then, we use the DoG kernel sliding over T 
to generate a vector Ls by the convolution operation: 
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for t = 1 ... m. If the t-th element in Ls is a local extreme, it is 
considered the key frame in T. In this study, we follow Lowe's 
suggestion [10] and set σe = 1.8, 2=k , and s = {1, 2, 3}. 

We conducted an experiment to validate the reliability of the 
key-frame selection method. The target video was transformed 
by spatial and temporal modifications (e.g., brightness en-
hancement and slow/fast motion) to obtain several test videos. 
We then applied the proposed method to the target and test 
videos to observe the repeatability, i.e., the percentage of the 
same key frames selected in both target and test videos. On 
average, the repeatability of the spatial and temporal modifi-
cations was 90.93% and 83.51%, respectively. For comparison, 
we also implemented the triangle-model method proposed by 
Liu et al. [9]. Its repeatability for the spatial and temporal 
modifications was 82.30% and 76.89%, respectively. 

B. Candidate Segment Selection 
The number of frames in the target video T is usually much 

larger than that in the query video Q. Since directly matching T 
and Q through the proposed matching-graph algorithm is 
time-consuming, we try to find a set of candidate segments in T, 
and then match these candidate segments with Q. The candidate 
selection method filters out many unnecessary frames; hence, 
the computation time is reduced. Besides, T may contain mul-
tiple copies, which can be located by the candidate segment 
selection method and verified by the matching-graph algorithm. 
Thus, our method can detect multiple copies contained in T. 

As a partial matching problem, video copies can also be 
detected by considering pair-wise frame matching errors. We 
can thus use some frames in the query video for probing, and 
select candidate video segments from the target video by 
finding frames that are similar to the probing frames. Since 
only a few probing frames are used, the candidate selection 
method is efficient. Without loss of generality, we use two 
snippets in the query video Q for probing. One is selected from 
the head part of Q, Qhead = {Qi | i = 1, 2 ... w}, and the other is 
selected from the tail part of Q, Qtail = {Qi | i = n−w+1, n−w+2 ... 
n}, where w is the snippet length, i.e., the number of frames in 
the snippet. We compute the Average Ordinal Feature (AOF) 
of a snippet as follows: 

∑
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The AOF of the j-th frame in the target video T, denoted as 
jTH , 

is computed similarly: 
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The AOF serves as the signature of a snippet. A head candidate 
Chead is a set of frames selected from T based on the following 
similarity measure: 

} ... 2,1  ,) ,(|{ mjHHdistTC
headj QTjhead =<= ε ,         (18) 

where dist(⋅) is defined in (5) and ε is the threshold. In our 
empirical test procedure, we set ε = 9 to achieve a balance 
between robustness and efficiency. Likewise, the tail candidate 
Ctail is selected from T by computing 

jTH  and 
tailQH . 

Next, we scan the two candidates Chead and Ctail. An 
m'-length consecutive-frame segment CS = {Ts, Ts+1, … , Ts+m'−1} 
in T is chosen as a candidate segment in the scanning process if 
the following conditions are satisfied: 

Ts ∈ Chead and T s+m'−1 ∈ Ctail ,                       (19) 
σs×n < m' < σl×n ,                                          (20) 
dist(HCS, HQ) < ε ,                         (21) 

where HCS and HQ are the AOFs of the candidate segment CS 
and query Q, respectively: 
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The purpose of (20) is to delete candidate segments that are too 
long or too short, and that of (21) is to remove segments whose 
AOFs are not close to that of the query video. 

We designed a simulation to investigate the performance of 
the proposed method under frame corruption and different 
video speeds. A collection of 712060 video frames, each 
comprised of 320×240 pixels, was used. We randomly selected 
1000 queries from the collection. The query video was further 
perturbed by randomly selecting CR×n frames as corrupt 
frames, where CR ∈ [0, 1] was the ratio of corrupt frames and n 
was the length of the query video. The ordinal signature of a 
corrupt frame was set to zero, or the frame was removed from 
the query video. We then submitted each query to the video 
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collection to obtain a set of candidate segments. In the set, if 
there was a candidate segment whose region overlaps with the 
region where the query was extracted from, we said the query 
achieved a correct selection. The correct selection ratio was 
defined as the number of correct selections divided by the 
number of queries. 

