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A graph GGG is a combined kkk-fault-tolerant Hamiltonian
graph (also called a combined kkk-Hamiltonian graph) if
GGG −−− FFF is Hamiltonian for every subset FFF ⊂⊂⊂ (VVV(GGG) ∪∪∪
EEE(GGG)) with |FFF| = kkk. A combined kkk-Hamiltonian graph GGG
with |VVV(GGG)| = nnn is optimal if it has the minimum num-
ber of edges among all nnn-node kkk-Hamiltonian graphs.
Using the concept of node expansion, we present a
powerful construction scheme to construct a larger
combined kkk-Hamiltonian graph from a given smaller
graph. Many previous graphs can be constructed by
the concept of node expansion. We also show that our
construction maintains the optimality property in most
cases. The classes of optimal combined kkk-Hamiltonian
graphs that we constructed are shown to have a very
good diameter. In particular, those optimal combined 1-
Hamiltonian graphs that we constructed have a much
smaller diameter than that of those constructed previ-
ously by Mukhopadhyaya and Sinha, Harary and Hayes,
and Wang et al. © 2001 John Wiley & Sons, Inc.
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1. INTRODUCTION

Let G = (V, E) be an undirected graph, where V(G) is
the node set and E(G) is the edge set of G. The degree of
a vertex v in G, denoted by dG(v), is the number of edges
adjacent to v. Let d(u, v) denote the distance of vertices u
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and v. The diameter of a graph is the maximum distance
among all pairs of nodes. A path is a sequence of nodes
such that two consecutive nodes are adjacent. A path
is represented by 〈v0, v1, v2, . . . , vt−1〉. We also write the
path 〈v0, v1, v2, . . . , vt−1〉 as 〈v0 → P1 → vi, vi+1, . . . , vj →
P2 → vk, vk+1, . . . , vt−1〉, where P1 = 〈v0, v1, . . . , vi〉 and
P2 = 〈vj, vj+1, . . . , vk〉. A Hamiltonian path is a path
whose nodes are distinct and span V. A cycle is a path of
at least three nodes such that the first node is the same
as the last node. A cycle is called a Hamiltonian cycle if
it traverses every node of V exactly once. A graph G is
called a Hamiltonian graph if it contains a Hamiltonian
cycle.

A graph H is said to be a combined k-fault-tolerant
graph of the graph G (also called combined k-fault-
tolerant G-graph) if the removal of any combination of
p nodes and q edges with p + q = k from H gives rise
to a graph which contains a spanning subgraph isomor-
phic to G. If G is a Hamiltonian cycle, then H is said
to be a combined k-Hamiltonian graph. A combined k-
fault-tolerant graph with n nodes is optimal if it contains
the least number of edges among all combined k-fault-
tolerant graphs with the same number of nodes. The con-
cept of a combined k-fault-tolerant G-graph is a gener-
alization of those of p-node-fault-tolerant G-graphs and
of q-edge-fault-tolerant G-graphs which have been stud-
ied extensively in VLSI design, parallel architecture, and
communication networks design.

Previous results have been focused mostly on the
construction of either p-node-fault-tolerant or q-edge-
fault-tolerant graphs. Mukhopadhyaya and Sinha [6] and
Harary and Hayes [3, 4] constructed families of opti-
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mal combined 1-Hamiltonian graphs. Wang et al. [12]
constructed a family of optimal n-node combined 1-
Hamiltonian graphs for all even n. Wong and Wong [13]
and Paoli et al. [8] proposed a class of graphs G(n, t)
and showed that these graphs are optimal t-node-fault-
Hamiltonian and optimal t-edge-fault-Hamiltonian for n
even and odd, respectively. Although the graph G(n, t)
is both optimal t-node-fault-Hamiltonian and optimal t-
edge-fault-Hamiltonian, it is not necessary that G(n, t)
is an optimally combined t-Hamiltonian. Sung et al [10]
showed that G(n, k) is optimally combined k-Hamiltonian
for k = 2, 3 and conjectured that the same is true for
all k ≥ 4. In the construction of an optimal p-node, q-
edge, or combined k-Hamiltonian graph, one does not
only look for optimality in the number of edges but
also strives to find optimal graphs with a smaller di-
ameter. Now, we compare the diameter of the afore-
mentioned optimal combined 1-Hamiltonian graphs. The
graphs presented by Mukhopadhyaya and Sinha [6] have
diameter b n

6 c + 2 for n even and b n
8 c + 3 for n odd.

