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Abstract 

We develop a knowledge-based approach (called PROSP) for protein secondary struc-

ture prediction. The knowledge base contains small peptide fragments together with 

their secondary structural information. A quantitative measure M, called match rate, is 

defined to measure the amount of structural information that a target protein can ex-

tract from the knowledge base. Our experimental results show that proteins with a 

higher match rate will likely be predicted more accurately based on PROSP. That is, 

there is roughly a monotone correlation between the prediction accuracy and the a-

mount of structure matching with the knowledge base. To fully utilize the strength of 

our knowledge base, a hybrid prediction method is proposed as follows: if the match 

rate of a target protein is at least 80%, we use the extracted information to make the 

prediction; otherwise, we adopt a popular machine-learning approach. This comprises 

our hybrid protein structure prediction (HYPROSP) approach. We use the DSSP and 

EVA data as our datasets and PSIPRED as our underlying machine-learning algorithm. 

For target proteins with match rate at least 80%, the average Q3 of PROSP is 3.96 and 

7.2 better than that of PSIPRED on DSSP and EVA data, respectively. 

 

1. Introduction 

Protein secondary structures serve as important building blocks in comparative mod-

eling and protein threading methods for protein 3D structure prediction. They can be 

used to generate templates for protein 3D structure prediction algorithms to build pro-

tein structure models. The precision of protein secondary structure prediction greatly 

affects the quality of generated templates [1].

                                                 
* This work is partially supported by NSC 92-2213-E-001-026 and the thematic program of Academia 
Sinica AS91IIS1PP. 
† The corresponding author. Email: hsu@iis.sinica.edu.tw 
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A protein secondary structure prediction algorithm transfers protein sequences to 

their secondary structures, where each amino acid is assigned one of three structures: 

helix (H), strand (E) or others (L). Secondary structure prediction is improved using 

evolutionary information. Either multiple sequence alignment is used to find con-

served regions, or PSIBLAST is used to generate profiles of the sequences. Both con-

served regions and profiles provide evolutionary information. Currently, many popu-

lar prediction methods use profile to capture evolutionary information, and ma-

chine-learning approaches to predict the structure [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14]. Among these prediction methods, PHD [13] and PSIPRED [7, 10] are most fre-

quently used, and both are based on a neural network approach. In order to find evo-

lutionary information to feed into the neural network, PHD uses BLAST to find 

homologues and uses MaxHom for multiple sequence alignment1; PSIPRED uses 

PSI-BLAST to find homologues. PHD achieves a Q3 accuracy of 75.1 and PSIPRED 

achieves an accuracy of 76.6 [15]. Their behavior is similar for many datasets. The 

advantage of these machine-learning approaches is that evolutionary information, 

amino acid and structure propensities, as well as global sequence compositions can all 

be taken into account. The drawback of the neural network approach is that, it is not 

clear how the additional evolutionary information affects the prediction accuracy. 

In this paper, we present a knowledge-based prediction algorithm, called PROSP2, 

and a new similarity measure, called match rate, with regard to secondary structure 

prediction. Our hybrid prediction method, HYPROSP, which combines PROSP and 

PSIPRED, can achieve better overall prediction accuracy. In a certain aspect, the idea 

of PROSP is similar to that of an earlier work, PREDATOR [16]: both of them use 

local information of remote homologues to improve prediction accuracy. However, 

PREDATOR uses FASTA to find homologous proteins. It does not create any 

knowledge/data base nor define any new similarity measure. 

The remainder of this paper is organized as follows. Section 2 describes each step 

                                                 
1  PHD has a newer version PHDpsi, which no longer uses BLAST and MAXHOM; it uses 

PSI-BLAST as well. 
2 The source code of PROSP, tools to generate/query peptide knowledge base and knowledge base 

generated by using EVA dataset are available at http://bioinformatics.iis.sinica.edu.tw/HYPROSP/. 
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of our HYPROSP. Section 3 presents experimental results and analysis. Finally, con-

clusions are summarized in Section 4. 

