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Abstract. How to achieve a balance between data publication and pri-
vacy protection has been an important issue in information security for
several years. When microdata is released to users, attributes that clearly
identify individuals are usually removed. Nevertheless, it is still possible
to link released data with some public or easy-to-access databases to
obtain confidential information. To safeguard privacy, numerous tech-
niques, such as generalization, suppression, and microaggregation, have
been proposed to modify the to-be-released data. In this paper, we pro-
pose attribute-oriented granulation as a data protection mechanism that
can integrate both generalization and microaggregation into a uniform
framework. We address the computational issue of searching for the
most specific granulation that satisfies confidentiality requirements. A
breadth-first search algorithm with basic pruning strategies is presented
and its properties are investigated. The properties can be used to improve
the efficiency of our algorithm. We also define some quantitative mea-
sures of data quality and security, and apply evolutionary computation
techniques to find the optimal granulation for privacy protection.

1 Introduction

Privacy protection is one of the main concerns in the field of data security. In
recent years, statistical disclosure control [2] has become increasingly important
due to the requirements of data security. One of the major issues in disclosure
control is the database linking problem. Generally speaking, the problem is how
to prevent users1 obtaining confidential information about an individual2 by
linking to some public or easy-to-access database with data they can obtain
legally from a data center.

Though the protection of privacy is very important, over-restriction of access
to a database may render the data useless. Therefore, the main challenge is
how to achieve a balance between privacy protection and data availability. One
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possibility is to modify the data before it is released by generalizing the values
of some data cells to a coarser level of precision. To do this, we can partition the
domain of attributes according to a certain level of precision, and generalize the
data from the finest to the coarsest level until the privacy requirement is met.
This kind of operation is called attribute-oriented granulation (AOG). In this
paper, we investigate the application of AOG to privacy protection. It is shown
that AOG can integrate generalization[3,4,5,6,7] and microaggregation[8] into a
uniform framework. To address the computational issue of searching for the most
specific granulation that satisfies confidentiality requirements, a breadth-first
search algorithm with basic pruning strategies is presented and its properties
are investigated. The properties can be used to improve the efficiency of the
basic algorithm. We also define the quantitative measures of data quality and
security and apply evolutionary computation (EC) techniques to find the optimal
granulation for privacy protection.

The remainder of the paper is organized as follows: In Section 2, we use an
example to illustrate the concept of AOG, and formally introduce the AOG op-
eration. The logical security of AOG and its computational aspects are explored
in Section 3. We also present several properties of AOG that are used to improve
the search algorithm. In Section 4, we discuss the security and quality of AOG
and apply an EC approach to the search for an optimal AOG. We then present
our conclusions in Section 6.

2 Attribute-Oriented Granulation

2.1 A Running Example

In this paper, we investigate the privacy protection problem that may arise
when a data table [9] is released. The data in many application domains, such
as medical records, financial transaction records, employee information, and so
on, can be organized as data tables. A data table consists of a set of records,
each of which corresponds to an individual and has some attributes.

The attributes of a data table can be divided into three sets [10,11]. The first
consists of identifiers that can be used to identify to whom a data record belongs.
Therefore, these attributes are always masked off in response to a query. Let us
equate a set of identifiers with a set of individuals. Throughout this paper, a set
of individuals (or identifiers) is denoted by U . Second, we have a set of quasi-
identifiers, the values of which are known to the public. For example, in [12],
it is pointed out that some attributes like birth-date, gender, ethnicity, etc. are
included in some public databases, such as those that contain census data or
voter registration lists. These attributes, if not appropriately processed, may be
used to re-identify an individual’s record in a data table, thus causing a privacy
violation. The last kind of attribute is the confidential attribute, the values of
which we have to protect. It is often the case that an asymmetry exists between
the values of a confidential attribute. For example, if the attribute is a HIV test
result, then the revelation of a ‘+’ value may cause a serious invasion of privacy,
whereas it does not matter to know that an individual has a ‘−’ status. In this
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ID D.O.B. ZIP Height Income Health