Figures 2 shows the corrupt ratio (X-axis) versus the correct 
selection ratio (Y-axis) under different snippet lengths (w = 1, 5, 
10, 15 and 20). The corrupt ratios used in the test ranged from 
0% to 10%. Figure 2(a) shows the result of submitting the 
query videos to a normal-speed video collection, while Figure 
2(b) shows the result of submitting them to a video collection 
consisting of 0.5× or 2× speeds. The correct selection ratios of 
the normal-speed case (Figure 2(a)) are higher than those of the 
variable-speed case (Figure 2(b)). This is reasonable since the 
latter includes both corrupt frames and temporal variations. 
However, the correct-selection ratio remains high (over 93% in 
average), even when 10% of the frames are corrupt. In our 
implementation, we selected the snippet length w = 10 to 
achieve a balance between the information contained in the 
snippet and temporal variations it can tolerate. 

 
(a)                                             (b) 

Figure 2. The corrupt frame ratio (X-axis) versus the correct 
selection ratio (Y-axis) under different snippet lengths: (a) the 
normal speed case; (b) the variable speed case. 

V. EXPERIMENT RESULTS 
We collected more than six hours (712060 frames) of video 

data from the Open Video Project and the MPEG-7 collection 
as our original dataset. The video content included sports, news, 
documentaries, and landscapes. The format of the original 
video data was MPEG-1 with 320×240 pixels and 30 fps. Eight 
copies were produced by applying spatial and temporal modi-
fications to the original data. These modifications included 
brightness enhancement, histogram equalization, 176×120 
pixels, 10 fps, 15 fps, 0.5× speed, 2× speed, and a hybrid case 
comprised of 176×120 pixels, 10 fps, and 2× speed. They were 
designated as the target videos. Then, 200 video clips were 
selected randomly from the original data and designated as the 
query videos, each of which contained 1000 frames. All query 
clips were compared with eight target videos; a total of 1600 
(i.e., 200 × 8) query videos were compared. 

We set σs = 0.5 and σl = 2 to detect video speeds between 
0.5× and 2× speed. The threshold ε in (18) and (21) was set to 9. 
For key frame selection, the scale-space parameters, discussed 
in Section IV-A, were set to σe = 1.8, 2=k , and s = {1, 2, 3}. 

With this configuration, a key frame was extracted from the 
video database about every 6.43 frames on average. 

A. Retrieval Accuracy 
We compare the results of our approach with those of Hua et 

al. [5], and Kim and Vasudev [8]. Hua et al.'s approach uni-
formly samples a video and generates a 3×3 ordinal signature 
for each sampled frame, and one key frame is uniformly ex-
tracted every 6 frames. In Kim and Vasudev's framework, a 2×2 
ordinal signature and a 2×2 temporal signature are used, and the 
two signatures are linearly combined with an equal weight. 
Both approaches employ a fixed-length sliding window to 
search for video copies. 

To evaluate the performance, we often use Precision-Recall 
(PR) curves and Receiver Operator Characteristic (ROC) 
curves. Let True Positives (TP) be positive examples correctly 
labeled as positives, False Positives (FP) be negative examples 
incorrectly labeled as positive, True Negatives (TN) be nega-
tive examples correctly labeled as negative, and False Nega-
tives (FN) be positive examples incorrectly labeled as negative. 
Then three metrics are given as follows: 

recall = TP / (TP + FN)                                      
precision = TP / (TP + FP)                                 
false positive  = FP / (FP + TN).                 (23) 

The PR-curve plots the recall versus the precision, while the 
ROC curve plots the false positive versus the recall. In this 
experiment, we use PR curves for evaluations because, in a 
large skew class distribution, a PR curve is more capable of 
capturing changes in the number of negative examples than an 
ROC curve [2]. In the following, we set different τ (defined in 
Section III-D) to generate PR-curves, where the X-axis denotes 
the recall and the Y-axis denotes the precision. 

