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Abstract

In the previous studies dredge fault tolerance with respect to hypercu@as matrices for generating linear
k-EFT(Qn) graphs were used. L&FT| (n, k) denote the set of matrices that generate likeBF T (Qp) graphs.
A matrix in EFT(n, k) with the smallest number of rows among all matricesET | (n, k) is optimal. We
useeft, (n, k) to denote the difference between the number of rows and the number of columns in any optimal
EFTL (n, k) matrix. In terms of Hamming weight, in this work we present a necessary and sufficient condition for
those matrices ifeEF T (n, k) and another necessary and sufficient condition for those matrid&sTin(n, k) of
the form['lg]. We also pove thateft, (n, k + 1) > eft, (n, k) + 1 and thagft, (n,k + 1) = eft, (n,k) + 1 if kis
even.
© 2005 Published by Elsevier Ltd
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1. Introduction

In this work, anygraph means an undirected graph in which multiple edges are allowed. Let
G = (V, E) be a graph wher® is the vertex set of5 and E is the edge set o6. For any vertex
x of V, deg; (x) denotes its degree i@. Let E’ be a subset oE. We useG — E’ to denote the spanning
subgraph ofs with its edge seE — E’.
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We usually use a graph to represent the architecture of an interconnection network, where nodes
repregnt processors and edges represent communication links between pairs of processors. Faults ma
occur in nodes/or edges of an interconnection network. We restrict faults to edges only in this work.
Motivated by the sidy of computer and communication networks that can tolerate failure of their
components, Harary and Hayel formulated the oncept of edge fault tolerance in graphs. Given a
target graph H = (V, E), let G = (V, E*) be a supergraph dl. G is said to bek-edge-fault-tolerant
with respect toH, denoted byk-EFT(H), if forany F € E* and|F| = k, G — F contains a subgraph
isomorphic toH. ThegraphG* is said to beoptimal if G* contains the smallest number of edges among
all k-EFT(H) graphs. In this work, the target graphs are hypercubes. Edge-fault-tolerant graphs with
respect to hypercubes have been studied i#].

For interconnection networks proposed in the literature, the hypercQlheare among the most
popular topologies?]. Let u = uUn_1Up_2...Uug andv = vp_1vn_2...v1V0 be twon-bit strings.

We useu + v to denote the bitwise boolean sumwéndv. TheHamming weight of u, denoted byw (u),
is defined to béhe number ofi with 0 <i < n — 1 such batu; # 0. TheHamming distance between
u andv, denoted byh(u, v), is thenumber ofi with 0 < i < n — 1 such batu; # vj. Obviously,
h(u, v) = w(u + v). Then-dimensional hypercube, Qy, consists of all then-bit strings as its vertices
and two verticesl andv areadjacent if andonly if h(u, v) = 1.

Yamadaet al. [6] used a ector-space approach to develofeFT(Qn) graphs fork > 1. Let B be
anym x n matrix over GF (2) and R be a proper subset ¢1, 2, ..., m}. We useB(R) to denote the
matrix obtained fromB by deleting those rows with indices R. Letk be any positive integer. Assume
that B is anm x n matrix such that the rank d(R) is n for any |R| < k. With this matrix B, we
can build a graplGg = (Vn, Eg) whereV, = V(Qp) and anyvertexv € Vj is joined tou if and
only if u = v 4+ r' wherer!' is thei-th row vector of B. Obviously, he degree of any vertexin Gg
is m. We call the edge joining to v + r' of classi. Suppose thaE’ is a sibset ofEg with |E’| < k.

Let R = {i | e isanedgeinE’ and e is of classi}. Obviously, |R| < k. Herce the rank ofB(R)

is n. Thus, we can chooselinearly independent rows frorB(R). Obviously, all the edges of classes
in B(R) induce a graph isomorphic t@,. Herce, Gg is a k-EFT(Qy). We all the corresponding
graphGg alinear k-EFT(Qp). Let EFT| (n, K) denote the set of matricd® such thatGpg is a linear
k-EFT(Qp). Obviously, the matrixB € EFT|(n, k) with the smallest number of rows will derive a
lineark-EFT(Qpn) graph with the least number of edges among all lineBFT(Qy) graphs. Thus, we
say a méix B € EFT| (n, k) with the smallest number of rows is aptimum linear k-EFT(Qp) and
we useeft, (n, k) to denote(m — n) wheremis the nunter of rows in any optimum lined-EFT(Qp).

