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Abstract

With the purpose of designing a general learning frame-
work for detecting human parts, we formulate this task as a
classification problem over non-aligned training examples
of multiple classes. We propose a new multi-class multi-
instance boosting method, named MCMIBoost, for effective
human parts detection in static images. MCMIBoost has
two benefits. First, training examples are represented as a
set of non-aligned instances, so that the alignment prob-
lem caused by human appearance variation can be han-
dled. Second, instead of learning part detectors individu-
ally, MCMIBoost learns a unified detector for efficient de-
tection, and uses the feature-sharing concept to design an
efficient multi-class classifier. Experiment results on MIT
and INRIA datasets demonstrate the superior performance
of the proposed method.

1. Introduction

Human detection is essential for many applications,
such as visual surveillance, driver-assistance systems, and
content-based image retrieval. However, it is more chal-
lenging than other detection problems in visual surveil-
lance, such as faces and vehicles. It is because that humans
have a large variation of appearances caused by different
factors, e.g. human postures, illumination conditions, and
view points (as shown in Figure 1).

The foregoing works mainly focused on detecting full-
body humans [22, 28, 4, 2]. This approach may limit its
practical use when occlusion occurs. Recently, some re-
searches [20, 19, 30] began to investigate part-based human
detection to deal with this problem. They considered hu-
mans as an assembly of distinct parts. Detectors are learned
independently to identify candidate parts in an image and
determine if they define a human together.

However, all of the above methods demand aligned train-
ing examples to learn good detectors with high detection
accuracy via supervised learning. This problem becomes
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Figure 1. Some human examples of the INRIA person dataset [4].

Though the examples are aligned according to shoulders, various
appearances still exist.

severer in aligning human images because humans have
various appearances. Recently, Multiple Instance Learning
(MIL) has been proved with its capability of handling this
problem. MIL is a variant of supervised learning, and its
key idea is to provide a different way in constituting training
examples; instead of using singleton training examples, ex-
amples are organized into positive and negative bags of in-
stances, and each bag may contain many instances [12, 16].
In a positive bag, at least one instance is positive (i.e. ob-
ject), while in an negative bag, all instances are negative
(i.e. non-object). To obtain positive training examples, we
know that objects are in images, but the exact locations are
unknown. It is therefore suitable to represent the object by
a bag of multiple instances (non-aligned human images).
Then, MIL can learn which instances in the positive bags
are positive, along with a binary classifier [29, 1, 21].

In this paper, MIL is employed for part-based human de-
tection with non-aligned training examples. We propose a
new multi-class MIL framework, named multi-class multi-
instance boosting (MCMIBoost). The MCMIBoost learns a
unified classifier instead of individual classifiers [20, 19, 30]
for all classes, so that the detection efficiency can be in-
creased without compromising accuracy.

1.1. Related Work

There are two types of approaches for human detec-
tion in a single image, the holistic and the part-based ap-
proaches. Holistic approaches employ a full-body detec-
tor to analyze a detection window. For example, Gavrila
and Philomin [10] proposed a method to detect pedestrians
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in images by extracting edge images and matching them
to a hierarchy of shape templates. In [22], Haar wavelets
are used as feature descriptor and support vector machine
(SVM) is employed to learn a detector. Viola and Jones [27]
proposed a boosted cascade of rectangle features for fast
face detection, which has been extended for walking per-
son detection [28]. Dalal and Triggs [4] proposed gradient-
based HOG (Histograms of Oriented Gradients) descrip-
tors, which are fed into an SVM to learn a detector. In [32],
Zhu et al. speeded up Dalal and Triggs’ work by combining
cascaded AdaBoost with HOG features. In [2], Chen and
Chen employed heterogeneous features and inserted meta-
stages into the cascaded AdaBoost structure, so that inter-
stage information can be exploited to further enhance the
performance.

