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Abstract 
 

This paper presents a novel discriminative feature 
transformation, named full-rank generalized likelihood 
ratio discriminant analysis (fGLRDA), on the grounds 
of the likelihood ratio test (LRT). fGLRDA attempts to 
seek a feature space, which is linearly isomorphic to 
the original n-dimensional feature space and is 
characterized by a full-rank )( nn ×  transformation 
matrix, under the assumption that all the class-
discrimination information resides in a d-dimensional 
subspace )( nd < , through making the most confusing 
situation, described by the null hypothesis, as unlikely 
as possible to happen without the homoscedastic 
assumption on class distributions. Our experimental 
results demonstrate that fGLRDA can yield moderate 
performance improvements over other existing 
methods, such as linear discriminant analysis (LDA) 
for the speaker identification task.  
 
1. Introduction 
 
For the purposes of better discrimination and less 
computational complexity, feature extraction by 
reducing the feature dimensionality is indispensable 
and crucial to the development of a pattern recognition 
system. It often aims to seek a linear transformation for 
projecting feature vectors from an original n-
dimensional space to a d-dimensional subspace 

)( nd < , so that the resulting new features can possess 
good discriminatory power among classes. One of the 
most widely used methods is linear discriminant 
analysis (LDA), which can be thought of as a 
procedure that maximizes the average squared 
Mahalanobis distance between each class-mean pair in 
the projective subspace [1]. Apart from the above-
mentioned geometric interpretation, Campbell has 

shown that the derivation of the LDA transformation is 
equivalent to finding the parameters of multivariate 
Gaussian models by means of maximum likelihood 
(ML) estimation, under the assumption that the whole 
class discrimination information resides in a d-
dimensional subspace and that the within-class 
covariance matrices are equal for all classes (Fig. 1(a)) 
[2]. Afterwards, Kumar proposed heteroscedastic linear 
discriminant analysis (HLDA) to generalize LDA by 
dropping the homoscedastic assumption that all classes 
have equal within-class covariance matrices and 
maximizing the likelihood for these Gaussian models 
iteratively [3].  

Accordingly, we can roughly summarize two 
common components in LDA and HLDA. First, the 
transformation matrix is derived by maximizing the 
likelihood of all samples in the projective subspace. 
Second, the whole information for class discrimination 
resides in the d-dimensional subspace, spanned by d 
column vectors of the transformation matrix. In other 
words, the rejected subspace does not possess any 
discriminatory power, where we can suppose that the 
distributions of all classes completely overlap. 

This paper presents a novel discriminative feature 
transformation, named full-rank generalized likelihood 
ratio discriminant analysis (fGLRDA), stemming from 
the generic idea of the likelihood ratio test (LRT) and 
some parts of our previous work [8]. fGLRDA 
attempts to seek a feature space, which is linearly 
isomorphic to the original n-dimensional feature space 
and can be decomposed into a d-dimensional 
discriminatory subspace and an (n−d)-dimensional 
non-discriminatory subspace by making the most 
confusing situation, described by the null hypothesis, 
as unlikely as possible to happen without the 
homoscedastic assumption on underlying class 
distributions (Fig. 1(b)). The highlights of fGLRDA 
are summarized as follows: 



1. Inheriting from LDA, fGLRDA guarantees the least 
discriminatory power in the rejected subspace. 

2. As we shall see shortly, without the homoscedastic 
assumption, fGLRDA is amenable to pair with 
more elaborate classifiers like quadratic 
discriminant functions when compared to LDA. 

 
2. The modified likelihood ratio test 
 
2.1. Background 
 
Conceptualized from statistical hypothesis testing [4], 
the likelihood ratio test (LRT) is a celebrated method 
of obtaining test statistics in situations where one 
wishes to test a null hypothesis H0 against a completely 
general alternative hypothesis H1. In this paper, H0 
generally represents a statistical fact that we would not 
like to accept. If Ω denotes the complete parameter 
space and ω denotes the parameter space restricted by 
the null hypothesis H0, the LRT criterion for the null 
hypothesis H0 against the alternative hypothesis H1 is 

ΩL

L
LR

max

max ω=   (1) 

where L denotes the likelihood of the sampled data, 
and max LS denotes the likelihood computed with the 
ML estimated parameter set S. 