Actually the concept of lineadt-EFT(Qp) had already been used before the formulation proposed by
Yamadaet al. [6]. Bruck et al. P] used thg goproach to construct the BFT(Qp). Assume thaB is a
matrix in EFT_(n, K). Obviously, the rank oB is n. By changing coordinates, we can transfoBrinto

['5] = [dl’dz'” d”]' Shih and Batcher ] proved that any sucB in EFT | (n, k) satisfies tk following

.....

two conditions: (1)w(dj) > kforevery 1< j < n;i.e., the Hamming weight of eachis at leastk; and
(2)w(d' +d!) > k—1forevery1<i < j < n;i.e., the Hamming distande(d', d}) betweerd' andd!

is atleastk— 1. With this observation, they employed an ad hoc program to verify edge fault tolerance and
thus generate optimal linefEFT graphs folkk = 2, 3 andn < 26. Sung et al.4] show that the above

two conditions are actually the necessary and sufficient conditions for mBtr& EFT | (n, k) with

k = 2. They also show tha&ft, (n, 3) = eft, (n, 2) + 1 andpresent a construction scheme for the optimal
lineark-EFT(Qy) for k = 2, 3. They also conjectured theft, (n, 5) = eft; (n, 4) + 1. In the Dllowing
section, we extend the idea i6] to present some necessary and sufficient conditions for mattix be
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in EFT(n, k). We also pove thateft, (n, k + 1) > eft, (n, k) + 1 andeft, (n, k+ 1) = eft, (n, k) + 1 if
k is even.

2. Edge-fault-tolerant graphsfor hypercubes

Let B be anym x n matrix andR be any proper subset ¢, 2, ..., m}. Using columnvectors, we
can write B as[c?, ¢?, ..., c"] and B(R) as[c%, c'ﬁ, ..., CRl. Leth be a column/or row vector. We use
h" to denote the transpose bf

Theorem 1. Bisamatrixin EFT_(n, k) if and only if the Hamming weight of any column vector, that is,
asummation of t different columnsof Bwith1 <t < n,isgreater thank, i.e., w(c't+c'2+-.-+c't) > k
foranyl<ij<ipo<---<ig<nandl<t<n.

Proof. Suppose thaB is a matrix sub that he Hamming weight of some column vector, that is, a
summation oft different columns ofB with 1 < t < n, is at mostk. In other word, there exist

some 1< iy <ip < -~ < iy < nand1<t < nsdisfying w(ct +c'2 + ... +c't) < k. Let
h=(hy,hy....,h" =c't4+c2+ ... +c. LetR={i | hj = 1}. Obviously,|R| = w(h) < k and
cl4c24.- +ct=0. Therefore{cR, CZ....,clt} is linearly dgpendent. Hence, the rank B(R) is

less tham. Theretore B € EFTL(n, k).

On the other hand, suppose tl&is a matrix suchtiat the Hamming weight of any column vector,
that is, a summation dfdifferent columns oB with 1 < t < n, is greaér thank. Let R be any subset of
{1,2,..., m}with |R| < k. Obviously, any nontrivial linear combination of at masdifferent columns
of B(R) is not zero. Hence the rank &(R) is n. Therdore, B € EFT_ (n, k). O

Theorem 2. eft, (n, k + 1) > eft, (n, k) + 1. Moreover, eft; (n, k 4+ 1) = eft, (n, k) + 1if k iseven.

Proof. Let B* be any matrix irEFT | (n, k+ 1). Let B be any matrix obtained by deleting any row from
B*. Obviously, B is a matrix inEFT_(n, k). Hencegft, (n, k + 1) > eft, (n, k) + 1.