A holistic detector may fail to detect humans when oc-
clusion occurs. It is therefore important to develop part-
based human detectors. Typically, part-based methods
search for a human by looking for its distinct parts and ex-
ploring the relationships between parts. In [15], Lin et al.
extends the hierarchical template matching method in [10]
by decomposing the global shape models into parts and con-
structing a part-template tree for matching it to images hier-
archically. In [8], body plans are proposed for human rep-
resentation and detection. However, the part detectors rely
on looking for pairs of parallel edges, and thus may fail to
detect humans in cluttered backgrounds. Except for tem-
plate matching, classification-based methods are the main-
stream of research in recent years. In [7, 24], color- and
gradient-based part detectors are learned, and the detected
parts are assembled into body plans by dynamic program-
ming. Mohan et al. [20] employed the detection method
proposed in [22] to learn part detectors. Then, the de-
tected parts are combined by a linear SVM fusion classifier.
The above three approaches only detect humans in frontal
or rear views. In [19], [30], and [18], position-orientation
histograms, edgelet, and rectangle features are respectively
used to learn part detectors by boosting. After part detec-
tion, these methods employed a joint probability model to
aggregate the detected results. Nevertheless, they rely on
the situation that face [19, 30, 18], head [19], or entire hu-
man [30] is visible. In [6] and [5], latent SVM and multiple
component learning (MCL) algorithms are used to automat-
ically learn human components, respectively. However, the
learned components are not correspond to semantic human
parts.

1.2. Our Approach

Although the part-based approaches can improve the per-
formance of human detection, they require well-aligned
training examples that are difficult to acquire or evaluate.
In [21], Pang et al. applied logistic multiple instance boost-
ing (LMIB) [31] to learn a holistic human detector. LMIB

estimates the bag probability of being positive by using the
weighted average probability of the instances in the bag.
However, this rule is probably unsuitable for object detec-
tion as indicated in [29, 1]. It is because a bag is positive if
it contains at least one instance being positive, while the av-
erage rule will greatly reduce the bag probability when only
few instances are objects and the others are non-objects.
In [29], Viola et al. proposed multiple instance boosting
(MILBoost) that can better model the bag probability via
Noise-OR model [16], which has been successfully em-
ployed for holistic face detection.

MILBoost can provide good results for object detection.
However, it cannot be directly applied to part-based human
detection because MILBoost is a binary classifier. In this
paper, we propose a multi-class MIL framework, MCMI-
Boost, by extending MILBoost from a two-class predic-
tor to a multi-class one. Unlike previous approaches that
learn part detectors individually [19, 30, 18], the MCMI-
Boost learns a unified detector by employing the idea of
feature sharing [26, 14, 11] for efficient detection. Inspired
from Real AdaBoost [25], a real-version MCMIBoost is
proposed to select more discriminative weak learners. We
also adopt the cascaded structure [27] of MCMIBoost de-
tectors to speed up the detection. Finally, we introduce
Probability Combination Classifier (PCC) to aggregate part
detection results and determine a detection window as ei-
ther “human” or “non-human”. Experiment results show
that our approach can detect humans with high efficiency
and accuracy.

One closely related to our work is Dollar et al’s
MCL [5], which can automatically learn individual human
component classifiers and combine these into an overall
classifier. Although both of us have been aware that MIL
is benefit for part-based human detection, these two works
are different in many aspects. First, Dollar et al.’s work de-
tects human components not corresponding to semantic hu-
man parts, but our work can detect semantically meaningful
parts that have advantages in many applications. Second,
we proposed a multi-class MILBoost algorithm, while Dol-
lar et al.’s method remains a two-class one which simply
treats MIL as weak learners in AdaBoost. Third, instead
of learning component detectors individually by MILBoost,
our approach learns a unified detector and uses the feature-
sharing concept to design an efficient multi-class classifier.

