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Abstract. We assume a database consists of records of individuals with
private or sensitive fields. Queries on the distribution of a sensitive field
within a selected population in the database can be submitted to the data
center. The answers to the queries leak private information of individu-
als though no identification information is provided. Inspired by decision
theory, we present a quantitative model for the privacy protection prob-
lem in such a database query or linkage environment in this paper. In
the model, the value of information is estimated from the viewpoint of
the querier.
To estimate the value, we define the information state of the data user
by a class of probability distributions on the set of possible confidential
values. We further define the usefulness of information based on how
easy the data user can locate individuals that fit the description given
in the queries. These states and the usefulness of information can be
modified and refined by the user’s knowledge acquisition actions. The
value of information is then defined as the expected gain of the privacy
receiver and the privacy is protected by imposing costs on the answers
of the queries for balancing the gain.
Key words: Privacy, Data table, Decision logic, Quantitative model,
Value of information.

1 Introduction

There are many technical problems to be addressed for privacy protection. The
most basic one is to avoid unauthorized users access to the confidential infor-
mation. Some significant works on controlling disclosure of private information
from databases have been done[4–6, 8–10, 15, 22, 23]. Recently, an epistemic logic
has been proposed to model the privacy protection problem in a database link-
ing context[11]. In [2], a prototype system is designed to implement this logical
model in the context of querying a medical database. The safety criteria of the
data is defined rigorously in the logic and data to be disclosed must be gener-
alized to meet this requirement. The safety criteria defined in the requirement
are purely qualitative so we can only identify the situation in which the exact
confidential information came to the users’ knowledge. However, in many cases,
even if the private information is only known with some imprecision, there is still
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a risk of privacy leakage. Therefore it is very important to have the capability
of risk assessment in the model of privacy protection.

Someone may benefit from the privacy leakage, but it may also be harmful
for others. For example, the health information of a customer would be valuable
in the decision-making of an insurance company. However, the dissemination of
an individual’s health information without his consent in advance is definitely
an invasion of his privacy. Thus the value of confidential information would
be an incentive towards invasion of privacy. The information brokers may try
to collect and sell personal information for their own interest. On the other
hand, it is usually difficult to estimate the damage caused by privacy leakage.
However, to discourage the invasion of privacy, the damage of the victim must be
appropriately compensated by the one disseminating the information. Therefore,
the evaluation of gain and loss of privacy leakage is a crucial problem in privacy
protection.

In this paper, we try to tackle the problem from the aspects of information
value. We focus on the following database query environment. In a data center,
private information about individuals are collected. There are private or sensitive
fields as well as identification fields in each record. Queries on the distribution
of a sensitive field within a selected population in the database can be submit-
ted to the data center. The answers to the queries leak private information of
individuals though no identification information is provided.

We study a quantitative model for the privacy protection problem in such
a database query environment. It is for modeling the value of information from
the viewpoint of the querier. We will model the value of information as the
expected gain of knowledge of the information. In the model, we need to represent
the knowledge states of an user receiving some kind of information. We further
define the usefulness of information based on how easy the data user can locate
individuals that fit the description given in the queries. The knowledge states
and the usefulness of information can be changed or refined by receiving some
answer to the user’s query. Thus we also need a formalism to represent the data
to be protected and a language to describe which kinds of queries are allowed.
The data table and decision logic proposed in [17] will be employed as the data
representation formalism and the query language respectively.

In the rest of the paper, we first review the data table formalism and the
decision logic in our application context. The basic components of our models—
the information states and knowledge acquisition actions—is defined in section
3. In section 4, the model for information value and its use in privacy protection
are presented. Finally, the results are summarized in the concluding section.

2 Data Representation and Query Language

To state the privacy protection problem, we must first fix the data representa-
tion. The most popular data representation is by data table([17]). The data in
many application domains, for example, medical records, financial transactions,
employee data, etc., can be represented as data tables. A data table can be seen
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as a simplification of a relational database, since the latter in general consists of
a number of data tables. A formal definition of data table is given in [17].