The graphs proposed by Harary and Hayes [3, 4] and by
Wang et al. [12] have diameter b n+1

4 c and O(
√

n), respec-
tively. The diameter of G(n, k) is O(n) if k is considered
as a constant.

In this paper, we initiate a consistent approach and
study of the combined k-fault-tolerant G graphs. We con-
centrate on the construction of combined k-fault-tolerant
Hamiltonian graphs. In Section 2, we give some prelim-
inary results. Then, in Section 3, we successfully con-
struct classes of combined k-Hamiltonian graphs from
smaller ones by introducing the concept of node expan-
sion. We show in Section 4 that the optimal combined
1-Hamiltonian graphs constructed have a much better
diameter than that of those constructed by Mukhopad-
hyaya and Sinha [6], Harary and Hayes [3, 4], and Wang
et al. [12].

2. PRELIMINARY RESULTS

In this section, we will discuss some fault-tolerant
properties of complete graphs. These properties are nec-
essary for constructing combined k-Hamiltonian graphs.
Let Kn denote a complete graph of n vertices.

Lemma 1. The graph Kn − F has a Hamiltonian path
for F ⊂ E(Kn) with |F| ≤ n − 2.

Proof. Let F′ = F − {e} in which e ∈ F. We only
have to show that the graph Kn − F′ has a Hamiltonian
cycle. Ore’s theorem [7] states that a graph G of m nodes
has a Hamiltonian cycle if dG(x) + dG(y) ≥ m for every
pair of nonadjacent vertices x, y in G. Let u and v be two
nonadjacent vertices of Kn − F′. Since |F′| ≤ n − 3
and u, v is adjacent in Kn, the edge (u, v) must be in
F′. The maximum number of other edges that can be
removed which are incident with u or v is |F′|−1. Thus,

dKn−F′ (u) + dKn−F′ (v) ≥ dKn (u) − 1 + dKn (v) − 1 − (|F′| −
1) ≥ (n − 2) + (n − 2) − (n − 4) = n. Hence, Kn − F′ has
a Hamiltonian cycle. Therefore, Kn − F′ − {e} = Kn − F
has a Hamiltonian path, and this lemma follows. �

Theorem 1. Let Kn = (V, E) be an n-node complete
graph and F ⊂ (V ∪ E) be a faulty set with |F| ≤ n − 2.
There exists a set V′ ⊆ V(Kn − F) with |V′| = n − |F|
such that every pair of vertices in V′ can be joined by a
Hamiltonian path.
Proof. We prove this theorem by induction on n. This
statement can be easily verified for n = 3 and 4. Assume
that the statement holds for all Kj with 3 ≤ j ≤ n − 1
and n ≥ 5.

First, we consider that |F ∩ V(Kn)| = i > 0. Then,
the graph Kn − F is isomorphic to Kn−i − F′ for some
|F′| ≤ |F|−i. By induction hypotheses, there exists a set
V′ ⊆ V with |V′| = n−i−|F′| ≥ n−|F| such that every
pair of vertices in V′ can be joined by a Hamiltonian path
of Kn−i−F′. Thus, the statement is also true for the graph
Kn − F since Kn−i − F′ is isomorphic to Kn − F.

Next, we consider that F ⊂ E. When |F| = n − 2,
it follows from Lemma 1 that the graph Kn − F has a
Hamiltonian path. Thus, there exists a set V′ ⊂ V with
V′| = 2 such that the pair of vertices in V′ can be joined
by a Hamiltonian path of Kn − F. Now consider that
F ⊂ E and |F| ≤ n − 3. Let H denote the subgraph of
Kn given by (V, F). Since

∑
v∈V dH(v) ≤ 2(n − 3), there

exists a vertex v ∈ V with dH(v) ≤ 1. We distinguish the
following two cases:
Case 1. There exists a node v with dH(v) = 0.

In other words, all of the edges in Kn −F incident at v
are not in F. Thus, the graph Kn −v−F is isomorphic to
Kn−1 − F. By induction hypotheses, there exists a subset
V′ ⊆ (V−{v}) with |V′| = n−1−|F| such that every two
distinct nodes x, y ∈ V′ can be joined by a Hamiltonian
path of Kn − v − F. Let P be a Hamiltonian path of Kn −
v−F joining x and y which is written as 〈x, x′ → P′ → y〉,
where x′ is a node adjacent to x and P′ is a path from
x′ to y. Then, 〈x, v, x′ → P′ → y〉 and 〈v, x, x′ → P′ → y〉
form two Hamiltonian paths of Kn − F from x to y and
from v to y, respectively. Since x and y are arbitrary
nodes in V′, there always exists a Hamiltonian path of
Kn −F joining every pair of nodes in V′ ∪{v}. Thus, this
statement is true.
Case 2. There exists a node v with dH(v) = 1.