Assumethak isan eveninteger. L& = (bj j) be anymxn matrix inEFT_(n, k). Form anew matrix

= (byj;) from B by adding a new rowby,, , 1.00,. 1 5..... by ) whereby = Y, bij.

In other Words the new row is the even parity check rowBofHence, the Hammg Welght of any
column in B” is even. hus, the Hamming weight of any linear combination of column vecto®’ o$
even Leth = (hy, hy, ..., hm, hmye) be a summation of columns of B’ with 1 < t < n. We set
h' = (hy, hy, ..., hm)'. Obviously, w(h) > w(h’). By Theorem 1w(h’) > k. Sinceboth w(h) and
k are even integersy(h) > k + 1. Thus,B’ € EFT| (n, k + 1) follows from Theorem 1 Therdore,
eft,(n,k+1) =eft (n,k) +1ifkiseven. O

Since the rank of any matrix is an invariant on changing coordinates, we can find an optimal linear
k-EFT(Qn) among all the matrices of the forﬁg]

Theorem 3. Let

I In ) r?
B:[n} [dl d2 dn}:[clvc""’cn]: :
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Then, B isa matrix in EFT (n, k) if and only if the Hamming weight of any column vector, that is, a
summation of t different columnsof D with 1 <t <k, isgreater thank — t.

Proof. We note thatw(c't +¢'2 + ... 4+ ¢'i) = w(d'1 +d2+... +d'i)+ jforany 1< j < nand
l<ii<iz<---<ij=n

Assume that the Hamming weight of some column vector, that is, a summatiatiffgrent columns
of Dwith 1 <t <k, isatmosk —t. Thus, there existsomed i; <iz <--- <it<nand 1<t <k
saisfying w(c't +c'2 + ... 4+ c'i) < k. By Theorem 1B ¢ EFT| (n, k).

On the other hand, suppose that the Hamming weight of any column vector, that is, a summtation of
different columns oD with 1 <t <k, is greater thark — t. Let R be any subset dfl, 2, ..., m} with
IRl <k . Wesetlr ={t € R|t < n}and|Ir| = s. Obviously,s < min{k, n}. LetR* = R — IR.

Suppose that = 0. Obviously,rl, r2, ..., r" formn independent rows iB(R). Thus, the rank of
B(R) is n. Suppose that O< s < n. Let B* be the submatrix oB formed by hose columns with their
indices not inlg. By our assumption, any column vector that is a summatioh different columns
of Bwith 1l <t < sis greater thark — t. Herce, any column vector that is a summationtof
different columns ofB(R) with 1 < t < s and with indices not ifl g is greater than 0. Hence, any
nontrivial linear combination of at mostdifferent columns oB*(R*) is not a zero vector. Therefore,
the rank of B(R*) is s. Since the row nak of any matrix equals its column rank, we can fiad
independent rows,'t, r'2, ... r's, that pan allthe row \ectors of B*(R*). Obviously, the rows of
(r'v,ri2 ... r'stu{rt |t ¢ Rand 1<t < n}in B(R) form n independent row vectors. Thus,
the rank ofB(R) is n. Therdore, B is in EFT_ (n,k). O

Obviously, I, is an optimallinear 0EFT(Qp). Using Theorem 2 we obtain an optinal linear 1-
EFT(Qn). With Theorem 3any By in EFTL (N, 2) of the form['g] sa’tisfies(m 5 ”) + <m 3 ”) 4.4

m: 2 > n. Suppose thatn andn satisfy the above inequality. We can chooseadifferent 1x (m—n)

columns with their Hamming weight at least 2 to form the mabBixAgain, by Theorem 3the matrix
B is in EFTL(n, 2). Herce,eft, (n, 2) is the smallest integerthat satisfie:{é) + <g) 4 (r> > n.

;
By Theorem 2we obtain an optimal linear &FT (Qp). However, we have difficty in constucting the
optimal lineark-EFT(Qp) with k > 4.
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