The remainder of this paper is organized as follows: In
Section 2, the real version MILBoost is described. A new
multi-class MIL, MCMIBoost, is proposed in Section 3 for
part-based human detection. Experiment results are shown
in Section 4. Finally, a conclusion is given in Sectioin 5.
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2. Real Version MILBoost
2.1. A Review of AnyBoost

We begin with some notations of the standard supervised
learning. Let training data set S = {(z1,y1), .-, (Tn,Yn)}
be n training examples xz; € X and n corresponding la-
bels y; € ). Consider a binary classification problems
with ) = {—1,41}. Given S, the weak learner computes
a weak hypothesis h : X — ). Recall that the goal of
boosting is to learn a strong classifier G(z) = sign(H (z)),
where H is the confidence value of G:

T
Hy(z) =) anhy(a). (1)
t=1

In [17], Mason et al. proposed AnyBoost to sequentially
select weak learners by gradient descent in function space.
The idea is to optimize a specified cost function C(H) by
performing gradient descent on H. H can be considered
as an n-D vector where its i-th element H; is H(z;). To
select the optimal h;, we initially compute a weight for
each example x; based on ¢ — 1 selected weak learners:
w; = _aaTgi' Ideally h; is selected to satisfy h:(z;) = w;
for all <. However, it is, in practice, impossible to select
such an h; because we only have finite choices of h;. In-
stead, AnyBoost searches for an h; with the greatest inner
product with w;, so as to most reduce the cost over training
examples:

n
hy = arg max Z wih(z;). 2)
1=1
Note that, examples with high absolute weights, |w;|, dom-
inate the weak learner selection. After selecting hy, its co-
efficient o; is chosen via line search to minimize the cost:

ap = argmin C(Hy—1 + athy). 3)

2.2. MILBoost

In [29], Viola et al. combined AnyBoost with MIL
and proposed MILBoost for learning a classifier with non-
aligned training examples. In MIL, examples come into
positive and negative bags of instances. Each instance x;; is
indexed with two indices: ¢ for the bag and j for the instance
within the bag. All instances in a bag share a bag label ;. In
MILBoost, the probability of x;; being positive is estimated
by the logistic function: p;; = WH@])) Given p;;,
the probability of bag ¢ being positive is approximated by
the Noise-OR model [16]: p; = 1 — Hj@.(l — pi;). Under
this model, the cost function is defined as the negative log
likelihood:

n

C(H) = — Z(l(zﬁ:l) Inp; +1¢y,——1yIn(1 —p;)), 4

K2

Wiy =

where 1. is the indicator function that equals 1 when 2 is
true and O otherwise. According to AnyBoost, the weight
of each instance is set as the negative derivative of the cost
function with respect to the score of each instance, H;;:

ac  ac Op; Opy {% ify; = +1

OH;; Opi Opij OH,; —pij ify; = —1
&)
Note that the weights w;; are signed and the sign interprets
the label of the instance x;;. A positive instance x;; is as-
signed with a high weight if it has a high p;; (i.e. close to
the target 100%) or low p; (i.e. far away from 100%). High
pi; depicts that x;; is likely to be a true positive. Low p;
indicates that the bag does not have a good prediction yet,
and so the algorithm gives high weights to all instances in
the bag. As for negative instances, if p;; is predicted incor-
rectly (i.e. p;; approaches 100%), a high negative weight is
assigned. In selecting the weak learner, MILBoost will pay
much attention to important instances that have high abso-

lute weights, |w;;|. Eq. 2 can be rewritten as:

ht = arg m}?XZw”h(I”) (6)

i.j
After selecting h;, o is chosen according to Eq. 3.

2.3. Real MILBoost

Assume that we have a set of 1-D features, such as
rectangle features [27], in the feature pool F = {f.}1* |
where each f projects a training instance onto a real fea-
ture value, f(x;;) € R. These features are allowed to be
selected as weak learners. Typically, MILBoost [29] se-
lects weak learners of binary-valued outputs obtained by
thresholding the feature values. However, a disadvantage
is that it is probably too crude to discriminate the complex
distributions of the positive and negative instances. In su-
pervised learning, AdaBoost has suffered from the same
problem, and Schapire et al. [25] suggested the Real Ad-
aBoost to solve the problem. Inspired by [25], we present a
real-version MILBoost, named Real MILBoost, to generate
more discriminative weak learners.