Since there is exactly one edge of Kn − F inci-
dent at v which is also in F, it follows that the graph
Kn − v − F is isomorphic to the graph Kn−1 − F∗, where
|F∗| = |F| − 1. By induction hypotheses, there exists
a subset V′ ⊆ (V − {v}) with |V′| = n − |F| such that
every pair of nodes x, y ∈ V′ can be joined by a Hamil-
tonian path of Kn − v − F. Let P∗ be a Hamiltonian
path of Kn − v − F joining x and y, which is written as
〈x = u0, u1, . . . , un−2 = y〉. Since n ≥ 5, there exists uj,
0 ≤ j ≤ n − 3, such that (v, uj) /∈ F and (v, uj+1) /∈ F.
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Then, 〈x = u0, u1, . . . , uj, v, uj+1, . . . , un−2 = y〉 forms a
Hamiltonian path of Kn − F joining x and y. Hence, ev-
ery pair of nodes in V′ can be joined by a Hamiltonian
path of Kn − F.

Thus, the theorem is proved. �

3. NODE EXPANSION

Let G = (V, E) be an undirected graph with node
set V and edge set E. Let x be a node in V with de-
gree t. The set {x1, x2, . . . , xt} consists of the neighbor-
hood nodes of x. The t-node expansion X(G, x) of G
on x is the graph obtained from G by replacing x by
the complete graph Kt, where V(Kt) = {k1, k2, · · · , kt},
with the edges (x, xi), i = 1, 2, . . . , t deleted from G and
the edges (ki, xi), i = 1, 2, . . . , t added to X(G, x). The
node expansion is degree preserving, that is, dX(G,x)(v) =
dG(x) = t for all v ∈ V(Kt) and dX(G,x)(u) = dG(u) for
all u ∈ (V − {x}). In particular, if G is d-regular, X(G, x)
is also d-regular. The graphs G and X(G, x) are illus-
trated in Figure 1. Let NG(x) be the set {x} ∪ {(x, xi)|
for all 1 ≤ i ≤ t} of G and MG(x) be the set of
V(Kt) ∪ E(Kt) ∪ {(ki, xi)|i = 1, 2, . . . , t} of G.

Lemma 2. Given F1 ⊂ (V(G − x) ∪ E(G − x)). If we
delete any f edges of NG(x) from the graph G − F1 such
that the remaining graph is Hamiltonian for f ≤ t − 2,
then the graph X(G, x)− (F1 ∪F3) is Hamiltonian, where
F3 is a subset of MG(x) and |F3| = f.

Proof. Since F3 ⊂ MG(x) and |F3| ≤ t − 2, there
exists a set V′ ⊂ V(Kt) of size t −f′ such that every two
distinct nodes in V′ can be joined by a Hamiltonian path
of the graph Kt − F3 for f′ = |F3 ∩ (V(Kt) ∪ E(Kt))|.
We define a faulty set F2 of G as follows:

F2 = {(x, xi) | ki /∈ V′ or (xi, ki) ∈ F3, 1 ≤ i ≤ t}.

Thus, |F2| ≤ (|V(Kt)| − |V′|) + (|F3| − f′) = t −
(t − f′) + (f − f′) = f ≤ t − 2. The graph (G − F1) −
F2 is Hamiltonian since we delete any t − 2 edges of
NG(x) from G − F1 such that the remaining graph is
Hamiltonian. Thus, there is a Hamiltonian cycle C =
〈xi, x, xj → P → xi〉 in the graph G − (F1 ∪ F2), where
P is a path from xj to xi. By the definition of F2, ki and
kj are in V′ and (xi, ki), (xj, kj) are not in F3. Thus, there

FIG. 1. The graph G and X(G, x).

exists a Hamiltonian path P′ joining ki and kj in the graph
Kt−F3. Therefore, 〈xi, ki → P′ → kj, xj → P → xi〉 forms
a Hamiltonian cycle in the graph X(G, x)−(F1∪F3). This
lemma is proved. �

Theorem 2. Let x be a vertex of G = (V, E) with dG(x) =
k + 2. If G is combined k-Hamiltonian, then X(G, x) is
also combined k-Hamiltonian.