  

2. HYPROSP 

Our proposed hybrid method is called HYPROSP, which stands for HYbrid PROtein 

Structure Prediction. HYPROSP combines our knowledge-based approach, PROSP, 

with the machine-learning approach, PSIPRED. In PROSP, we construct a knowledge 

base containing small peptide fragments along with their structural information. When 

a target protein (i.e., a protein whose structure is unknown and targeted for prediction) 

can extract sufficient structural information from the knowledge base, PROSP can 

usually make a better prediction than machine-learning approaches and is therefore 

adopted. Otherwise, its prediction is left to PSIPRED. The match rate is introduced to 

measure the amount of structural information a protein sequence can extract from the 

knowledge base. The cornerstone of HYPROSP is the construction of a peptide 

knowledge base. 

 

2.1 Constructing a knowledge base 

We construct a knowledge base containing diverse peptide fragments and their struc-

tural information as follows. Initially, all peptides in the training set (containing pro-

teins with known structural information; usually a subset of the DSSP database) are 

included in the knowledge base. Since the information content is not rich enough, 

PSI-BLAST is used to amplify the effect of the training set by finding more remote 

similar peptides from proteins in NCBI nr database, which will inherit structure in-

formation from the training set. Most researchers use multiple sequence alignment 

such as PSI-BLAST profiles to infer global similarity. Since our target is to find simi-

lar peptides, we adopt a different strategy here by using local similarity derived from 

PSI-BLAST high score segment pairs (HSPs). HSPs have good local alignment and 

provide direct sequence-structural information, which allow similar peptides to inherit 

structures from their counterparts in the training set. 

The DSSP database uses eight secondary structure states, H, I, G, E, B, S, T and −. 

We follow the same scheme used by PHD and PSIPRED to reduce the eight states to 
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three, where H, I and G become helix (H), E and B become strand (E), and the re-

maining states become others (L). Each protein in the training set contains its se-

quence and structural information expressed by H, E and L. 

For each protein p in the training set, we apply PSI-BLAST to find its HSPs. Each 

HSP is an alignment of a subsequence of protein p and a subsequence of another pro-

tein, and this pair of subsequences achieves high alignment score. Alignment scores 

of HSPs are assigned the sum of scores of pairwise aligned amino acids, which are 

given by the BLOSUM62 scoring matrix [17]. In an HSP, the structure of the coun-

terpart of p is very likely unknown. We then try to find similar peptides within HSPs 

so that we can assign structure of p to those with unknown structure. 

In what follows, we use peptides to mean peptides of length w. For each protein p 

in the training set, carry out the following procedure. 

Step 1: Perform three iterations (parameter j is set to 3) of PSI-BLAST on all train-

ing set data to find HSPs. Parameter e is set to 0.01 (E-value < 0.01); the 

search target is NCBI nr protein database. All HSPs obtained from these 

three rounds are stored. 

Step 2:  Determine similar peptides in each HSP. 

Given an HSP, we use a sliding window W of size w to scan the alignment. If 

at least k out of w positions in the sliding window have positive scores (i.e., 

the number of exact matches and positive signs in the alignment is at least k), 

these two peptides are regarded as similar. 

Step 3:  For each pair of similar peptides, determine the record to store in the knowl-

edge base. 

We use pl to denote a peptide in protein p that is similar to a peptide ql in an-

other protein. We use s(≥ k) to denote the number of exact matches and posi-

tive signs between pl and ql. When the structure of ql is unknown, we assign 

ql the structure of pl and a confidence score S(ql) to reflect the reliability of 

such structure assignment, where S(ql) is a function of s and the alignment 

score obtained by PSI-BLAST. Intuitively, larger s and larger alignment 

score generate larger S(ql), which implies higher confidence. We then store 

the record (ql, structure of pl, S(ql)) in the knowledge base. 
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Figure 1 illustrates an HSP found by PSI-BLAST. In this example, the HSP is of 

length 147, the identity between these two sequences is 23%, and the alignment score 

is 227. Assume w = 8 and k = 4. Define S(ql) = (s + 1) × alignment score instead of s 