Definition 1 A data table1 is a pair T = (U,A) such that

– U is a nonempty finite set of individuals, called the population or the uni-
verse,

– A is a nonempty finite set of primitive attributes, and
– every primitive attribute a ∈ A is a total function a : U → Va, where Va is

the set of values of a, called the domain of a.

The attributes of a data table can be divided into three sets. The first con-
tains the key attributes, which can be used to identify to whom a data record
belongs, therefore these attributes are always masked off in response to a query.
Since the key attributes uniquely determine the individuals, we can assume that
they are associated with elements in the universe U and omit them from this
point. Second, we have a set of easy-to-know attributes, the values of which are
easily discovered by the public. For example, in [21], it is pointed out that some
attributes like birth-date, gender, ethnicity, etc., are included in some public
databases such as census data or voter registration lists. The last kind of at-
tributes is the confidential type, the values of which are mainly the goals we
have to protect. Sometimes, there is an asymmetry between the values of a
confidential attribute. For example, if the attribute is a HIV test result, the rev-
elation of a ’+’ value may cause a serious privacy invasion, whereas it does not
matter to know that an individual has a ’−’ value. For simplification, we assume
there is exactly one confidential attribute in a data table. Thus a data table is
usually written as T = (U,A∪{c}) where A is the set of easy-to-know attributes
and c is the confidential one.

Let Vc = {s0, s1, . . . , st−1} be the set of possible values for the confidential
attribute c. It is assumed that the a prior information of the user is the proba-
bility distribution of the population on Vc. In other words, we assume that the
user knows the value |{u∈U |c(u)=si}|

|U | for all 0 ≤ i ≤ t − 1. Then the user can
improve his knowledge by investigating some sampled individuals of the popu-
lation or querying the data center that stores the data table. By investigation,
the user can discover the exact value of the confidential attribute of the chosen
individuals. However, much effort is necessary to do the investigation. On the
other hand, a query may ask for the probability distribution of sensitive fields
in a specific subset of the population. Once the query is correctly answered, the
user not only knows the probability distribution of the specific sub-population,
but also that of its complement on Vc. Thus we need a language to specify a
subset of individuals. To achieve this purpose, we suggest to use the decision
logic(DL) proposed in [17]. The DL is originally designed for the representation
of rules induced from a data table by data mining techniques. However, it is also
perfectly suitable for the query of a data table since each formula of the logic is
satisfied by some individuals in the data table.
1 Also called knowledge representation system, information system, or attribute-value

system
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Syntactically, an atomic formula for the data table T = (U,A∪{c}) is of the
form (a, v), where a ∈ A is an easy-to-know attribute and v ∈ Va is a possible
value of the attribute a. The well-formed formulas (wff) of the logic is closed
under the Boolean connectives negation(¬), conjunction(∧), disjunction(∨), and
implication(→). For the semantics, an individual u ∈ U satisfies an atomic for-
mula (a, v), written as u |=T (a, v) iff a(u) = v. Intuitively, any individual
satisfying (a, v) has v as the value of his attribute a. The satisfaction of other
wffs can then be defined recursively as usual.

From the semantics of decision logic, we define the truth set of a wff ϕ with
respect to the data table T , denoted by |ϕ|T , as {u ∈ U | u |=T ϕ}. Thus each
wff ϕ specifies a subset of individuals |ϕ|T in the data table. When a query ϕ is
submitted by an user to the data center, this means this user wants to know the
distribution of the sub-population |ϕ|T on Vc. If the query is correctly answered,
the user would also simultaneously know the distribution of the sub-population
U−|ϕ|T by the axioms of probability. In other words, a correctly answered query
would partition the population into two sub-populations and the distributions
thereof on the confidential attribute values are known respectively. In this way,
the user can subsequently query the data center to refine his knowledge regarding
the distributions of the different sub-populations on the confidential attribute
values. To model the evolution of the user’s information after different queries,
we need a formal representation of user’s information states. The next section
will be devoted to the definitions of such representation.