u1 24/09/56 24126 161 400K 1

u2 06/09/56 24129 167 300K 1

u3 30/09/56 24133 163 300K 1

u4 23/03/56 10427 160 300K 0

u5 18/03/56 10431 165 100K 2

u6 05/03/56 10466 168 100K 2

u7 20/04/55 26015 175 400K 2

u8 18/04/55 26032 170 300K 1

u9 09/04/55 26617 173 100K 0

u10 01/04/55 26628 171 400K 0

u11 23/04/55 26328 176 400K 0

Fig. 1. A data table

1 09/56 24*** [160,170) 400K 1

2 09/56 24*** [160,170) 300K 1

3 09/56 24*** [160,170) 300K 1

4 03/56 10*** [160,170) 300K 0

5 03/56 10*** [160,170) 100K 2

6 03/56 10*** [160,170) 100K 2

7 04/55 26*** [170,180) 400K 2

8 04/55 26*** [170,180) 300K 1

9 04/55 26*** [170,180) 100K 0

10 04/55 26*** [170,180) 400K 0

11 04/55 26*** [170,180) 400K 0

Fig. 2. A generalized data table

paper, let T denote a data table for a set of individuals U , and tij denote the
value of an attribute j of an individual ui.

We use the data table in Figure 1 as our running example[7]. In the table,
U = {u1, · · · , u11} is a set of individuals (or identifiers); the quasi-identifiers are
date of birth, zip code, and height; and the confidential attributes are income
and health status. The values of “Health” are denoted by “normal”(0), “slightly
ill”(1), and “seriously ill”(2) respectively.

In [11,5,12], the notion of bin size is proposed to resolve the database linkage
problem. A bin is defined as an equivalence class based on the quasi-identifiers,
and the bin’s size is its cardinality. To be deemed secure, a table must satisfy
the condition that the size of any bin is sufficiently large. The security criterion
is called k-anonymity if each bin is required to contain at least k individuals.
Though, in general, the chance of a user obtaining confidential information is
smaller if the bin size is larger, it is well-known that controlling the bin size alone
is not sufficient to stop inference attacks [13]. To fully protect privacy, we must
consider some alternative criteria to complement the bin size.

One technique of protecting privacy is to release the data in a coarser granu-
larity. For example, the date of birth may be given as only the year and month,
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or only the first two digits of the ZIP code may be given. In addition, “Height”
can be expressed as a range, instead of a precise value. A concrete generalization
of the data table in Figure 1 is given in Figure 2. The first column denotes the
serial numbers of the released data records.

From the generalized data table, we observe that the bin containing u1, u2,
and u3 is size 3. However, since the health status attribute of the rows in this
bin has the value 1, the recipient of the table can infer that u1, u2, and u3 are
all slightly ill, though he does not know which of them has an income of 400K.

2.2 AOG Operations

In this section, we formally define the modification operation that can be applied
to a data table to enhance privacy protection. As the operation is based on parti-
tioning the domain of attributes according to different granular scales, it is called
attribute-oriented granulation (AOG). We first recall the basic definition of a par-
tition. Let V be a domain of values for some attribute; then, a partition π of V
is a set {s1, s2, . . . , sk} of mutually disjoint subsets of V such that ∪k

i=1si = V .
Each si is called an equivalence class of the partition, and we use π(v) to denote
the equivalence class containing v. Let π1 and π2 be two partitions of V . Then,
π1 is a refinement of π2, written as π1 � π2 if, for s ∈ π1 and t ∈ π2, either s ⊆ t
or s ∩ t = ∅. Let π1 ≺ π2 denote π1 � π2 and π1 	= π2. For a given set V , we use
⊥ and � (possibly with indices) to denote the finest partition {{v} | v ∈ V } and
the coarsest partition {V } respectively.

Let us assume that the set of quasi-identifiers is {1, 2, . . . ,m} and denote the
domain of attribute i by Vi for 1 ≤ i ≤ m. Then, an AOG operation is specified
by a tuple (π1, π2, . . . , πm), where for 1 ≤ i ≤ m, πi is a partition of Vi. Let
τ1 = (π1, π2, . . . , πm) and τ2 = (π′

1, π
′
2, . . . , π

′
m) be two AOG operations. Then,

τ1 is at least as specific as τ2, denoted by τ1 � τ2, if for 1 ≤ i ≤ m, πi � π′
i; and

τ1 is more specific than τ2, denoted by τ1 ≺ τ2, if τ1 � τ2 and τ1 	= τ2.
Since the number of possible partitions of a domain may be prohibitively

large, we sometimes focus on a subset of admissible partitions . Let us define Πi

as the set of admissible partitions of Vi such that ⊥i and �i ∈ Πi for 1 ≤ i ≤ m;
then, the set of admissible AOGs is Π = Π1 × Π2 × · · · × Πm. τ2 is called a
direct successor of τ1 in Π if τ1 ≺ τ2 and there does not exist any τ ∈ Π such
that τ1 ≺ τ ≺ τ2.