The logic behind the LRT criterion lies in that, if 
H0 is apparently false with no extra confidence 
measure being considered, the ML condition might 
occur at a point in Ω other than ω, which means that 
max Lω will be far smaller than max LΩ ideally [4]. 

 
2.2. Problem formulation 

 
In this paper, we, however, do not intend to strictly 
follow the LRT procedure for reducing the 
dimensionality of feature vectors. More specifically, 
we do not set the goal at testing whether the null 
hypothesis is true or false, but instead, at seeking a 
projected space, where the (most confusing) null 

hypothesis is as unlikely as possible to be true. To get 
to this point, we design the following statistical 
hypotheses: 

H0: The class populations are the same. 
H1: The class populations are different. 

The transformed space spanned by the column vectors 
of the nonsingular transformation matrix nn×ℜ∈Θ  
must satisfy the condition that the likelihood of all 
feature vectors generated by the null hypothesis is as 
small as possible. In light of this, the objective function 
of full-rank generalized likelihood ratio discriminant 
analysis (fGLRDA) can be generically formulated by 
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Finally, the transformation matrix Θ  can be 
derived by minimizing  ).(fGLRDA ΘJ  
 
3. Full-rank GLRDA 
 
3.1. The model assumptions 

 
Suppose the data is a collection of N independent 
labeled pairs ),( ii lx  , where }),...,1{(1 Nin

i ∈ℜ∈ ×x  is 
a feature vector, and },...,1{ Cli ∈  is a class label. Each 
class },...,1{ Cj ∈  with the sample size jn  is modeled 
by a Gaussian distribution with mean vector jμ  and 
covariance matrix jΣ . The log-likelihood of the data 
in the transformed space is given by 
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where jm and jS denote the sample mean vector and 
the sample covariance matrix of class j, and each 
variable with a tilde refers to the transformed version 
of the original variable. The term ||Θ   in (3) comes 
from the Jacobian of the linear transformation Θ  in 
accordance with the change of variables theorem. 

Figure 1. Illustrations of LDA (a) and fGLRDA (b) for three-class feature transformation.
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 Moreover, we assume that only the first d 
components of ix~  carry the class discrimination 
information. That is, let the first d columns of the full-
rank linear transformation Θ  span the d-dimensional 
subspace, where the class mean vectors and the class 
covariance matrices are different. Therefore, the 
Gaussian parameters in the transformed space and the 
transformation matrix can be expressed by 
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where d
jΣ

~
 and )(

0

~ dn−Σ  are dd ×  and )()( dndn −×−  
matrices, respectively, and dΘ  is composed of the first 
d columns of Θ  while )( dn−Θ  the rest )( dn −  columns. 
Note that in the isomorphic space transformed by Θ , 
the first d-dimensional variables are totally 
uncorrelated with those in the remaining (n−d)-
dimensional subspace. 
 
3.2. The heteroscedastic case 
 
In general, the parameter space, where the class 
populations are the same, can be characterized by the 
estimates of the class mean vectors. Therefore, in the 
heteroscedastic case that the covariance matrices of all 
classes are assumed to be different, the hypotheses of 
fGLRDA can be stated by 

 hetero
0H : For class j, μμ =j  and jΣ  is unrestricted. 

 hetero
1H : For class j, jμ  and jΣ  are unrestricted. 

hetero
0H  describes an extreme situation that if it is true, 

the distributions of all class populations will become 
almost indistinguishable, resulting in less class-
discrimination information offered by the parameter 
space. Therefore, the goal of fGLRDA is to find out the 
most appropriate projective subspace that makes the 
likelihood of the null hypothesis hetero

0H  as small as 
possible. The objective function of homoscedastic 
fGLRDA, which needs to be minimized, can be 
logarithmically expressed as 

).(logmax)(logmax)( hetero
1
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0

ΘΘΘ HH LLJ −=  (6) 