3 The Information States

From here on, let us fix a data table T = (U,A∪{c}). Let Vc = {s0, s1, . . . , st−1}
be the set of possible values for the confidential attribute and let U = {u1, . . . , un}
be the set of individuals. A logical partition of U is a subset of DL wffs Π =
{ϕ1, ϕ2, . . . , ϕm} such that |ϕ1|T ∪ · · · ∪ |ϕm|T = U and |ϕi|T ∩ |ϕj |T = ∅ if
i 6= j. Each |ϕi|T is called an equivalence class of Π. A piece of information
(or knowledge) known to the user is given by a logical partition of U , a set of
probability distributions indexed by the wffs of the partition, and the number
of investigated individuals. In the following, we use |ϕ| to denote the cardinality
of |ϕ|T .

Definition 2 An information state (or a knowledge state) I for the set of pos-
sible private attribute values Vc and the set of individuals U is a triplet

(Π, (µi)0≤i≤t−1, (κi)0≤i≤t−1)

where Π is a logical partition on U and for all 0 ≤ i ≤ t− 1, µi : Π → [0, 1] and
κi : Π → N (N denotes the set of natural number) are functions satisfying the
following constraints for any ϕ ∈ Π,

(i)
∑t−1

i=0 µi(ϕ) = 1,
(ii) |ϕ| · µi(ϕ) is a natural number, and
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(iii) κi(ϕ) ≤ |ϕ| · µi(ϕ)

For ease of description, we use the vector notations in denoting µi’s and κi’s.
Thus µ = (µ0, . . . , µt−1) and κ = (κ0, . . . , κt−1) denotes vector mappings which
can be applied to elements of Π and the result of such application is a vector
consisting of the results of applying its component functions to the element. The
dimension of each vector will be self-evident from the context and not explicitly
specified. By the vector notation, an information state defined above can be
denoted by (Π,µ, κ). Let I be such an information state, then (Π,µ) is called a
partial knowledge state compatible with I. Note that a partial knowledge state
may be compatible with various information states.

Within an information state, the user partitions the population into a number
of subpopulations. He knows the probability distribution of each subpopulation
on the confidential attribute values. Intuitively, µi(ϕ) is the proportion of the
individuals in sub-population |ϕ|T which have confidential attribute value si,
whereas κi(ϕ) is the number of investigated individuals in sub-population |ϕ|T
which have confidential attribute value si. Since each DL wff ϕ is composed
from atomic formulas with easy-to-know attributes only, it can be assumed that
it takes little effort for the user to verify whether a given individual satisfies
ϕ. Furthermore, it can also be assumed that the cardinality of the truth set of
each ϕ is known to the public. However, note that it may sometimes be very
difficult for the user to locate an individual satisfying a specific ϕ from the whole
population U .

The information states of an user can be subsequently changed by his in-
vestigation of some individuals in a specific sup-population and by his queries
posed to and the answers obtained from the data center. This is a process of
knowledge refinement and can be modeled by the knowledge acquisition actions
as follows.

A logical partition Π2 is a refinement of another logical partition Π1, denoted
by Π2 v Π1, if for all ϕ2 ∈ Π2, there exists ϕ1 ∈ Π1 such that |ϕ2|T ⊆ |ϕ1|T . It
is clear that if Π2 v Π1, then each |ϕ1|T such that ϕ1 ∈ Π1 can be written as a
union of the truth sets of some wffs in Π2.

Definition 3 Let I1 = (Π1,µ1, κ1) and I2 = (Π2,µ2, κ2) be two information
states. I2 is a refinement of I1, also denoted by I2 v I1, if both of the following
conditions are satisfied:

1. Π2 v Π1.
2. For each ϕ ∈ Π1, if |ϕ|T =

⋃
1≤i≤l |ϕi|T for some set {ϕ1, . . . , ϕl} ⊆ Π2,

then

|ϕ| · µ1(ϕ) =
l∑

i=1

|ϕi| · µ2(ϕi),

and

κ1(ϕ) ≤
l∑

i=1

κ2(ϕi).
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Note that the arithmetics (addition and multiplication) and comparison between
vectors (and scalars) are defined as usual. For example, the addition of two
vectors is carried out point-wise and results in a vector of the same dimension.