Proof. Let F be an arbitrary faulty set of the graph
X(G, x), where |F| ≤ k. Let F1 = F ∩ (V(G − x) ∪ E(G
− x)) and F3 = F − F1. Since G is combined k-
Hamiltonian, for every F2 ⊂ NG(x) where |F2| =
|F| − |F1| = |F3|, the graph G − (F1 ∪ F2) is Hamilto-
nian. Applying Lemma 2, we can obtain that the graph
X(G, x) − (F1 ∪ F3) is Hamiltonian. Therefore, X(G, x) is
combined k-Hamiltonian. The theorem is proved. �

Corollary 1. Let G = (V, E) be a graph of n vertices. Let
x and y be two distinct vertices in G where dG(x) = d and
d ≤ dG(y) ≤ d + 1. If G is an optimal combined (d − 2)-
Hamiltonian and the graph G −y is d-regular, X(G, x) =
(V∗, E∗) is an optimal combined (d − 2)-Hamiltonian.

Proof. If G is combined (d − 2)-Hamiltonian, it fol-
lows from Theorem 2 that X(G, x) is combined (d − 2)-
Hamiltonian. If dG(y) = d, G is regular since G − y is
d-regular. Thus, X(G, x) is a d-regular and optimal com-
bined (d − 2)-Hamiltonian. If dG(y) = d + 1, it follows
that both d and n are odd. Therefore, |V∗| = n − 1 + d
is also odd. Since d-node expansion is degree preserv-
ing, dX(G,x)(y) = dG(y) = d + 1 and dX(G,x)(v) = d for all
v ∈ V∗ − {y}. Therefore, X(G, x) is optimal combined
(d − 2)-Hamiltonian. �

Applying Corollary 1, we can obtain other optimal
combined k-Hamiltonian graphs from some known op-
timal combined k-Hamiltonian graphs by (k + 2)-node
expansion.

The node expansion of G = (V, E) on the set U ⊂ V,
denoted by X(G, U), is a graph that is obtained from G
by a sequence node-expansion operations on every node
u ∈ U.

Lemma 3. If the graph G = (V, E) is (k + 2)-regular
and k-edge-Hamiltonian, then the graph X(G, U) − F is
Hamiltonian for every F ⊂ (V(X(G, U)) ∪ E(X(G, U))
− V) for U ⊆ V and |F| ≤ k.

Proof. Let v be a node of U and U′ = U −
{v}. Assume that the graph X(G, U′) − F′ is Hamil-
tonian for every F′ ⊂ (V(X(G, U′)) ∪ E(X(G, U′))
− V) for |F′| ≤ k. Let F3 = F ∩ MX(G,U′)(v) and
F1 = F − F3. Therefore, the graph which is deleted any
|F3| edges, denoted by F2, of NX(G,U′)(v) from the graph
G − F1 is Hamiltonian since (F1 ∪ F2) is a subset of
(V(X(G, U′)) ∪ E(X(G, U′)) − V) and |F1 ∪ F2| = |F| ≤
k. Applying Lemma 2, we can obtain that the graph
X(G, U) − (F1 ∪ F3) is Hamiltonian since F = F1 ∪ F3
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is an arbitrary subset of (V(X(G, U)) ∪ E(X(G, U)) − V)
and |F| ≤ k, this lemma is proved. �

Theorem 3. If the graph G = (V, E) is a (k + 2)-
regular and optimal k-edge-Hamiltonian, then the graph
X(G, V) = (V∗, E∗) is (k + 2)-regular and optimal com-
bined k-Hamiltonian.

Proof. Applying Lemma 3, we can obtain that
the graph X(G, V) − F is Hamiltonian for every F ⊂
(V(X(G, V)) ∪ E(X(G, V)) − V) for |F| ≤ k. In fact,
(V(X(G, X))∪E(X(G, X)))∩V = ∅. Thus, (V(X(G, X))∪
E(X(G, X))) − V = V(X(G, X)) ∪ E(X(G, X)). Therefore,
X(G, V) is combined k-Hamiltonian. Moreover, X(G, V)
is an optimal combined k-Hamiltonian since it is (k+2)-
regular. This theorem is proved. �

It is known that a hypercube, denoted by Q(n), is an n-
regular, node symmetric, and link symmetric graph with
diameter n. Moreover, Q(n) is shown to be (n − 2)-edge

Hamiltonian graph in [1, 9]. We can obtain Corollary 2
applying Theorem 3.

Corollary 2. Let Q(n) = (V, E) be an n-dimensional hy-
percube. The graph X(Q(n), V) is an optimal combined
(n−2)-Hamiltonian and node symmetric graph with n ·2n

vertices, degree n, and diameter 2n.
The star graph, denoted by S(n), is also a famous in-

terconnection network. It is a (n − 1)-regular, node sym-
metric, and edge symmetric graph whose vertex number
is n! and diameter is b3(n − 1)/2c. In [11], the authors
show that S(n) is an (n−3)-edge Hamiltonian graph. Ap-
plying Theorem 3, we also can obtain Corollary 3.