× alignment score since k is allowed to be zero and s can be 0 in this case. We show 

in Figure 1 two instances of a sliding window. In the first window, five amino acid 

pairs get positive scores. So we regard the two peptides as similar, and assign the sec-

ondary structure element of each amino acid in VLSEGEWQ to its corresponding one 

in VLSDEDKT. We then get a “pseudo peptide of known structure” VLSDEDKT and 

store it in the knowledge base along with its confidence score. Since it is possible for 

two identical peptides to be assigned different structures, we regard them as different 

peptides and store both records in the knowledge base. Thus, each peptide fragment in 

the knowledge base is uniquely determined by its sequence, structure and confidence 

score. 

In the second window of Figure 1, only three amino acid pairs get positive scores. 

So the two peptides SHPETLEK and SFPTTKTY are regarded as dissimilar and no 

structure information is inherited. 

 

2.2 The match rate of a target protein 

Given a target protein q of length n, we use PSI-BLAST and the constructed knowl-

edge base to determine its match rate as follows. PSI-BLAST is performed on the 

target protein to find HSPs. For each HSP, we perform Step 1 and Step 2 stated in 

Section 2.1 to find peptides similar to peptides of the target protein q. We search 

through the knowledge base for all peptides found so far and n−w+1 peptides of size 

w in the target protein itself. The match rate is defined as follows: 

%100
matched be  topeptides all ofnumber 
peptidessimilar  matched ofnumber  rateMatch ×=  

Match rate represents the percentage of peptides of the target protein that can extract 

structural information from the knowledge base. Intuitively, when the match rate is 

higher, the knowledge base can provide relatively more structural information and 

indeed, our experiment in Section 3 shows that the prediction accuracy tends to be 

better. In HYPROSP, if the match rate is higher than 80%, then we adopt PROSP for 
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the prediction; otherwise, we use PSIPRED. 

 

2.3 The PROSP algorithm 

We describe how to predict the structure of a target protein p given the knowledge 

base. Associate with each amino acid x in p three score variables: H(x), E(x) and L(x) 

corresponding to the three states of structures, H, E and L. The structure of x is pre-

dicted based on Maximum(H(x), E(x), L(x)). Each amino acid x appears in w con-

secutive overlapped peptides of p, say p1, p2, . . . , pw. Each pj , 1 ≤ j ≤ w, is associated 

with some similar peptides (including itself), say qr. We use pj [i] and qr[i] to denote 

the ith position (amino acid) of pj and qr, respectively. qr is matched against the 

knowledge base. 

If qr is in the knowledge base and the alignment score is S, for 1 ≤ i ≤ w, we update 

H(pj [i]) ← H(pj [i])+S ×S(qr) if qr[i] is H; E(pj [i]) ← E(pj [i])+S ×S(qr) if qr[i] is E; 

and L(pj [i]) ← L(pj [i]) + S × S(qr) if qr[i] is L. 

If qr is not in the knowledge base, it is ignored. 

Repeating the above calculation for all similar peptides covering the amino acid x, 

we assign the structure of x according to Maximum(H(x), E(x), L(x)). 

We also use the following modification rules: For any three consecutive amino ac-

ids abc in p, if the structure of abc is LHL, then assign LLL to abc; if the structure of 

abc is HEH, then assign HHH to abc; if the structure of abc is EHE, then assign EEE 

to abc. If H(x) = E(x) = L(x), then x is assigned the structure state L since L occurs 

more frequently than H and E. If H(x) = E(x) > L(x), then x is assigned the structure 

state H since H occurs more frequently than E. 

 

3. Experimental Results 

PROSP is developed under Linux Redhat 9.0; it is implemented as a C++ MPI appli-

cation suit which is run on a PC cluster having 15 nodes; each node contains a Pen-

tium-4 2.8GHz CPU, 2GB main memory and a 30GB hard disk. After performing 

PSI-BLAST, predicting one protein by PROSP under this configuration takes around 

three seconds. We use two datasets to verify PROSP: the DSSP dataset and the EVA 

sequence-unique dataset. The experiment on the DSSP dataset is to simulate the real 
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world scenario; the experiment on the EVA dataset is to perform comprehensive cross 

validation. We describe the experimental results of the DSSP dataset in Sections 3.1 

and 3.2, and describe that of the EVA dataset in Section 3.3. 