In our framework, there are two kinds of knowledge acquisition actions which
can refine the user’s information states. The first one is the query action. Each
query action is represented by a wff ϕ in DL. The intended answer of the query
is the distribution of the confidential values within the selected population |ϕ|T
in the database. The other is the investigation action, which is specified by a wff
ϕ and a positive integer number k. This means that the user have investigated
k individuals from the set |ϕ|T in this action. For the uniformity of the repre-
sentation, each knowledge acquisition action is written as α = (ϕ, k) for some
DL wff ϕ and k ≥ 0. When k > 0, it is an investigation action, whereas it is a
query one if k = 0.

Definition 4 1. A knowledge acquisition action (ϕ, 0) is applicable under the
information state I1 = (Π1,µ1, κ1) and results in a state I2 = (Π2,µ2, κ2)
if
(a) there exists ϕ′ ∈ Π1 such that |ϕ|T ⊆ |ϕ′|T ,
(b) Π2 = Π1 − {ϕ′} ∪ {ϕ,ϕ′ ∧ ¬ϕ},
(c) I2 is a refinement of I1,
(d) κ2(ψ) = κ1(ψ) for any ψ ∈ Π1 − {ϕ′}, and
(e) κ2(ϕ) + κ2(ϕ′ ∧ ¬ϕ) = κ1(ϕ′).

2. A knowledge acquisition action (ϕ, k) where k > 0 is applicable under the
information state I1 = (Π1,µ1, κ1), and I2 = (Π2,µ2, κ2) is a resultant
state of the application if
(a) ϕ ∈ Π1 and k ≤ |ϕ| −

∑t−1
i=0 κi(ϕ)

(b) Π1 = Π2,
(c) µ1 = µ2,
(d) κ2(ψ) = κ1(ψ) for any ψ 6= ϕ, and
(e)

∑t−1
i=0 κ2i(ϕ) =

∑t−1
i=0 κ1i(ϕ) + k.

Since the goal of the user is to refine his knowledge by the queries, a rational
user would pose his queries so that his knowledge would be improved by the
answers of the queries. Thus if the user’s information state is (Π1,µ1, κ1), then
he poses a query about a subset of an equivalence class in Π1. This is the
requirement of Condition 1a in Definition 4. Then, after the query is answered,
the corresponding equivalence class is partitioned into two parts — one satisfying
ϕ and the other not, so we have the Condition 1b in Definition 4. Condition 1c
in Definition 4 further requires that the answer is correct so that the resultant
information state is a refinement of the original one. Furthermore, since the query
action does not cause any new individuals being investigated, the κ2 function
agrees with κ1 in the part of the population which is not split by the query,
while for the split part, the number of investigated individuals is not changed in
total. This is reflected respectively in Conditions 1d and 1e of the definition.

In the case of investigation action, we assume the user will only investigate
the individuals in a sub-population represented by a wff in Π1. The assumption



Quantifying Privacy Leakage Through Answering Database Queries 7

is inessential, since, if the investigated individuals are across some different sub-
populations, the corresponding investigation action can be decomposed into a
sequence of actions satisfying the applicability condition. Since it is assumed
that the user knows the total number of individuals in |ϕ|T and those which
have been investigated by him so far is equal to

∑t−1
i=0 κi(ϕ), he would not try to

investigate more individuals than all remaining ones. This is exactly required by
the applicability condition of Definition 4.2a. Conditions 2b to 2d are obvious
since these values are not affected by the investigation. What the investigation
can affect is the total number of the investigated individuals in |ϕ|T and this is
reflected in Condition 2e.