2.3 The Running Example

Figure 3 shows a set of admissible partitions for our running example, where the
partitions for the dates of birth and zip codes are obvious, and the partitions for
height are defined as

I1 = {· · · , {160}, {161}, · · · , {174}, {175}, · · ·},
I5 = {· · · , [160, 165), [165, 170), [170, 175), · · ·},
I10 = {· · · , [160, 170), [170, 180), · · ·},
I20 = {· · · , [160, 180), [180, 200), · · ·}.
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Fig. 3. Admissible partitions for the quasi-identifiers in our running example

3 Logical Security

3.1 Security of AOG

To decide whether an AOG is secure, we use Pawlak’s decision logic (DL, [9]) to de-
scribe confidential information. The set of atomic sentences for DL is P = {(j, v) |
j ∈ J, v ∈ Vj}, where J is the set of confidential attributes. The intuitive meaning
of the atomic sentence (j, v) is that an individual’s attribute j has value v. The set
of sentences is the smallest set containing P that is closed on the Boolean connec-
tives ¬,∧, and ∨. If α ⊆ Vj , we abbreviate ∨v∈α(j, v) as (j, α). We assume that
the information an individual u wants to keep confidential is represented by a set
of DL sentences, CON(u). As usual, the sentences are evaluated inductively with
respect to the data table T and each individual in U as follows:

1. ui |= (j, v) iff tij = v.
2. u |= ¬ϕ iff u 	|= ϕ.
3. u |= ϕ ∧ ψ iff u |= ϕ and u |= ψ.
4. u |= ϕ ∨ ψ iff u |= ϕ or u |= ψ.

The meaning set of a sentence ϕ, [|ϕ|]T = {u ∈ U | u |= ϕ}, is the set of
individuals that satisfies ϕ in the data table T . The subscript T is usually omitted
when it is clear from the context.

Let π be a partition of the domain of an attribute k; then, the π-indiscernibility
relation with respect to the data table T , denoted by indT (π), is an equivalence
relation on U defined by (ui, uj) ∈ indT (π) ⇔ π(tik) = π(tjk). Again, the
subscript T is usually omitted for convenience. Let τ = (π1, π2, . . . , πm) be an
AOG operation; then, the τ-indiscernibility relation with respect to the data
table T is defined as

ind(τ) = ∩1≤k≤mind(πk).
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An AOG operation, τ = (π1, π2, . . . , πm), determines how the data is modified
before it is released. The requirement is that, for any ui, uj ∈ U and attribute k,
πk(tik) = πk(tjk) iff tik and tjk are replaced by the same value in the modified
data table. For example, the generalization method in [4,11] replaces a table
entry tik with πk(tik), whereas the microaggregation method in [8] replaces it
with some statistics, such as the mean, median, or mode of the multiset3 {tjk |
(ui, uj) ∈ ind(πk)}. Thus, the AOG method subsumes both generalization and
microaggregation. In this paper, we do not specify any particular modification
method for the AOG operation. We simply use τ(T ) to denote the table derived
by modifying the data table T with τ .

Given the τ -indiscernibility relation, the standard definition of the lower ap-
proximation in rough set theory is used to define the logical security of an AOG.
The lower approximation for any set X ⊆ U is defined as

ind(τ)X = {u | ∀(u, u′) ∈ ind(τ), u′ ∈ X}.
The AOG operation τ is logically secure (or simply secure) for u if u 	∈ ind(τ)[|ϕ|]
for any ϕ ∈ CON(u), and secure for U if it is secure for all u ∈ U . Once the data
table to be released has been modified by an AOG τ , the user can not distin-
guish the records of two individuals who are indiscernible in the relation ind(τ).
Therefore, even though the user knows the values of all the quasi-identifiers of
an individual, as well as how the values are modified, he can not deduce that
the individual satisfies a confidential property ϕ, provided that τ is secure.

3.2 The Running Example

Let us consider an AOG τ = (π1, π2, π3) = (mm/yy, d1, d2 ∗ ∗∗, I10). Then

ind(τ) = ind(π1) = ind(π2) = {{u1, u2, u3}, {u4, u5, u6}, {u7, u8, u9, u10, u11}},
ind(π3) = {{u1, u2, u3, u4, u5, u6}, {u7, u8, u9, u10, u11}}.