First of all, Eq. 6 can be converted into a form of opti-
mizing weighted errors as in most boosting algorithms:

hy = argm}jn 2(2 Ay £ys) — 1) |wijl. @)
i

Since Y —|w;j | is a constant, minimizing Eq. 7 is equiva-
lent to minimizing Eq. 8 as follows:

hy = argmhinz V(w20 [Wij| < Z. (8)
]

In order to minimize the weighted error, a reasonable

method might be to minimize its upper bound Z in each
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Figure 2. Weak learner used in the real version MILBoost.

round of boosting. Because exponential loss has shown its
success in boosting [9], we also employ this loss function in
our approach. Eq. 8 can be bounded by:

7 = arg m}jn Z exp(—yih(zi;))|wij|- )
ij

To better represent the distributions of positive and neg-
ative instances, the domain space of the feature value is
evenly partitioned into K bins, denoted as {vy }X_,. Each
bin v, has a real-value output c;. Given an input instance
x;; and its feature value f(z;;), the weak learner output
h(x;j) is a mapping h : x;; — {c1,...,cx}s if f(xi))
is quantized to the bin vy, then h(z;;) = ¢ as shown in
Figure 2. With these notations, the weighted positive and

negative histograms of v}, is evaluated by:

wh= )

Tij €V Ayi=+1 Tij €V AYi=—1

Then, Eq. 9 becomes:

K

7 = awg]tn}jlﬂZ(Wk+ exp(—cx) + W, exp(ck)). (10)
k=1

By setting the derivative of Eq. 10 to be zero, it can be con-
ducted that Z is minimized when:

+ K
cr = %ln(%) and Z =2 WIW,. (1)
k k=1

Because the weak learner i can be scaled by any constant,
its parameter « can be set as 1 without loss of generality.

3. Multi-Class Multi-Instance Boosting

The Real MILBoost serves as a binary classification
problem. It cannot be directly employed for part-based hu-
man detection. However, extending Real MILBoost from a
two-class to a multi-class problem is not trivial. The most
straightforward way is to train different detectors individu-
ally for each parts as most previous works did [20, 19, 30].
The work in [30] has proved that this strategy has good per-
formance for part-based human detection. Nevertheless, the
method is probably not efficient enough because the com-
putation time is proportional to the number of parts.

|wi;| and W, = Z [wj].

Recently, [26, 14, 11] proposed multi-class boosting al-
gorithms named JointBoost, MBHBoost, and VectorBoost,
respectively. The key idea of these approaches is to share
weak learners among classes. JointBoost shares weak learn-
ers directly, where the decision boundaries and the output
values are the same for a group of classes, and thus the dis-
criminability of the weak learners is restricted. MBHBoost
and VectorBoost are essentially similar. They extended real-
valued weak learners to vector-valued ones. Unlike Joint-
Boost, these two methods take advantage of the diverse dis-
tributions from different classes of data. By sharing the
same feature, a weak learner with vector-valued output is in-
troduced to simultaneously classify each class, so that each
class has its own decision boundary and output value.

3.1. MCMIBoost: Confidence Value Evaluation

We extend the Real MILBoost to a new multi-class
multi-instance boosting, MCMIBoost, by employing the
idea of feature sharing. Assume that a human has M dis-
tinct parts denoted as P = {P,}M_,. For each part
Q € P, a set of training bags is denoted by B? =

{(x€, y?)}lif' = B@* U BY~, where each bag contains
instances XiQ = {xg} and its label yZQ € {+1,-1}. B@*
and B?~ are the sets of positive bags (i.e. y¢ = +1) and
negative bags (i.e. y¥ = —1), respectively. Similar to MIL-
Boost, a weight wg of each instance xg can be computed
initially in each MCMIBoost iteration by Eq. 5.