4 The Value of Information

To quantitatively determine the value of information, we must have a user model.
Let us consider the case where the user is an agent trying to use the private
information to aid his decision in a game. The game is played between the agent
and individuals in the population U . The agent can decide the rate he want to
charge an individual for playing the game (i.e., the admission fee). The rate is
decided on a personalized basis so that each individual may be charged with
different rates. However, once an individual agrees to play the game with the
agent and pay the fee asked by the agent, he will have a chance to get back
some reward which will be the loss of the agent. The reward of an individual
is determined by his confidential attribute value. Let ri denote the reward of
an individual with the confidential attribute value si for 0 ≤ i ≤ t − 1, then
ρ = (r0, r1, . . . , rt−1) ∈ <t is called the loss vector of the agent.

Let I0 = ({>},µ0, κ0) be the initial information state of the user, where
> denotes any tautology in the DL and κ0(ϕ) = (0, . . . , 0). Let ρ be a given
loss vector. The agent first decides the base rate of the game on the expected
loss according to his initial information state, i.e., R0 = ρ · µ0(>). Thus, in
the initial state, the expected payoff of the agent for playing the game is zero.
However, once he acquires pieces of information and reaches a new information
state, he can utilize the acquired information for making some profit.

We further assume that each individual will go into the game if he is charged
with the base rate. However, he can refuse to do so if the agent charges him
with a rate higher than the base one. The higher the rate, the more likely the
individual refuses to play the game. If the information state is I = (Π,µ, κ),
where Π = {ϕ1, . . . , ϕm}, a reasonable decision of the agent for the rate of an
individual u satisfying ϕ is as follows:

1. if u has been investigated and it is known that the confidential attribute value
of u is si, then the most profitable decision of the agent would be to charge
the individual with max(Ro, ri) so that the agent’s payoff is max(Ro− ri, 0);

2. if the individual has not been investigated, the agent knows the probability
of the confidential attribute value of u being si to be

pi(ϕ) =
|ϕ| · µi(ϕ)− κi(ϕ)
|ϕ| −

∑t−1
i=0 κi(ϕ)

. (1)
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In this case, the most reasonable decision of the agent would be to charge
the individual with max(Ro,

∑t−1
i=0 pi(ϕ) · ri) so that the agent’s expected

payoff would be max(Ro −
∑t−1

i=0 pi(ϕ) · ri, 0)

Thus, in average, the agent can have the following expected payoff Bϕ in
playing the game with an individual satisfying ϕ:

Bϕ = max(Ro −
∑t−1

i=0(pi(ϕ) · ri), 0) ·
|ϕ|−

∑t−1

i=0
κi(ϕ)

|ϕ|
+

∑t−1
i=0 max(Ro − ri, 0) · κi(ϕ)

|ϕ|

(2)

Thus, by using the knowledge about the individuals’ confidential attributes,
the agent can raise the rates of those who may incur a greater loss to him in
order to avoid the possible loss. The value of the information is then dependent
on how much he can benefit from obtaining the information. The expected gain
of the agent with regard to each individual is computed by

BI =
∑
ϕ∈Π

Bϕ ·
|ϕ|
|U |

,

if he decides the rates according to the two principles above.

Example 1 The scenario described above usually occurs between an insurance
company and its customers. The base rate is applied to a typical customer if
the company does not have any further information about his health condition.
However, for the customers of high risk, the company would raise their rates.
Thus the health information of the customers would be valuable to the insurance
company. To avoid the leakage of privacy, the data center may correspondingly
raise the cost of answering a query so that the information value for the company
is counter-balanced. The company would not have the incentive to obtain the
private information.

The notions of the value of information have been extensively studied in deci-
sion theory[7, 14]. In our model above, if investigation actions are not allowed, all
information states are of the form (Π,µ, κ0), so κ0i(ϕ) = 0 and pi(ϕ) = µi(ϕ)
for all 0 ≤ i ≤ t− 1 and ϕ ∈ Π. Consequently, BI would be simplified into∑

ϕ∈Π

max(Ro − µ(ϕ)·ρ, 0) · |ϕ|
|U |

which is the value of partial information defined in [14] if our user model is ap-
propriately formulated as a decision problem of the agent. While in our case the
partial information is obtained by querying the data center, another approach
for obtaining partial information by sampling is suggested in [14]. Though sam-
pling is similar to investigation, the information obtained from these two kinds
of actions are quite different. For the sampling actions, even though the chosen
individuals may be thoroughly investigated, only the statistical information of
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these investigated individuals would be kept. In fact, it is the statistical informa-
tion which would be used in the prediction of the status of the whole population.
However, for the investigative actions, the user would indeed keep the personal
information of each investigated individual and not do the statistical inference
from the investigated individuals to the whole population.