By using the generalization method to modify the data table in Figure 1, we
obtain the generalized table in Figure 2. On the other hand, if the microaggre-
gation method is used to modify the data table, and the arithmetical mean and
median are taken as the statistical operators of the continuous and ordinal at-
tributes respectively, then we can obtain the modified data table in Figure 4. To
understand how the table is derived, let us consider the individual u1. First, for
the continuous attribute height, [u1]ind(π3) = {u1, u2, u3, u4, u5, u6}; thus, t13 is
replaced by the arithmetical mean of the multiset {161, 167, 163, 160, 165, 168},
which is equal to 164. Second, for the ordinal attributes, date of birth and zip
code, [u1]ind(π1) = [u1]ind(π2) = {u1, u2, u3}; thus, t11 and t12 are replaced by
the median of {24/09/56, 06/09/56, 30/09/56} and {24126, 24129, 24133}, which
are 24/09/56 and 24129, respectively.

Note that the tables produced by generalization and microaggregation are
structurally isomorphic[14]. It is shown in [15] that isomorphic tables have the
3 A multiset is a set that allows the multiple occurrence of its elements.
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1 24/09/56 24129 164 400K 1

2 24/09/56 24129 164 300K 1

3 24/09/56 24129 164 300K 1

4 18/03/56 10431 164 300K 0

5 18/03/56 10431 164 100K 2

6 18/03/56 10431 164 100K 2

7 18/04/55 26617 173 400K 2

8 18/04/55 26617 173 300K 1

9 18/04/55 26617 173 100K 0

10 18/04/55 26617 173 400K 0

11 18/04/55 26617 173 400K 0

Fig. 4. Our running example modified by the microaggregation technique

same granular data model, defined as (U,Q), such that Q is a set of equivalence
relations induced by the attributes.

Now, if ϕ = (Health, 2) is a confidential sentence, then ind(τ)[|ϕ|] = ∅, since
[|ϕ|] = {u5, u6, u7}. Thus, τ is secure for U if CON(u) = {(Health, 2)}. On the
other hand, if ϕ′ = (Health, 1) ∈ CON(u1), then τ is insecure for u1, since
ind(τ)[|ϕ′|] = {u1, u2, u3}. The result is matched by our intuition.

3.3 The Basic Search Algorithm

Since the goal of privacy protection is to find a secure and maximally informative
AOG operation, we can achieve it by a bottom-up search of all possible AOGs. The
algorithm proposed in this section is based on a breadth-first search through the
set of admissible AOGs using basic pruning strategies. For simplicity, we present
the basic algorithm in this section, and discuss improvements that make it more
efficient in the next section. Our previous experiments show that the performance
of the basic algorithm is acceptable in non-realtime environments [6].

Although it is sufficient to find a secure and maximally informative AOG for
a data table, for the sake of flexibility, our search algorithm is designed to find all
secure and maximally informative AOGs for a given data table. We start from the
most specific AOG (⊥1, · · · ,⊥m) and test its security according to our definition.
If this operation is secure, we stop searching. Otherwise, we have to climb the
search tree according to the partial order � between AOG operations. Each
new AOG must be tested to evaluate its security. If it is secure, then all AOG
operations above it can be pruned, since our purpose is to find the maximally
informative (i.e., �-minimal) AOGs. Thus, the pruning operation substantially
reduces the number of AOGs that must be visited. In the search algorithm
presented in Figure 5, the function Get-from-queue returns the first element
of a queue, whereas the procedure Put-into-queue adds an AOG to the end of
a queue. These operations are standard and can be found in algorithm textbooks.
Also, we record the status of each τ in a Boolean array F , where F (τ) = 1 means
that it is not necessary to check τ any further.
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Procedure Search(Π,T, CON)

1. Initialize a Boolean array F [τ ] := 0 for all τ ∈ Π ;
2. Initialize a queue of AOG operations Q← {(⊥1,⊥2, · · · ,⊥m)};
3. while Q �= ∅ do

begin
repeat τ ←Get-from-queue(Q) until F [τ ] = 0 ∨Q = ∅;
if F [τ ] = 1 ∧Q = ∅ then exit;
F [τ ]← 1;
if Security(τ, T, CON)

then begin
Output(τ );
F [τ ′]← 1 for all τ ′ such that τ 	 τ ′

end
else for each direct successor τ ′ of τ do
if F [τ ′] = 0 then Put-into-queue(Q, τ ′)

end

Fig. 5. The search algorithm for AOG

Function Security(τ, T, CON)