For each feature f € F and its feature value f(z;;),
a weak learner with vector-valued output is defined as
h(.CCU) = [hP1 (.I'ij), K2 (.I'ij), RN hPm (,Tij )], where h is
an M-D vector. Each element h®(x;;) is the output value of
part Q computed from its own B and wg by using Eq. 11:
hQ(z;;) = (Ve

, 2 Wk
bound in classifying part Q is Z¢ = 2 Zszl \/W,:FW,;.
To evaluate a weak learner h, it is reasonable to use a mea-
surement based on the classification errors of all classes.
In MCMIBoost, the overall classification error is defined
as: Z = ZQGP ZQ. At each iteration t, MCMIBoost
searches for an h; with the lowest Z to most reduce the er-
rors among all classes: h; = argminy, Z. After selecting T’
weak learners, MCMIBoost can be expressed as H(z;;) =
Zthl h;(x;;), where each element in H, HY = Zthl he,
is a confidence value corresponding to the part () prediction,
as analogous to Eq. 1.

The MCMIBoost algorithm can provide efficient multi-
class detection because all classes share the same feature
f and use the same bin vy, f(z;;) € vg; thus, only one
feature value f(x;;) and its bin v, are necessary to be com-
puted. Since the output values of all A9 (z;;) have been ob-
tained during training, all k9 (z;;) can be quickly fetched
by vj. Therefore, the major computation cost in classifica-

), if f(x;;) € vg. The error upper
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tion is the calculation of f(z;;) and its bin v. In addition,
MCMIBoost typically needs fewer weak classifiers to ac-
complish multi-class classification than those required by
learning each class independently.

3.2. Cascaded MCMIBoost Architecture

To make the detection efficient, we also combine the
MCMIBoost with the cascaded structure of Viola and
Jones [27] to fast discard blocks not containing human
parts. A number of S stages are cascaded, where each stage
is realized by an MCMIBoost consisting of several weak
learners as depicted in Section 3.1.

In the cascade, the s-th stage classifier is denoted as H
(s =1,...,5). Two goals are set to learn each stage H?:
1) the minimum detection rate 69 of positive bags B@;
and 2) the maximum false-positive rate ¢% of negative in-
stances z;; € B9~. Typically, 6 is set very large to ensure
positive instances passing the stage (e.g. higher than 99.9%
in our case), and ¢ is relatively low to allow a portion of
negative instances to be rejected early (e.g. lower than 70%
in our case). MCMIBoost described in Section 3.1 is used
to select weak learners for each stage, so that the part goals
(09, ¢9) are satisfied for all Q € P, and the decision of
each part is made by a proper threshold 7% via line search.

We also employ a bootstrap set A9 that contains a huge
number of negative instances for part ). To train stage s,
B®7 remains the same, but B¢~ contains approximately
many instances randomly selected from those not rejected
by the previous stages in A%. After learning H,, the neg-
ative instances correctly rejected by H? are removed from
A@, and another negative training bag set B?;l is randomly
selected from A@ to learn the next stage. The above steps
will keep going until the instances remained in A% are too
few to compose a negative training bag set with the same
instance cardinality of BYT. Then, we remove the part @
from P, i.e. P = P — @, and restart to learn next stage of
|P| classes until P is an empty set. In this way, the number
of parts in learning H; is not fixed and is non-increasing as s
becomes larger, reflecting that the difficulties of classifying
distinct parts is usually different.

3.3. Probability Combination Classifier

We design a two-stage algorithm for human detection as
shown in Figure 3. In the first stage, a block is employed
to scan the input image. In each scanned position, the cas-
caded MCMIBoost depicted in Section 3.2 is used to com-
pute the confidence value of the block with respect to human
parts. For each scanned block, if it is accepted by HSQ for all
the stages s, we call this block a candidate block of part (),
denoted by b@, and its confidence value is defined as that of
the last-stage, H? (b%).