The log-likelihood functions in (6) can be 
maximized with respect to their parameters under the 

constraints given by hetero
0H  and hetero

1H . For the sake of 
simplicity, we can first derive the constrained estimates 
of the mean vectors and covariance matrices in terms 
of a fixed linear transformation Θ , rather than 
straightforwardly maximizing the log-likelihood 
functions. By differentiating the log-likelihood 
functions, which are defined by (3) and constrained by 

hetero
0H  and hetero

1H , respectively, with respect to the 
corresponding parameters jμ  and jΣ , and finding the 
point where the partial derivatives are zero, the ML 
estimates for each class can be derived. They are 
summarized in Table 1, where m  and TS  denote the 
global sample mean vector and the total scatter matrix 
of the data, respectively (cf. [5]). We also refer to w  
as the weighted mean vector, which is computed by 
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and jjj
T

jjj SBSwmwmW +=+−−= ))(( . Note 
that in (7) w  contains an unknown term jΣ  that 
needs to be estimated. We can take jS  as a temporary 
estimate of jΣ  to form a sampled weighted mean for 
all classes. Substituting the maximized log-likelihoods 
of hetero

0H  and hetero
1H  in (6) with the values in Table 1, 

the objective function )(ΘJ  can be derived as 
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Then, the derivative of )(ΘJ  is given by 
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Since 0)( =∂∂ ΘΘJ  has no analytical solution for the 
stationary points, we can use a gradient descent-based 
procedure for the minimization of )(ΘJ  [6]. 
 
4. Experiments and results 
 
We evaluated the proposed fGLRDA on a series of 
speaker identification experiments conducted on the 
Japanese vowel dataset of the UCI-KDD archive [7]. 
The dataset contains discrete speech utterances of two 
Japanese vowels /a/ and /e/ pronounced by 9 male 
speakers. Each speaker has 54-118 utterances, and 

Table 1. The MLE statistics of fGLRDA under various hypotheses. 

Statistical Hypotheses 
ML Estimates (Relevant) Maximum Log-likelihood 

(not including the term ||log ΘN ) Mean Vectors Covariance Matrices 
Discriminatory Rejected Discriminatory Rejected 
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there are 640 utterances in total. These utterances were 
represented by time-series recordings of 12-
dimentional linear predictive coding (LPC) cepstral 
vectors with a stream length of 7-29. For each speaker, 
we used 30 time series to train his Gaussian 
discriminant function [5], and used the remaining 24-
88 time series for testing.  

In the training phase, each feature vector labeled to 
class i (i.e., uttered by speaker i) is thought of as an 
individual training instance. Based on the labeled data, 
we collect the corresponding statistics to derive the 
transformation matrices on top of the above mentioned 
methods, such that the classifiers can be generated by 
the transformed training vectors. However, in the test 
phase, given the Gaussian discriminant functions 
derived for each class in the training phase [5], each 
test utterance is first represented by its sample mean 
vector, which is taken as an input to the discriminant 
functions. The test utterance will be classified into 
class i that has the largest discriminant score. 

Since the rank of the between-class scatter matrix is 
C−1, the maximum dimensionality of the 
discriminatory subspace generated by LDA is 8 (C = 9). 
However, fGLRDA can get around this limitation.  

Figures 2 and 3 illustrate the plots of classification 
error rates as functions of the corresponding feature 
dimensions in the transformed subspace with linear and 
quadratic discriminant functions, respectively. It is 
clear that HLDA yields higher error rates, especially in 
the cases of lower dimensions. Since the maximum 
likelihood-based criterion of HLDA fails to account for 
class mean scatters, like the term T

jj ))(( wmwm −− , 
given by the null hypothesis hetero

0H , which can be 
deemed to be a measurement of class separability in 
the discriminatory subspace, it does not necessarily 
generate discriminative effects. On the contrary, 
fGLRDA achieves the lowest error rates when the 
dimensionality is set to 3 or 4, which have relative 
error rate reductions of 22.63% and 51.17%, 
respectively, over LDA in association with the 
quadratic discriminant functions.  
 
5. Conclusions 
 
In this paper, we have presented a full-rank generalized 
likelihood ratio discriminant analysis (fGLRDA) 
approach for discriminative feature transformation on 
the basis of the likelihood ratio test. We argue that 
methods designed along this vein would be more 
feasible when being applied to a wide array of pattern 
recognition tasks. As part of future work, the parameter 
settings in the rejected subspace can be designed in a 
more elaborate way. 
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Figure 2. Plot of classification error rates versus
feature dimensions with linear discriminant
functions. 

 
 

Figure 3. Plot of classification error rates versus
feature dimensions with quadratic discriminant
functions. 