1. Find ind(τ ) by sorting τ (T );
2. Initialize Boolean SF ← 1;
3. for each u ∈ U do

begin
(a) US[u]← 0;
(b) for each ϕ ∈ CON [u] do

begin
KN(u, ϕ)← 1;
for each u′ ∈ [u]ind(τ) do KN(u, ϕ)← KN(u, ϕ) ∧ (u′ |= ϕ);
US(u)← US(u) ∨KN(u, ϕ)
end;

(c) SF ← SF ∧ ¬US[u]
end

Fig. 6. The security test function for AOG

The Security function takes an AOG τ , a data table T , and the confidential
data function CON as its arguments and returns 1 if τ is secure with respect to T
according to the confidential requirement specified by CON ; otherwise, it returns
0. The Security function is presented in Figure 6. By sorting τ(T ) according
to its quasi-identifiers, we can partition U into ind(τ)-equivalence classes. Then,
we use a Boolean variable, SF , and two Boolean arrays, US and KN , indexed
by U and U × L0 respectively, to compute the output, where L0 denotes the
set of confidential sentences. Here SF , which is initialized to 1, denotes the
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security of τ , whereas US[u] = 1 means that τ is not secure for u; hence, the
final security level is computed by repeat conjunction of SF with ¬US[u] for
all u ∈ U . The array KN denotes the user’s knowledge about individuals, so
KN(u, ϕ) = 1 means the user knows that u satisfies ϕ, i.e., u ∈ ind(τ)[|ϕ|].
KN(u, ϕ) is computed by repeat conjunction of its initial value 1 with u′ |= ϕ
for all u′ ∈ [u]ind(τ), where u′ |= ϕ means that ϕ is satisfied by u′. Furthermore,
τ is not secure for u if for some ϕ ∈ CON [u], KN(u, ϕ) = 1; consequently,
US(u) is computed by repeat disjunction of its initial value 0 with KN(u, ϕ) for
all ϕ ∈ CON [u].

The complexity of the Security function can be analyzed as follows. First,
Step 1, the sorting step, needs O(n logn) time using standard algorithms, where
n is the cardinality of U . Let us assume the evaluation u′ |= ϕ can be performed
in constant-bounded time; then, the total execution time of Step 3 is

∑

u∈U

|CON [u]| · |[u]ind(τ)|.

Assuming the size of each CON [u] is bounded above by a constant C, the total
execution time of Step 3 is at most

C ·
∑

u∈U

|[u]ind(τ)|,

which is in O(n2) time, since |[u]ind(τ)| ≤ n for all u ∈ U . The O(n2) bound is
quite loose, because |[u]ind(τ)| may be much smaller than n. Furthermore, in the
special case where all individuals have the same set of confidential data (or at
least in the case where, for all u1, u2 ∈ U , (u1, u2) ∈ ind(τ) implies CON [u1] =
CON [u2]), Step 3(b) is only executed once for each individual corresponding to
a different ind(τ)-equivalence class, which reduces its computation time to O(n).
Therefore, the total time complexity of the security test procedure is O(n2) in
general, and O(n logn) in special cases.

3.4 Computational Improvement

As noted earlier, our algorithm for finding maximally informative AOGs is based
on a breadth-first search with basic pruning strategies. Recently, a more efficient
algorithm for full-domain k-anonymity, called Incognito, has been proposed [16].
It employs more advanced pruning strategies based on the generalization, rollup,
and subset properties.

The generalization and subset properties still hold if k-anonymity is replaced
by our security criterion, whereas the rollup property can be easily extended to
our framework if the frequency set used in [16] is replaced by the characteristic
functions of confidential sentences. Therefore, Incognito can be easily adapted to
find all maximally informative AOGs for a data table. In the following, we show
that the generalization, rollup, and subset properties hold in our framework.

First, the generalization property is an obvious fact that is used in our basic
search algorithm.
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Property 1 (Generalization property). If τ1 � τ2 and τ1 is secure, then τ2
is also secure.