After the first-stage has been done, each position has
been with a confidence value of some part if the position

First Stage Detection Second Stage Detection

A A
Detected Parts Detection Window  Final Result

g -
Detection Block

Figure 3. The two-stage detection approach. Assume that a human
has three parts: head-shoulder, torso, and legs. In the first stage, a
detection block (shown by pink rectangle) is used to scan an image
for human parts detection. Red, green, and blue rectangles are the
detected candidates of head-shoulder, torso, and legs, respectively.
In the second stage, a detection window (shown by yellow rectan-
gle) is used to scan an image and aggregate candidate parts in its
RO for final decision.

is associated with a candidate block of this part. In the
second-stage, we propose a Probability Combination Clas-
sifier (PCC) to explore the geometric relationships among
parts and aggregate part candidates for final decision. In
this stage, a detection window of a full-body human is de-
fined (see Figure 4 for an example). Within the detection
window, a scan range R% is specified as a permissible re-
gion in which part () could appear. These ranges define
rough geometric constraints of parts for a standing human.
To combine the candidate parts, instead of collecting the
highest confidence value of each part in its R? to learn a
post classifier, such as the way suggested in [20], we employ
information of all candidate parts in R© to better estimate
the human part occurrence.

We employ a sliding detection window to scan an image.
For each scanned site, if a candidate part b found in the
first stage is contained in R%, its probablhty to be part Qis

measured by the logistic function: p,;” = m

Based on the Noise-OR model, the probability of R? that
contains part () is approximated over all of the detected can-
didates b9 in R?: P9 =1 —[],(1 —p}; ). If no candidates
are found in R?, P? = (. Then, PCC adopts the proba-
bilities P? of all parts to form an M-dimensional feature
vector, and a linear SVM is learned to determine the detec-
tion window as either human or non-human.

Finally, we rescale the input image into different sizes,
and apply the two-stage procedure to all the scaled images,
so that human of unknown size can be handled.

4. Experiment Results

To evaluate the proposed detection approach, two human
datasets, MIT [20] and INRIA [4], are adopted in our ex-
periments. The MIT dataset contains 1848 standing human
images (924 humans and its reflections) of 64 x 128 reso-
lution in frontal and rear views. As to the INRIA dataset,
the training and testing sets are well designed. The training
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Figure 4. The pink and the yellow rectangles in the left image are a
detection block and a detection window, respectively. Red, green,
and blue rectangles in the other images depict the scan ranges R,
Q € {HS,T,L}, of human parts: head-shoulder (R™®), torso
(R7), and legs (R“).

Figure 5. The ¢-th positive training image (left) can construct three
bags XZQ * with nine instances in each bag, for the parts Q €
{HS,T,L}.

set contains 2416 human images of 64 x 128 resolution and
1218 non-human images. The testing set contains 1132 hu-
man images and 453 non-human images. Compared to the
MIT dataset, the INRIA dataset is more challenging since it
contains people standing in different positions with various
orientations and poses.

We assume that a human has three parts: head-shoulder
(HS), torso (T), and legs (L), i.e. P = {HS,7,L}. The
sizes of these three parts are all 48 x 48 pixels. The de-
fined search ranges R9 (Q € {HS,T,L}) of three parts
are specified in Figure 4, and the sizes of the detection block
and the detection window are 48 x 48 and 64 x 128 pixels, re-
spectively. Each positive bag X lQ * contains evenly sampled
instances of 48 x 48 pixels in the R? of i-th positive train-
ing image. More instances in a bag can take care of larger
human variations, and thus the detection accuracy can be
improved; nevertheless, the disadvantage is that more train-
ing time is required. In our experiments, each positive bag
contains nine instances as shown in Figure 5.