Figure 3(a) shows the results of three spatial variations: 
brightness enhancement, histogram equalization, and 176×120 
pixels. The three approaches yield good results under these 
spatial modifications. Kim and Vasudev's approach produces 
slightly better results than our approach or that of Hua et al. 
because it uses every frame, instead of only key frames, for 
video matching. Basically, our approach achieves higher de-
tection accuracy than that of Hua et al. Although both ap-
proaches use the same ordinal signature and close sampling rate, 
it is clear that our key-frame selection method can preserve 
more significant frames than the uniform sampling method 
adopted by Hua et al. 

Figure 3(b) shows the results of two temporal variations: 15 
fps and 10 fps. Kim and Vasudev use a fixed-length sliding 
window to compare 30 fps query videos with the 15 fps or 10 
fps target videos. Since the sliding window can not deal with 
temporal discrepancies between the query and target videos, 
the method does not perform as well as the other two ap-
proaches. Unlike Kim and Vasudev's approach, Hua et al. use 
the same frame rate to re-sample query and target clips before 
matching; hence, the performance is less affected by frame-rate 
changes. Compared with the other two approaches, our ap-
proach yields relatively accurate and stable results, and can 
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effectively compensate for temporal discrepancies caused by 
different frame rates. 

Figure 3(c) shows the results of the other temporal variations: 
0.5× speed and 2× speed. We find that the performances of both 
Hua et al.'s and Kim and Vasudev's approaches are severely 
degraded in these cases. Their PR curves, located in the bottom 
right part of Figure 3(c), represent a high recall rate and a low 
precision rate, respectively. In other words, there are a lot of 
false positives in the retrieved set. Although the motion speeds 
are different, the slow- and fast-motion videos were generated 
under identical frame rates. Hence, in Hua et al.'s approach, 
even though the videos are re-sampled with the same frame rate, 
the results are still not good enough because a fixed number of 
frames are used in the sliding window. In contrast, the results 
show that our approach can handle slow and fast speeds well. 

Figure 3(d) shows the result of the hybrid case that combines 
three variations: 176×120 pixels, 10 fps, and 2× speed. These 
evaluations demonstrate that the proposed approach is robust 
under spatial and temporal variations, and a mixture of them. 

B. Retrieval Efficiency 
The detection speed of our approach highly depends to a 

large extent on the length-reduction ratio r in the candi-
date-selection stage, where r is the sum of the lengths of the 
candidate segments to the length of the target video T. The 
smaller the ratio r, the faster the detection speed will be. In 
Table 1, we compare the number of query frames, n, versus r. 
We observe that r is relatively stable (close to 1%) as n in-
creases. Therefore, the computation cost does not increase too 
much as the number of query frames n grows. For n = 1000, the 
detection time of our approach is only 1.28 seconds for the 
6.5-hour videos on a 2.8GHz and 1GB ram computer, while the 
sliding window approach [8] requires 30.15 seconds. 

 
(a)                                              (b) 

 
(c)                                              (d) 

Figure 3. The PR graph for spatial and temporal variations: (a) 
brightness enhancement, histogram equalization, and 176×120 
pixels; (b) 10 and 15 fps; (c) 0.5× and 2× speeds; (d) hybrid. 

Table 1. The number of query frames n versus the 
length-reduction ratio r in the target video. 

n 200 400 600 800 1000 
r 1.02 %  0.88 %  0.89 %  1.11 %  1.07 %

VI. CONCLUSIONS 
We have proposed a probabilistic framework that can handle 

spatiotemporal variations in video copy detection. Since ap-
proaches that use the fixed-length sliding window can not deal 
with general temporal variations, we treat the video copy de-
tection problem as a partial matching problem and transform it 
into a shortest-path problem. To solve the problem more effi-
ciently, we introduce the key frame and candidate segment 
selection, which are used to extract appropriate frames for 
matching. The experiment results show that our method can 
handle both spatial and temporal variations in video copy de-
tection effectively at a low computational cost. In our future 
work, we will try to employ more powerful features as video 
descriptors so that image-cropping attacks can be detected. 
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