Second, to demonstrate the subset property, we have to define an AOG for an
arbitrary subset of quasi-identifiers. So far, we have only defined an AOG for
the set of all quasi-identifiers. Let J be a subset of {1, 2, · · · ,m}, then an AOG
for J is specified by an m-tuple (π1, π2, . . . , πm) such that πi = �i iff i 	∈ J . If
J1 ⊆ J2, and τ1 = (π1, π2, . . . , πm) and τ2 = (π′

1, π
′
2, . . . , π

′
m) are the respective

AOGs for J1 and J2, we say that τ1 is a restriction of τ2, denoted by τ1 = τ2|J1,
if πi = π′

i for i ∈ J1. It is obvious that τ2 � τ1 if τ1 is a restriction of τ2. The
subset property is therefore a corollary of the generalization property.

Property 2 (Subset property). Any restriction of a secure AOG is also
secure.

Third, the rollup property must be adapted to our framework. We note that it is
necessary to count the records with each unique combination of values of quasi-
identifiers in order to check k-anonymity. The rollup property is used to execute
the count efficiently. To check our security criterion, we do not have to count the
number of records. Instead, we only need to check whether a confidential sentence
is falsified for individuals with a combination of quasi-identifiers values. Thus,
we define a characteristic function as a mapping from each equivalence class of τ
to the subset of confidential sentences falsified by some individuals in the class.
Then, the rollup property can be reformulated as follows.

Property 3 (Rollup property). If τ1 � τ2, then we can generate each set of
falsified sentences for the characteristic function of τ2 by a set union from the
characteristic function of τ1.

4 Security and Data Quality

4.1 Security Measure

The security criterion defined in the preceding section is purely qualitative. Thus,
even though the security condition is satisfied, there is still a sufficiently high
probability that the user could infer an individual’s confidential information.
To assess the security of a protection mechanism more precisely, a number of
quantitative criteria have been proposed [6,17]. One criterion that measures how
much confidential information is leaked is called the average benefit criterion,
because it was originally used to assess the benefit a user derives when he receives
released data. It is especially appropriate for AOG operations and can also be
used to measure risk, since the lower the average benefit, the less an individual’s
privacy can be breached.

To define such a risk measure, we examine the difference between a user’s a
priori and a posteriori knowledge. Consider a data table containing an ind(τ)-
equivalence class, where 99 percent of the individuals in that class have the
same confidential value for one specific attribute. It is tempting to conclude that
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personal privacy could be violated easily. However, if this distribution is close to
the prior distribution of the attribute value of the entire population, release of
the above-mentioned data would not be a threat to personal privacy, since a user
could not learn much about the distribution by database linking. It is therefore
important to consider the original distribution of attribute values in a database.

We now propose an information-theoretic approach that measures informa-
tion gain after receiving τ(T ). The user’s a priori knowledge about ϕ can be
modeled by the prior probability Pr(ϕ), which is the statistical probability of ϕ
for the whole population. If the set U is sufficiently representative of the whole
population, then

Pr(ϕ) =
|{x | x |= ϕ}|

|U | .

On the other hand, the user’s a posteriori knowledge about whether u satisfies
ϕ is the percentage of individuals satisfying ϕ in the ind(τ)-equivalence class
[u]ind(τ), written as

Prτ (ϕ|u) =
|{x | x ∈ [u]ind(τ) ∧ x |= ϕ}|

|[u]ind(τ)| .

Note that Prτ (ϕ|u) is the rough membership [18] of u in [|ϕ|]. Let dm(u, ϕ) be a
positive real number denoting the potential damage to an individual u if his/her
confidential information ϕ is breached. We assume the damage values of the
individuals are normalized so that

∑
ϕ∈CON(u) dm(u, ϕ) = 1 for each u ∈ U .

Thus, the risk to u due to the release of τ(T ), denoted by ri(τ, u), is

∑

ϕ∈CON(u)

dm(ϕ) · max(
logPr(ϕ) − logPrτ (ϕ|u)

logPr(ϕ)
, 0),

and the security measure of τ is defined as

sf(τ) = 1 −
∑

u∈U ri(τ, u)
|U | .

4.2 Quality Measure

Privacy protection mechanisms inevitably reduce the quality of released data.
We should therefore assess how data quality is affected by AOG operations. Since
such operations are based on the partition of quasi-identifier domains, we can
use Shannon’s entropy to measure data quality. First, the entropy of a partition
π of a domain V is defined as

h(π) =
∑

s∈π

− |s|
|V | · log

|s|
|V | .