Because heterogeneous features have shown its capabil-
ity to detect holistic humans in [2], we employ both the
intensity-based rectangle features [27], the gradient-based
Edge Orientation Histogram (EOH) [13], and Edge Den-
sity (ED) [23] features to construct the feature pool F. All
settings of features follow that of [2]. Within a 48 x 48
detection block, F contains 19920 features (9960 rectan-
gle features, 8964 EOH features, and 996 ED features) for
learning the MCMIBoost stages, and the domain space of
the feature value is evenly divided into 10 disjoint bins (i.e.
K = 10) for each feature. A bootstrap set, AQ, with over
seven million negative instances is collected by sampling

sub-images from the 1218 INRIA negative training images.

4.1. Results on the MIT Dataset

To evaluate our approach on the MIT dataset, we choose
the images in 6/7 MIT dataset (1584 images) as positive
training images, and the remaining images (264 images) are
positive testing images as suggested by Wu [30]. Because
MIT dataset does not provide negative images, we adopt
INRIA negative images for training and testing.

We begin by investigating the detection performance of
human parts detection. The proposed cascaded MCMI-
Boost is referred to as MCMIBoost-P. In this experiment,
0% and ¢% are set to 99.9% and 50%, respectively, for all
@ € P. Three previous works [20, 19, 30] are compared
with our approach. These works are named Haar-P, SIFT-
‘P, Edgelet-P, because Haar, SIFT-like and Edgelet features
were used for training part detectors, respectively.

With regard to the detection accuracy, we use the defec-
tion error tradeoff (DET) curves on a log-log scale, i.e.,
miss rate versus false positives per windows (FPPW). To
draw the DET curve, the FPPW is varied by applying dif-
ferent thresholds to the confidence value of the last stage of
the cascaded detector, Hg(xij). In this way, the maximum
FPPW is restricted since many negative blocks have already
been successfully rejected in the previous stages. In our ex-
periments, the maximum FPPW values are about 1073, We
use 10~* as a reference point for comparison, as suggested
in [4, 32, 2].

Figures 6(a) and 6(b) show the DET curves of applying
MCMIBoost-P, Haar-P, SIFT-P, and Edgelet-P on differ-
ent human parts, where the curves of Haar-P, SIFT-P, and
Edgelet-P are copied from the original papers. However, it
shall be noted that direct comparisons based on the MIT
dataset is difficult, because different negative images are
collected and different ratios of positive examples for train-
ing and testing are used in these approaches. Though the
examples are not exactly the same, the positive examples
are all from the MIT dataset. The results can thus provide a
rough comparative evaluation.

Because [20] and [19] did not apply their methods on
human torso and [30] did not show their torso detection
result, the comparison is made on the head-shoulder and
legs parts. The DET curves of MCMIBoost-P, Haar-P,
SIFT-P, and Edgelet-P on head-shoulder and legs parts
are shown in Figures 6(a) and 6(b), respectively. It can be
seen that for the head-shoulder part, the MCMIBoost-HS
performs approximately the same to the other approaches,
such as the Edgelet-HS approach. However, for the legs
part, MCMIBoost-£ outperforms the other approaches ap-
parently. This is because that humans in MIT dataset have
larger variations in their legs than that in head-shoulder part
and MCMIBoost has the capability of handling non-aligned
examples.
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Figure 6. The performance of selected detectors on the MIT dataset. (a) and (b) show the DET curves of MCMIBoost-P, Haar-P, SIFT-P,
and Edgelet-P on head-shoulder and legs parts, respectively. (c) shows the DET curves of two aggregation results, MCMIBoost-PCC and
Haar-ACC. DET curves of MCMIBoost-P on three human parts are also shown. All curves of Haar-P, SIFT-P, Edgelet-P, and Haar-ACC

are copied from the original papers.
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Figure 7. The performance of selected detectors on the INRIA dataset. (a) shows the DET curves of MCMIBoost-P and HOG-P on all
human parts. (b) shows the DET curves of MCMIBoost-HS, MCMIBoost-7, MCMIBoost-£, MCMIBoost-PCC, HOG, HOG-SSHC, and
META. All curves of HOG-P, HOG, HOG-SSHC, and META are copied from the original papers.