On the other hand, if no query actions are possible, the information states
are always of the form ({>},µ0, κ). Once all individuals have been fully inves-
tigated (though this is hardly possible in any practical case) the information
state becomes a perfect state I = ({>},µ0, κ), where κi(>) = µ0i(>) · |U |, so
pi(>) = 0 for all 0 ≤ i ≤ t− 1. Consequently, BI would be simplified into

t−1∑
i=0

max(Ro − ri, 0) · µ0i(>)

which is precisely the value of perfect information defined in [14]. Thus we have
modeled the value of hybrid information in the above-defined framework.

5 Privacy Protection by Pricing Mechanism

5.1 Basic Scheme

According to the user model above, the user can improve his payoff from 0
to BI when his information state is evolved from the initial state to I. If the
information is free of charge, the user would gladly receive it and consequently,
the privacy of the individuals may be invaded. Thus, one approach to privacy
protection is to impose costs on the answers of the queries so that the user cannot
make a profit from obtaining the private information. This can be achieved by
including a pricing mechanism in the data center. However, since the answer to
a query may have different effects under different information states, the pricing
mechanism must be adaptive according to the query history of the user. In
general, it is very difficult to design an adaptive pricing mechanism since the users
may have to pay different prices for the same queries under different situations.
Therefore, instead of charging each query separately, we shall consider a more
restricted setting. Assume that each user is allowed to ask a batch of queries only
once. Afterward, he can do any investigative actions he wants. However, the data
center would not answer his queries afterwards. Thus the pricing mechanism of
the data center is to decide the cost of each batch of queries so that the user
cannot benefit from receiving the answers of the queries.

Let (Π,µ, κ) be the information state of the user after a sequence of queries
and follow-up investigative actions, where Π = {ϕ1, ϕ2, . . . , ϕm}. Since the data
center has no control on how the user will carry out his investigation after
receiving the answers, it can only guarantee that the cost is high enough so
that the user cannot make a profit from the answers of the queries, no matter
what investigation be done. Thus, based only on the partial knowledge state
P = (Π,µ), the data center must estimate the maximum payoff the agent can
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have under different information states compatible with P. Let k = (k1, . . . , km)
be an m-tuple of non-negative integers and define

Fk = {κ |
t−1∑
i=0

κi(ϕj) = kj ,∀1 ≤ j ≤ m}

as the set of κ functions which denote the possible investigation results when
a specific number of individuals has been investigated. The set of information
states compatible with P and k is defined as

IS(P,k) = {(P,κ) | κ ∈ Fk}

and the maximal value of information of the agent under P and k is defined as

B(P,k) = max{BI | I ∈ IS(P,k)}.

We now further assume that a cost function γinv : Φ×Z+ → <+ is available
to both the user and the data center, where Φ is the set of DL wffs and Z+ and
<+ are respectively the set of positive integer and real numbers. The intended
meaning of γinv(ϕ, k) is the cost of the investigation of k individuals satisfying
ϕ. It can be assumed that γinv is a super-linear function in its second argument.
Thus, when the user poses a batch of queries Q, the data center can know what
the resultant partial knowledge state P would be once the answer is released.
Therefore, the price of Q must be decided before releasing the information. The
price price(Q) of the answers to the batch of queries should be decided such that

|U | ·B(P,k)−
m∑

i=1

γinv(ϕi, ki) ≤ price(Q) (3)

holds for any k. The lowest solution of price(Q) for (3) is

max
k

|U | ·max{BI | I ∈ IS(P,k)} −
m∑

i=1

γinv(ϕi, ki) (4)

where the domain of k is finite since 0 ≤ ki ≤ |ϕi|.