Corollary 3. Let S(n) = (V, E) be an n-dimensional
star graph. The graph X(S(n), V) is an optimal combined
(n−3)-Hamiltonian and node symmetric graph with n ·n!
vertices, degree (n − 1), and diameter 2b3(n − 1)/2c.

FIG. 2. The graph G and X(G, x).
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FIG. 3. The graphs B(1, 1), B(1, 2), and B(1, 3)

The combined 1-Hamiltonian graphs obtained in [3, 4,
6, 12] can be constructed with the concept of node expan-
sion. In [3, 4], Harary and Hayes presented the optimal
combined 1-Hamiltonian graphs Hn [H8 is illustrated in
Fig. 2 (a)]. These graphs can be constructed by a se-
quence of node expansion on vi from K4, as illustrated
in Figure 2 (b). Mukhopadhyaya and Sinha [6] proposed
the optimal combined 1-Hamiltonian graphs Mn [M16 is
illustrated in Fig. 2 (c)]. These graphs can be constructed
by a sequence of node expansions on Vi = {xi, yi, zi}
from K4, as illustrated in Figure 2 (d). The optimal com-
bined 1-Hamiltonian graphs Wn [W30 is illustrated in Fig.
2 (e)], proposed in [12], can also be constructed by a se-
quence of node expansion on Ui = {ai, bi, ci, di, ei}, as
illustrated in Figure 2 (f).

4. DIAMETER

In Section 3, we show that the concept of a node ex-
pansion can be applied to construct ,in a fairly special
fashion, the optimal combined 1-Hamiltonian graphs ob-
tained independently by Mukhopadhyaya and Sinha [6],
Harary and Hayes [3, 4], and Wang et al. [12]. In this
section, we will show that classes of optimal combined
k-Hamiltonian graphs that we constructed in Section 3
have a very good diameter property. In the special case
of k = 1, those optimal combined 1-Hamiltonian graphs
that we constructed have a much smaller diameter than
that of those constructed by Mukhopadhyaya and Sinha
[6], Harary and Hayes [3, 4], and Wang et al. [12].

Using Corollary 1, we can easily obtain other opti-
mal combined k-Hamiltonian graphs from an known op-
timal combined k-Hamiltonian graph by a (k + 2)-node
expansion on a vertex of degree k + 2. Since the com-
plete graph Kk+3 of k + 3 nodes is (k + 2)-regular and is
the smallest optimal combined k-Hamiltonian graph, the
graphs obtained by a sequence of (k + 2)-node expan-
sion from Kk+3 are also (k + 2)-regular and, thus, opti-
mal combined k-Hamiltonian. One possible sequence of
(k+2)-node expansion to construct the optimal combined
k-Hamiltonian graphs B(k, s) is as follows:

TABLE 1. The diameter of B(1, s), Mn, Hn, and Wn.
B(1, s) Mn [6] Hn [3, 4] Wn [12]

number of vertices n n n n
diameter 2 log2 n − c O(n) O(n) O(

√
n)

degree 3 3 or 4 3 or 4 3

Procedure B(k, s)
G = Kk+3

Pick any vertex r as the root of G
for i = 1 to s − 1 do

B = {v | d(v, r) = i}
For all v ∈ B

G = X(G, v)

The graphs B(1, 1), B(1, 2), and B(1, 3) are shown in
Figure 3. The node labeled with r indicates the root as-
signed by Procedure B(k, s). It can be verified that the
number of nodes in B(k, s) is (k+2)(k+1)s−2

k . Moreover, the
distance between a node v to the root r is at most s. Thus,
the diameter of B(k, s) is at most 2s. In other words,
we have constructed a family of optimal combined k-
Hamiltonian graphs with diameter 2 logk+1 n − c.

The diameter for B(k, s) when k = 1 is compared
to those for Mukhopadhyaya and Sinha [6], Harary and
Hayes [3, 4], and Wang et al. [12] in Table 1.

5. CONCLUDING REMARKS

In this paper, we present a general construction
scheme, node expansion, for combined k-Hamiltonian
graphs for all k ≥ 1. Using the concept of node ex-
pansion, we show that the diameter of the optimal com-
bined 1-Hamiltonian graph B(1, s) is less than those pre-
sented in [3, 4, 6, 12]. Furthermore, the graphs presented
in [3, 4, 6, 12] can be constructed with node expansion
from some smaller graphs.
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