Second, we consider the significance of the quasi-identifiers. Let wi ∈ [0, 1] denote
the importance of the quasi-identifiers in data utilization. We also assume that
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∑
1≤i≤m wi = 1. In Section 3, we only considered the case where all quasi-

identifiers are equally important, i.e., wi = 1/m for 1 ≤ i ≤ m. Thus, the
quality measure defined in this section is more flexible. Finally, the quality of an
AOG, τ = (π1, π2, · · · , πm), is defined as

ql(τ) =
∑

1≤i≤m

wi · h(πi)
log(|Vi|) ,

where Vi is the domain of the quasi-identifier i.

4.3 The Search for Optimal AOGs

Once we can quantitatively measure the security and quality of released data,
the search for the optimal AOG for privacy protection becomes an optimization
problem. In other words, we have to find τ in the set of admissible AOGs that
maximizes the objective function sf(τ) · ql(τ). There are numerous techniques
for solving such problems. Here, we use the EC approach to find the optimal
AOG.

The EC approach is a class of nature-inspired methodologies that can solve
hard problems. By this approach, a population of possible solutions is initially
given. Then, three basic mechanisms of evolution, i.e., reproduction, mutation,
and selection, are applied to the population of solutions to produce the next
generation of the population. The process is repeated until satisfactory solutions
are found, or a pre-determined number of iterations is reached. A basic scheme
of the EC algorithm is presented in Figure 7. The algorithm is adapted from the
approach introduced in [19].

The initial population of the algorithm is a randomly selected subset of admis-
sible AOGs. At every step t, also called a generation, each AOG in the population
P (t) is evaluated according to some predefined fitness function. Then, a subset
of AOGs is selected from P (t) according to the result of the evaluation. The
selected subset, known as the mating pool , is denoted by P ′(t). Next, repro-
duction and mutation operations are applied to AOGs in P ′(t) to produce a

Procedure EC

1. Initialize a population P (0) ⊆ Π
2. while not done do

begin
Evaluate P (t);
P ′(t)← Select[P (t)];
P ′′(t)← Genetic-Op[P ′(t)];
P (t + 1)← Intro[P ′′(t), P (t)];
t← t + 1
end

Fig. 7. An EC algorithm for AOG
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01001|11001 010|0111|001
10001|00111 100|0100|111

↓ ↓
10001|11001 100|0100|001
01001|00111 010|0111|111

1-point crossover 2-points crossover

Fig. 8. Typical reproduction operations in GA

new population P ′′(t). The AOGs in P ′′(t) are offspring of those in P ′(t). Fi-
nally, P ′′(t), together with P (t), is introduced into the next-generation of the
population P (t+ 1); usually P (t) is simply replaced by P ′′(t) to form P (t+ 1).

A concrete implementation of the skeleton in Figure 7 can be achieved by
the standard genetic algorithm (GA). In the GA implementation, we assume
that each admissible set of partitions, Πi, is identified by a set of integers
{0, 1, · · · , |Πi| − 1}; therefore, each partition in Πi can be encoded as a binary
string of length �log |Πi|�, and each AOG can be encoded as a binary string
of length

∑
1≤i≤m�log |Πi|�. The fitness function of GA is simply the objective

function sf(·)ql(·). There are a number of ways to perform the selection. The
most popular is the roulette wheel method, where each AOG is selected with
a probability proportional to its fitness. The typical reproduction operation for
GA is crossover , which is performed with a fixed probability, called the crossover
rate, between two selected AOGs. Figure 8 shows two kinds of crossover opera-
tion. The mutation operation is performed by flipping bits at random with some
small probability, i.e., the mutation rate. Note that the crossover and mutation
operations may produce illegal codes that do not correspond to any AOG, so
post-processing is necessary to adjust the codes to legal AOGs.

As an example, we use the admissible partitions in Figure 3. We need an
8-bit string to encode an AOG (2 bits for the date of birth, 3 bits for the zip
code, and 3 bits for the height). Thus, for example, (01011010) denotes the AOG
({mm/yy}, d1d2 ∗ ∗∗, I10). If a crossover operation

010|11010
001|00101

↓
010|00101
001|11010

is carried out, the resultant codes correspond to (1,0,5) and (0,7,2). However,
these are not legal encodings of any AOG, since 5 is not a legal code for height
and 7 does not correspond to any partition of zip codes. To transform them into
legal encodings, we can change 5 to 5mod5=0 and 7 to 7mod6=1; therefore, the
offspring of the crossover operation should be 01000000 and 00001010.
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5 Related Works

As mentioned in Section 3.1, the granulation approach subsumes two important
data protection techniques, generalization[7,11,5,12] and microaggregation[8].
Moreover, rough set theory has been applied to privacy protection previously
[20,6,21]. In this section, we further discuss several works related to our
approach.