5.2 Usefulness of Information

In our pricing mechanism, the data center assumes that the user can play the
above-mentioned game with all individuals in U and charge them based on the
total gain he can achieve. However, this may be an over-estimation since the
user cannot play the game with all individuals when the population is large.
To circumvent the problem, we may assume that the user must spend some
resources for playing the game with the individuals. Let γply : Φ×Z+ → <+ be
another cost function such that γply(ϕ, l) denotes the cost of the user playing the
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game with l individuals satisfying ϕ. Given an m-tuple of non-negative integers
l = (l1, . . . , lm) and an information state I, define

Bl
I =

m∑
i=1

Bϕi · li.

The price in (4) can be replaced by

max
k,l

(max{Bl
I | I ∈ IS(P,k)} −

m∑
i=1

γinv(ϕi, ki)−
m∑

i=1

γply(ϕi, li)) (5)

where both the domains of k and l are restricted to 0 ≤ ki, li ≤ |ϕi|.
Intuitively, each li and kj represent the usefulness of information. Given

two equivalent classes in a logical partition, it may be easier to find potential
members in one equivalence class than in the other depending on the conditions
each equivalence class satisfied. It may also be true that it is easier, and thus
cost-effective, to investigate members in one equivalence class than in the other.
These two may be closely related, but not necessarily the same.

Example 2 Assume we again use the insurance company model mentioned in
Example 1. Assume the world population is represented by all adults in the
country. An equivalence class may be characterized as being the people living in
the same county while another equivalence class is described as the people with
weight between 60 to 65 kilograms. It is easy for the first group of people to be
investigated and then to be added as customers, while it is relatively difficult for
the second group of people.

Thus the data center can decide the price of the answers to the batch of
queries Q by a two-level maximization procedure in (4) or (5). The outer level
maximization would depend on the form of the cost functions γinv and/or γply, so
it is unlikely to find an analytic solution for it. However, the inner maximization
can be reduced to a set of m maximization of Bϕ for each ϕ ∈ Π. More specif-
ically, given ϕ and 0 ≤ k ≤ |ϕ|, it is to find κ(ϕ) which maximizes Bϕ among
all κ satisfying

∑t−1
i=0 κi(ϕ) = k and κi(ϕ) ≤ |ϕ| · µi(ϕ) for all 0 ≤ i ≤ t − 1.

This is in turn equivalent to the following constraint optimization problem in
the integer domain:

Maximize max(R0 −
∑t−1

i=0
ni−xi

N−k · ri, 0) · N−k
N +

∑t−1
i=0 max(R0 − ri, 0) · xi

N

s.t.
x0 + x1 + · · ·+ xt−1 = k

0 ≤ xi ≤ ni (0 ≤ i ≤ t− 1)

(6)

where N and ni’s correspond to |ϕ| and |ϕ| · µi(ϕ)’s respectively. The solution
of Equation (6) can be given by the following proposition for k ≤ N . Without
loss of generality, we assume r0 ≥ r1 ≥ · · · ≥ rt−1 for the loss vector in the
proposition.
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Proposition 1 Assume N =
∑t−1

i=0 ni

1. if k = N , then the solution of Equation (6) is xi = ni for 0 ≤ i ≤ t− 1 and
its maximum value is

t−1∑
i=0

max(R0 − ri, 0) · ni

N
;

2. if if k < N and l is the smallest natural number such that
∑l

i=0 ni > k, then
the solution of Equation (6) is

xi =


ni if i < l,

k −
∑l−1

i=0 ni if i = l,
0 if i > l,

and its maximum value is

max(R0 −
t−1∑

i=l+1

ni

N − k
· ri +

∑l
i=0 ni − k

N − k
· rl, 0) · N − k

N

+
l−1∑
i=0

max(R0 − ri, 0) · ni

N
+ max(R0 − rl, 0) ·

k −
∑l−1

i=0 ni

N
.