We use Q3 to evaluate our algorithm, which is given by 

100
residues all ofnumber 

predictedcorrectly  residues ofnumber Q3 ×=  

 

3.1 Experimental results on different parameters 

3.1.1 The DSSP dataset 

In the first experiment, we intend to simulate the real world scenario by fully utilizing 

the strength of known protein structural information to predict the unknown. There-

fore, we use as large a dataset as we can get for training. We use the DSSP data before 

September 2003 (12,714 proteins) to create our training and testing datasets. Because 

data cleansing of such huge datasets is a tedious work, we generate training and test-

ing datasets according to the protein deposited date rather than perform a comprehen-

sive cross validation. The experiment is repeated three times for each month of July, 

August and September. Three pairs of training and testing datasets are generated for 

July, August and September (see Table 1). For each month, we treat the proteins de-

posited or modified in that month as potential target proteins and the remaining 

non-redundant proteins in DSSP as training proteins. Among the target proteins, we 

only use those whose identities with the training proteins are less than 25%. So there 

is no directly relation among the three testing datasets, and this is why the resulting 

datasets having unbalanced number of proteins. Note that in each dataset, the total 

number of proteins (training + testing) is less than 12,714 because of the following 

data cleansing procedure: 

1. perform pairwise exact match to ensure these datasets are non-redundant; all 

identical sequences are filtered out; 

2. within each set of potential target proteins, remove those that can find similar 

proteins with sequence identity > 25% in the training proteins and treat the re-

maining ones as target proteins. 

The knowledge bases generated by using July, August and September datasets 
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contain 40,106,086, 43,381,886 and 43,478,539 peptides respectively. Each peptide is 

of length seven. 

In the following subsection, we present the experimental results of PROSP using 

different parameters. Note that each curve shown in the figures of this subsection is 

obtained by averaging the prediction results of all three datasets with specified pa-

rameters unless otherwise stated. 

 

3.1.2. Results on different window size w and similarity threshold k 

Our algorithm aims to utilize, to a greater extent, structural information of similar 

peptides. The determination of similar relations, which depends on the window size w 

and the similarity threshold k, can greatly affect the performance of our algorithm. 

There is a tradeoff in selecting w and k.  

Using smaller w, we can generate more peptides for a target protein and match 

more similar peptides from the knowledge base. However, short peptide sequences 

are likely to be associated with many incompatible structures, which could create 

more ambiguity in structure prediction. 

For each fixed w, there is also a tradeoff in choosing the similarity threshold k. 

Smaller k produces looser similarity relations, which would prompt us to extract more 

“similar” but less reliable peptides from the knowledge base. To make an appropriate 

selection of w and k, we conduct the experiments for w raging from 6 to 10 and k 

ranging from 0 to w.  

Figure 2 shows the prediction accuracy Q3 for different k, in which each curve 

represents a given value of w. It is observed that a better performance is obtained 

when k is within the range (0, w/2). This may imply that peptide diversity is more 

important than peptide specificity for prediction accuracy. 

Figure 3 shows the prediction accuracy Q3 for different window size w with the 

best k given by w/2, and three curves corresponding to the three datasets July, August 

and September. For July and August datasets, window size 7 produces the best pre-

diction accuracy; there is no more than 4% accuracy difference among all window 

sizes. For September dataset, the prediction accuracy becomes worse if window sizes 

get larger. Overall, w = 7 seems to be the best choice, and we choose k to be 3. 
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3.1.3 Results on different match rates 

Match rate represents the portion of similar peptides generated from a target protein 

that are found in the knowledge base. Figure 4 shows the results of different match 

rates given w = 7 and k = 3. Note, however, the curve of the August dataset is discon-

nected since no target protein has a match rate between 28% and 45%. 