The main concept of logical security models a user’s knowledge based on
indiscernibility. Traditionally, epistemic logic has been used to represent such
knowledge. The relationship between epistemic operators and rough set approxi-
mation has been studied extensively[22,23]. Epistemic logic has also been applied
to the analysis of security [24,25,26]. The security logic (SL) developed in [24]
is a permission-based approach that specifies the knowledge a user is allowed to
have, which contrasts with our prohibition-based approach based on the set of
confidential sentences. The logic of security (LS) proposed in [25,26] is applied
to the analysis of dynamic systems with multiple subjects, where each subject
is permitted to know different levels of confidential information according to his
role. SL and LS can be applied to the analysis of general security problems;
however, our framework is specifically tailored for the database linking problem.

While we are concerned with the issue of attribute disclosure, many previous
works have addressed the issue of identity disclosure. Attribute disclosure oc-
curs when some characteristic of an individual can be inferred more accurately
because of the released data, whereas identity disclosure means that an individ-
ual can be uniquely identified. The issue of identity disclosure in the database
linking context has been addressed in [27,17,11,5,12]. In those works, the main
goal of privacy protection is to maintain the anonymity of data records, i.e., to
prevent the user from knowing which data record belongs to a specific individ-
ual. The k-anonymity criterion mentioned earlier is designed to prevent identity
disclosure. However, it has been observed that k-anonymity is not sufficient for
attribute disclosure control, so a logical criterion has been formulated to remedy
the problem[4]. A similar problem, called homogeneity attack , is also observed
in [28]. In this case, the l-diversity criterion is proposed to prevent such attacks.

The protection of confidential information has been widely studied in the con-
texts of disclosure control [29], inference control [30,13,31], access control [32],
and data mining [33,34,35,36]. The works most closely related to our approach
are those on disclosure control, which modifies data to prevent users from recog-
nizing individual identities in the data or discovering private information about
the individuals. Various techniques have been applied in disclosure control. In
addition to the granulation approach, whereby released data is made less pre-
cise than the original data, other techniques, such as data perturbation [37] or
lying [38,39], distort the data to be released. Data perturbation adds noise to
the released data, while ensuring that some statistical properties of the whole
data set are preserved; whereas lying distorts the truth, i.e., the negation of the
correct answer to the user’s query to prevent the user from inferring confidential
information.
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Another important aspect of disclosure control is the assessment of disclosure
risk and data quality. A variety of measures for assessing disclosure risk and
information loss have been proposed in [40,41,42,17,43,44,28]. Some information
measures associated with data tables may also be useful in such assessments.
Measures of interest include: Shannon’s entropy [45], Kolmogorov’s complex-
ity [46], and uncertainty-based information measures [47]. Based on the assess-
ment of disclosure risk and data quality, we can achieve a balance between data
availability and privacy protection.

In contrast to our framework for the database linking context, some models
have been proposed for dealing with the confidentiality problem in more general
contexts [48,49,50,24,51]. Also, complementary to the approach proposed in this
paper, some probabilistic or decision-theoretic approaches to data security have
been proposed in [20,42,52,53,6,44].

6 Conclusion

Granular computing (GrC) is an emerging computing paradigm developed from
Pawlak’s rough set theory. In recent years, it has had a strong impact on many
application domains. In this paper, we apply GrC techniques to privacy protec-
tion in the context of data release. Granulation of the domains of quasi-identifiers
makes it possible to release microdata without invading individuals’ privacy. An
attribute-oriented technique is employed to modify the to-be-released data. To
achieve a balance between the quality of the released data and privacy protec-
tion, we present a basic search algorithm to find the maximally specific AOGs
that satisfy the security requirements. We also discuss the properties that can be
utilized to improve the efficiency of the algorithm. Then, we define quantitative
measures to assess the security and quality of an AOG, and show that EC tech-
niques can be employed to find the optimal granulation for privacy protection.

To demonstrate the performance of the proposed approach, further theoretical
analysis and experimental verification of the proposed optimization algorithm are
needed. Moreover, to improve the optimization algorithm, more criteria of data
quality and security measures could be considered. In the longer term, we will ex-
plore the possibility of applying other GrC techniques, such as reduct computation
and dependency analysis, to resolve practical data security problems.
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