Although different results are obtained for parts, the ag-
gregation results are typically better than all of its individ-
ual parts. Figure 6(c) shows some aggregation results ob-
tained by our PCC, named MCMIBoost-PCC, and Mohan
et al.’s ACC [20], named Haar-ACC. It also shows the three
part detection results of MCMIBoost-HS, MCMIBoost-
T, and MCMIBoost-£. From this figure, we can see that
the proposed MCMIBoost-PCC significantly outperforms
Haar-ACC. It can also be seen that legs part has more dis-
crimination than the other parts, and head-shoulder has low-
est detection accuracy among all parts, which is consistent
with the observations in [20, 30].

After training, there are six stages with only 176 fea-
tures being selected. For a 320 x 240 image (containing
6150 detection blocks), the averaged processing speeds of
the MCMIBoost-PCC is 8.62 fps (frames per second), by
using a PC with a 2.4 GHz CPU. It reveals that incorpo-
rating the feature-sharing ability into MIL can result in a
highly efficient human detector.

4.2. Results on the INRIA Dataset

In this section, we evaluate the detection performance on
the INRIA dataset. Currently, there are few researches em-
ploying this challenging dataset for part-based human de-
tection. In [4], Dalal and Triggs proposed a holistic hu-
man detection approach with promising detection results.
We name this method HOG because HOG descriptors have

been employed for human representation. With the success
in holistic human detection, HOG has been extended for
part-based human detection [3], named HOG-P. To our
knowledge, HOG-P is the only work that has results on this
difficult dataset for part-based human detection. Unlike the
MIT dataset, results based on the INRIA dataset are more
comparable since it has provided common training and test-
ing data for both positive and negative classes.

We start by comparing the detection performance of hu-
man parts detection. The DET curves of MCMIBoost-P
and HOG-P on all parts are shown in Figure 7(a). In train-
ing MCMIBoost-P, #9 and ¢@ are set to 99.95% and 70%,
respectively. In this figure, MCMIBoost-P has higher de-
tection accuracy than HOG-P for all parts. Besides, a limi-
tation of HOG-P is that a high-dimensional feature vector is
used to describe each detection block, which needs a some-
what high computation cost.

In [3], the sparse spatial histograms of classifiers
(SSHC) is proposed to aggregate candidate parts of HOG-
P. The SSHC creates a 2-D spatial histogram to en-
code the spatial locations of the candidate parts, and an
SVM is employed as the fusion classifier. This method
is named HOG-SSHC. The DET curves of two aggrega-
tion approaches, MCMIBoost-PCC and HOG-SSHC, are
shown in Figure 7(b). The three part detection results of
MCMIBoost-P are also shown in Figure 7(b), and two
holistic-based approaches, HOG [4] and the boosted cas-
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cading structure with meta-stages [2] (named META) are
also shown for comparison. As can be seen, MCMIBoost-
PCC has better performance than HOG-SSHC, and also
outperforms the individual part detectors or holistic ap-
proaches.

After training, 13 stages and 932 weak learners are ob-
tained in the MCMIBoost-PCC. The averaged processing
speed of the MCMIBoost-PCC is 7.63 fps. This result
demonstrates that the proposed approach can achieve high
detection accuracy with satisfactory efficiency.

5. Conclusion

We have proposed a new multi-class multi-instance
boosting, MCMIBoost for effective part-based human de-
tection. In our approach, each training example can be
represented as a set of non-aligned instances, and thus the
alignment problem caused by human variation can be ap-
propriately handled. We introduced the real-version MIL-
Boost, and proposed a new MIL learning algorithm hav-
ing the feature-sharing ability in a cascaded structure. We
also designed a combination method to cope with the part-
integration problem based on the Noise-OR model. Exper-
iment results have shown that effective part-based human
detectors can be learned.
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