Intuitively, one can see from Figure 4 that higher matched rate implies higher pre-

diction accuracy. Proteins with match rate higher than 80% can achieve prediction 

accuracy over 83, which is considerably better than that of PSIPRED. Thus, we set 

the match rate cutoff threshold at 80% to assure better performance using HYPROSP. 

That is, HYPROSP use PSIPRED to predict target proteins with match rate lower than 

80%, and use PROSP for proteins with match rate at least 80%. 

Note that, for those proteins in the training data, the match rate is guaranteed to be 

100% (since each protein sequence will match with itself in DSSP) and the Q3 is 

found to be close to 94. 

The prediction accuracy with respect to match rate for PROSP and PSIPRED is 

shown in Figure 5. For PROSP, a monotonically increasing cubic regression line is 

shown. On the other hand, for PSIPRED, the cubic regression line is rather flat. By 

comparing these two regression lines, we find that PROSP gets ahead when the match 

rate is over 80%. 

 

3.2 Comparison of HYPROSP and PSIPRED 

The performance improvement of our hybrid method depends on the proportion of 

target proteins with match rate at least 80%. Table 2 shows the match rate distribution 

of target proteins in each dataset. In Table 3, we show Q3 of PSIPRED and 

HYPROSP. 

For target proteins with match rate at least 80%, the prediction accuracy of PROSP 

is better than that of PSIPRED by 3.9. The average prediction accuracy of HYPROSP 

is 79.3, which is an improvement of 1.04 over PSIPRED. This improvement is statis-

tically significant at p = 0.0008. 

To compare PROSP with PSIPRED on target proteins with match rate at least 80%, 
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we depict the Q3 difference between PROSP and PSIPRED. The result is quite dra-

matic as can be seen in Figure 6. There are 155 proteins (total over three months) 

whose match rates are at least 80%. To these 155 proteins, the accuracy improvement 

of the mean and standard deviation is 3.96 and 8.17, respectively. Among the 155 

proteins with match rate at least 80%, PROSP predicts better than PSIPRED in 99 

proteins, in which the average accuracy improvement is 8.51; on the other hand, there 

are 50 proteins that PROSP predicts worse than PSIPRED, in which the average ac-

curacy decrease is 4.58. There are 6 proteins that both methods achieve the same ac-

curacy. The detailed statistics of the 155 proteins over the three datasets are listed in 

Table 4, in which #, µ and σ mean the number of proteins, average and standard de-

viation, respectively.  

For those 50 proteins that PROSP predicts worse than PSIPRED, we observe that 

these proteins share a lot of “ambiguous peptides”, which are associated with multiple 

incompatible structures. Such ambiguity corrupts the voting procedure. 

 

3.3 Experimental results on the EVA sequence-unique dataset 

In the second experiment, we use a smaller but commonly used standard dataset, EVA 

sequence-unique dataset (December 11, 2003), to perform comprehensive cross vali-

dation. Proteins are considered sequence unique if we cannot find any protein in PDB 

satisfying at least one of the following conditions: 

• E-value of < 10−2 in PSI-BLAST search, 

• E-value of < 10−2 in pairwise BLAST search, 

• HSSP threshold < 0 in pairwise BLAST or PSI-BLAST search.  

EVA dataset contains 3,107 proteins. We filter out those of length < 50 or > 1000, 

which yields a new dataset containing 2,509 proteins. The knowledge base that is cre-

ated by using EVA dataset contains 31,252,529 peptides. 

We have performed a ten-fold cross validation3 on this dataset and show the aver-

age Q3 with respect to different match rates in Figure 7. The average Q3 of PROSP on 

proteins with match rate at least 80% is 83.2. When compared with PSIPRED whose 

                                                 
3 Ten-fold cross validation is a standard verification method. In which data is split into ten approximate 
equal partitions. Each one is in turn for testing while the others are used for training, i.e., 9/10 of data is 
for training and 1/10 for testing. The whole procedure is repeated ten times. 