The individuals who will incur more loss to the agent are high risk ones.
For the low risk individuals, the investigation cannot improve the payoff for the
agent. However, for the high risk ones, the investigation can indeed decrease
the loss for the agent by raising their admission fees appropriately. The more
high risk individuals have been investigated, the more loss the agent can avoid,
so the maximum payoff occurs when the investigation is carried out from the
most risky individuals to the least risky ones. This intuition is verified by the
preceding proposition.

6 Related Works

To quantify the value of information is by no means a novel problem. However,
the quantitative models for privacy protection provides a new angle to look at
the problem. As shown in section 4, our model for the value of information
has generalized a standard notion in decision theory[14, 7]. While the decision-
theoretic analysis [14] emphasizes the value of information from the decision
maker’s viewpoint, our model is mainly concerned with privacy protection by
the information provider. For the former, a decision maker can decide if he will
purchase a piece of information according to the value of the information. For
the latter, the information provider can charge the user of the information with
appropriate rates.

An alternative model for the value of information in the privacy protection
context is proposed in [1, 2]. In their model, the value of information is estimated
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by the expected cost the user must pay for achieving the perfect knowledge state
from the given information. The estimation is based on the rationale that the
more investigation efforts a piece of information can reduce, the more valuable it
is. However, without regarding the user model, the value of information defined
there may not reflect the real situation.

Besides the decision theoretic analysis, the value of information can also be
estimated by some information theoretic measures. The central notion of such
measures is the entropy introduced by Shannon[20]. In the machine learning
literatures, it is used to define the information gain of an attribute for a classifi-
cation problem[16]. Though the information gain is an useful index in selecting
the most informative features for the classification problem, it still suffers the
same problem as the value of information defined in [1, 2] since it does not take
into account the fact that some confidential attribute values are more sensitive
than others.

The sensitivity of different attribute values are taken into account in the
average benefit and average cost models proposed in [3]. However, while only
query actions are allowed there, we also consider the investigative actions in
modelling the value of information.

In contrast with the quantitative approach of this paper, some qualitative
criteria for privacy protection have been proposed in [11, 12, 18, 19, 21]. These
criteria are designed to protect personal sensitive information in the release of
a microdata set, i.e. a set of records containing information on individuals. The
main objective is to avoid the re-identification of individuals or in other words,
to prevent the possibility of deducing which record corresponds to a particular
individual even though the explicit identifier of the individual is not contained
in the released information. On the other hand, our models are concerned with
the release of statistical information which is less specific than microdata in
general. However, microdata release can also be handled in our framework when
the queries are specific enough. Let us define a complete specification formula
(CSF) as a DL wff of the form ∧a∈A(a, va), where A is the set of all easy-to-
know attributes and va is a value in the domain of A. The answer to the batch
of queries Q consisting of all CSF’s is equivalent to the microdata release of
the whole data table T . Therefore, our models are applicable in a more general
context.

7 Conclusion

In this paper, we present a quantitative model for privacy protection. In the
model, a formal representation of the user’s information states is given, and
we estimate the value of information for the user by considering a specific user
model. Under the user model, the privacy protection task is to ensure that the
user cannot profit from obtaining the private information.

It must be emphasized that the value of information is defined with respect
to the particular user model. When other user models are considered, the value
of information may be different. Some examples can be seen in [13]. A problem
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for the pricing mechanism arises naturally since different users may put different
values on the same information. This means that we may have to set different
prices for different kinds of users on the same information. However, this is not so
odd as it seems at first glance. In fact, differentiating prices have been employed
in the software market. Differences usually occur in educational and commercial
uses.

There are further complicated problems in privacy protection which can not
be resolved from a purely technical aspect. For example, our schemes cannot
prevent a group of users from collectively investigating private information by
individually querying the data center. This must be considered from a legal
aspect. Upon releasing data to a user, the user must sign a contract prohibiting
him from revealing the data to others. The legal possibility for the collusion of
a group of users is thus blocked. In future works, we would like to investigate
how technology and law can be fully combined in the protection of privacy.
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