11 

average Q3 is 76 reported by the EVA website (PSIPRED’s accuracy is not much 

correlated to our match rate from Figure 5), the Q3 of PROSP is 7.2 better than that of 

PSIPRED, which is even larger than the difference of the experiment on the DSSP 

dataset. On average, 9.72% of testing proteins have match rate at least 80%. 

 

4. Conclusions 

Our knowledge-based approach for protein secondary structure prediction has several 

advantages. First, the knowledge base provides an interesting measure, match rate, for 

any protein sequence. As far as the secondary structure is concerned, the match rate 

can be regarded as a new “similarity measure” for a target protein against our knowl-

edge base. The higher the match rate, the better the prediction accuracy is likely to be. 

Second, future improvement of our approach is incremental: as more protein struc-

tures are discovered each month, the knowledge base (training data) is richer and the 

prediction accuracy will likely get better automatically. Third, the match rate as de-

fined is not correlated to sequence identity of proteins in DSSP (as seen from Figure 8, 

in which the regression line has a slope of −0.000018 and a p-value of 0.69), nor is it 

much correlated with the prediction accuracy of PSIPRED. This shows our match rate 

has captured certain remote homologous relations in evolution that are not evident in 

other methods. Hence, the improvement is likely to stay even after other methods are 

improved along their respective philosophies. 

Another advantage is that, the architecture of our algorithm is flexible enough to 

allow other biological knowledge as well as machine learning or corpus analysis 

techniques in natural language processing to be incorporated into the model to further 

improve its prediction accuracy. 
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Table 1: The datasets of July, August and September of 2003 
Training proteins DSSP protein records excluding those last modified by 

July 2003, total 9,213 proteins. 

Set 1 (July) 

Target proteins DSSP protein records last modified by July 2003, total 

465 proteins. 

Training proteins DSSP protein records excluding those last modified by 

August 2003, total 12,248 proteins. 

Set 2 (August) 

Target proteins DSSP protein records last modified by August 2003, 

total 41 proteins. 

Training proteins DSSP protein records excluding last modified by Sep-

tember 2003, total 12,344 proteins. 

Set 3 (September) 

Target proteins DSSP protein records last modified by September 2003, 

total 85 proteins. 

 

Table 2: The distribution of protein match rate 
 Match rate 
 0% ~ 80% 80% ~ 100% 

July 74.0% 26.0% 

August 58.5% 41.5% 

September 80.0% 20.0% 

 

Table 3: The Q3 prediction accuracy of various algorithms 
 PSIPRED PROSP HYPROSP Improvement
 Match rate  Match rate   

 ≥ 80% < 80% overall ≥ 80% overall  

July 79.9 77.1 77.8 83.3 78.7 0.9 

August 80.4 74.7 77.1 87.9 80.2 3.1 

September 80.6 81.3 81.2 84.7 82.0 0.8 

average 80.0 77.7 78.3 83.9 79.3 1.04 
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Table 4: The Q3 of PROSP compared to that of PSIPRED on proteins with match rate 
at least 80% 

 above PSIPRED below PSIPRED equal to PSIPRED # 

  improvement  decrease   

 # µ σ # µ σ #  

July 75 8.10 6.04 42 4.57 3.43 4 121

August 12 11.65 7.85 4 3.07 1.83 1 17 

September 12 7.90 5.42 4 6.21 3.53 1 17 

average  8.51 6.33  4.58 3.40  155

 

 
 

Figure 1: An HSP found by PSI-BLAST 
 



16 

 

Figure 2: Prediction accuracy for different similarity thresholds k (DSSP dataset) 
 

 
Figure 3: Prediction accuracy for different window sizes w (DSSP dataset) 
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Figure 4: Prediction accuracy for different match rates on three DSSP datasets 
 

 

Figure 5: The relation of PROSP and PSIPRED with respect to match rate (DSSP 
dadaset) 
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Figure 6: The difference of Q3 between PROSP and PSIPRED (DSSP dataset) 
 

 
Figure 7: Prediction accuracy for different match rates on the EVA dataset 
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Figure 8: The analysis showing that our match rate is not correlated to sequence iden-

tity with proteins in DSSP 

 


